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Spectral approximation of elliptic operators by the Hybrid

High-Order method

Victor Calo∗ Matteo Cicuttin� Quanling Deng� Alexandre Ern§

Abstract

We study the approximation of the spectrum of a second-order elliptic differ-
ential operator by the Hybrid High-Order (HHO) method. The HHO method is
formulated using cell and face unknowns which are polynomials of some degree
k ≥ 0. Only cell unknowns correspond to eigenvalues and eigenfunctions, while the
face unknowns help deliver superconvergence. Using the abstract theory of spectral
approximation of compact operators in Hilbert spaces, we prove that the eigenval-
ues (super-)converge at rate (2k + 2) and the eigenfunctions at rate (k + 1) in the
H1-seminorm. Our theoretical findings are verified on various numerical examples
including smooth and non-smooth eigenfunctions. Moreover, we observe numerically
in one dimension a convergence rate of (2k+4) for the eigenvalues for a specific value
of the stabilization parameter. Mathematics Subjects Classification: 65N15,
65N30, 65N35, 35J05

Keywords Hybrid high-order methods, eigenvalue approximation, eigenfunction ap-
proximation, spectrum analysis, error analysis

1 Introduction

The Hybrid High-Order (HHO) method has been recently introduced for diffusion prob-
lems in [26] and for linear elasticity problems in [25]. The HHO method is formulated by
introducing cell and face unknowns which are polynomials of some degree k ≥ 0 (some
variations in the degree of the cell unknowns are possible). The method is then devised
from a local reconstruction operator and a (subtle) local stabilization operator in each
mesh cell. This leads to a discretization method that supports general meshes (with
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polyhedral cells and non-matching interfaces). Moreover, when approximating smooth
solutions of the second-order elliptic source problems, the method delivers error esti-
mates of order hk+1 in the H1-seminorm and of order hk+2 in the L2-norm under full
elliptic regularity. Positioning unknowns at mesh faces is also a natural way to express
locally in each mesh cell the balance properties satisfied by the model problem. As
shown in [16], the HHO method can be fitted into the family of Hybridizable Discon-
tinuous Galerkin (HDG) methods introduced in [17] and is also closely related to the
nonconforming Virtual Element Method from [5] and the Weak Galerkin method from
[44]. The HHO method has undergone a vigorous development over the last few years;
we mention, among others, the application to advection-diffusion equations in [23], to
the Stokes equations in [27], to the Leray–Lions equations in [22], and to hyperelasticity
with finite deformations in [1]. The implementation of HHO methods is described in
[15]. As already pointed out in [26, 25], the cell unknowns can be eliminated locally in
each mesh cell, leading to a global Schur complement problem with compact stencil in
terms of the face unknowns.

The goal of this work is to devise and analyze HHO methods for the discretization
of the eigenvalue problem associated with a second-order elliptic differential operator.
We formulate the discrete eigenvalue problem by letting the mass bilinear form act only
on the cell unknowns, whereas the stiffness bilinear form acts, as for the discrete source
problem, on both cell and face unknowns. For the error analysis on the discrete eigen-
values and eigenfunctions, we rely on the abstract theory of spectral approximation of
compact operators in Hilbert spaces following the work of Vǎınikko [42, 43], Bramble
and Osborn [9, 38], Descloux et al. [20, 21], and Babuška and Osborn [6]. In this context,
one key question is to identify the relevant HHO solution operator approximating the
exact solution operator. We show that this can be achieved by introducing a purely
cell-based HHO solution operator where the face unknowns have been eliminated by
expressing them in terms of the cell unknowns. While this operator is not needed for
actual computations, it plays a central role in the error analysis. The error analysis en-
tails some further subtleties related to the special structure of the HHO reconstruction
and stabilization operators. Our main result, see Theorem 4.4 and Corollary 4.6 below,
establishes a convergence of order h2t for the eigenvalues and of order ht for the eigen-
functions in the H1-seminorm where t ∈ [s, k + 1] is the smoothness index related to the
eigenfunctions to be approximated and s ∈ (1

2 ,1] is the smoothness index resulting from
the elliptic regularity theory. In the case of smooth eigenfunctions, we have t = k + 1,
leading to a convergence of order h2k+2 for the eigenvalues and of order hk+1 for the
eigenfunctions in the H1-seminorm. These superconvergence orders (polynomials of de-
gree k are used) are confirmed by our numerical experiments including both smooth and
non-smooth eigenfunctions of the Laplace operator in one and two dimensions. Finally,
we mention that in one dimension, we observed an even better superconvergence of order
h2k+4 for the eigenvalues whenever the stabilization parameter in the HHO method is
chosen to be equal to (2k + 3).

Let us put our results in perspective with the literature on the approximation of
elliptic eigenvalue problems by other discretization methods. Following the early work
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in [41], it is well-known that using H1-conforming finite elements of degree k ≥ 1 on
simplicial meshes leads to convergence rates of order h2k for the eigenvalues and of order
hk for the eigenfunctions (provided the eigenfunctions are smooth enough). Similar
results were obtained more recently in [3, 31] for discontinuous Galerkin (dG) methods.
The analysis of the spectral approximation by mixed and mixed-hybrid methods was
started in [13, 37, 36] and expanded in [29, 8]. Hybridization techniques leading to
an eigenproblem on the face unknowns were studied in [18] for Raviart–Thomas mixed
finite elements; therein, it was also observed that the use of a local post-processing
technique improves the accuracy of the computed eigenfunctions (see also [30] for the
lowest-order case). More recently, the spectral approximation of elliptic operators by
the HDG method was analyzed in [32], leading to a convergence of order h2k+1 for the
eigenvalues; therein, a non-trivial post-processing using a Rayleigh quotient was also
examined numerically leading to an improved convergence of order h2k+2 for k ≥ 1.
In contrast, the HHO approximation directly delivers a provable convergence of order
h2k+2 even for k = 0. Finally, let us mention the recent work in [39, 19, 12] which studies
numerically the optimally blended quadrature rules [2] for the isogeometric analysis [34]
of the Laplace eigenvalue problem and reports superconvergence of order h2k+2 for the
eigenvalue errors while maintaining optimal convergence of orders hk and hk+1 for the
eigenfunction errors in the H1-seminorm and in the L2-norm, respectively.

The rest of this paper is organized as follows. Section 2 presents the second-order
elliptic eigenvalue problem and briefly recalls the main abstract results we are going
to use concerning the spectral approximation of compact operators in Hilbert spaces.
Section 3 deals with the HHO discretization, first of the source problem and then of
the eigenvalue problem. The algebraic realization of both problems is also presented.
Section 3 additionally identifies the relevant notion of discrete solution operator for HHO
methods and outlines the error analysis for the HHO discretization of the source problem.
This analysis is based on the results of [26]; one novelty here is that we handle the case
where the exact solution may not have full regularity to deliver optimally convergent error
estimates. Section 4 is concerned with the error analysis for the HHO discretization of
the eigenvalue problem and contains our main results. Section 5 presents our numerical
examples. Finally, some concluding remarks are collected in Section 6.

2 Functional setting

In this section, we present the second-order elliptic eigenvalue problem, and briefly recall
the main abstract results on the approximation of the spectrum of compact operators
in Hilbert spaces.
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2.1 Problem statement

We consider the following second-order elliptic eigenvalue problem: Find an eigenpair
(λ,u) with λ ∈ R>0 and u ∶ Ω→ R such that

−∆u = λu in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ Rd, d ∈ {1,2,3}, is a bounded open domain with Lipschitz boundary ∂Ω and
∆ is the Laplacian. In weak form, the problem (2.1) reads as follows: Find (λ,u) ∈
R>0 ×H1

0(Ω) such that

a(u,w) = λb(u,w), ∀w ∈H1
0(Ω), (2.2)

with the bilinear forms a and b defined on H1
0(Ω) ×H1

0(Ω) and L2(Ω) ×L2(Ω) as

a(v,w) = (∇v,∇w)L2(Ω), b(v,w) = (v,w)L2(Ω), (2.3)

where (⋅, ⋅)L2(Ω) denotes the inner product in L2(Ω) or in L2(Ω;Rd). The eigenvalue
problem (2.1) has a countably infinite sequence of eigenvalues (λj)j≥1 (see, among many
others, [11, Sec. 9.8]) such that

0 < λ1 < λ2 ≤ λ3 ≤ ⋯, λj → +∞, (2.4)

and an associated sequence of L2-orthonormal eigenfunctions (uj)j≥1 such that

(uj , uk)L2(Ω) = δjk, ∀j, k ≥ 1, (2.5)

with the Kronecker delta defined as δjk = 1 when j = k and zero otherwise.
The source problem associated with the eigenvalue problem (2.2) is as follows: For

all φ ∈ L2(Ω), find u ∈H1
0(Ω) such that

a(u,w) = b(φ,w), ∀w ∈H1
0(Ω). (2.6)

The solution operator associated with (2.6) is denoted as T ∶ L2(Ω) → L2(Ω), so that
we have T (φ) ∈H1

0(Ω) ⊂ L2(Ω) and

a(T (φ),w) = b(φ,w), ∀w ∈H1
0(Ω). (2.7)

By the Rellich–Kondrachov Theorem (see, e.g., [33, Thm. 1.4.3.2]), T is compact from
L2(Ω) to L2(Ω). Moreover, the elliptic regularity theory (see, e.g., [33, 40, 35]) implies
that there is a real number s ∈ (1

2 ,1] so that T ∈ L(L2(Ω);H1+s(Ω)). The reason for
introducing the solution operator T is that (λ,u) ∈ R>0 ×H1

0(Ω) is an eigenpair for (2.2)
if and only if (µ,u) ∈ R>0 ×H1

0(Ω) with µ = λ−1 is an eigenpair of T .
One can also consider the adjoint solution operator T ∗ ∶ L2(Ω) → L2(Ω) such that,

for all ψ ∈ L2(Ω), T ∗(ψ) ∈H1
0(Ω) and

a(w,T ∗(ψ)) = b(w,ψ), ∀w ∈H1
0(Ω). (2.8)
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The symmetry of the bilinear forms a and b implies that T = T ∗; however, allowing more
generality, we keep a distinct notation for the two operators. Since in general we have

(T (φ), ψ)L2(Ω) = a(T (φ), T ∗(ψ)) = (φ,T ∗(ψ))L2(Ω), (2.9)

we infer that T ∗ is the adjoint operator of T , once the duality product is identified with
the inner product in L2(Ω). Therefore, in the present symmetric context, the operator
T is selfadjoint.

2.2 Spectral approximation theory for compact operators

Let us now briefly recall the main results we use concerning the spectral approximation
of compact operators in Hilbert spaces. Let L be a Hilbert space with inner product
denoted by (⋅, ⋅)L, and let T ∈ L(L;L); assume that T is compact. We do not assume
for the abstract theory that T is selfadjoint and we let T ∗ ∈ L(L;L) denote the adjoint
operator of T . Let Tn ∈ L(L;L) be a member of a sequence of compact operators that
converges to T in operator norm, i.e.,

lim
n→+∞

∥T − Tn∥L(L;L) = 0, (2.10)

and let T ∗n ∈ L(L;L) be the adjoint operator of Tn. We want to study how well the
eigenvalues and the eigenfunctions of Tn approximate those of T . Let σ(T ) denote the
spectrum of the operator T and let µ ∈ σ(T ) ∖ {0} be a nonzero eigenvalue of T . Let α
be the ascent of µ, i.e., the smallest integer α such that ker(µI − T )α = ker(µI − T )α+1,
where I is the identity operator. Let also

Gµ = ker(µI − T )α, G∗
µ = ker(µI − T ∗)α, (2.11)

and m = dim(Gµ) (this integer is called the algebraic multiplicity of µ; note that m ≥ α).

Theorem 2.1 (Convergence of the eigenvalues). Let µ ∈ σ(T )∖{0}. Let α be the ascent
of µ and let m be its algebraic multiplicity. Then there are m eigenvalues of Tn, denoted
as µn,1,⋯, µn,m, that converge to µ as n → +∞. Moreover, letting ⟨µn⟩ = 1

m ∑
m
j=1 µn,j

denote their arithmetic mean, there is C, depending on µ but independent of n, such
that

max
1≤j≤m

∣µ − µn,j ∣α + ∣µ − ⟨µn⟩∣ ≤ C( sup
0≠φ∈Gµ
0≠ψ∈G∗

µ

∣((T − Tn)φ,ψ)L∣
∥φ∥L∥ψ∥L

+ ∥(T − Tn)∣Gµ∥L(Gµ;L)∥(T − Tn)∗∣G∗
µ
∥L(G∗

µ;L)).

(2.12)

Remark 2.2 (Convergence of the arithmetic mean). Note that (2.12) shows that for
α ≥ 2, the arithmetic mean of the eigenvalues has a better convergence rate than each
eigenvalue individually.
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Theorem 2.3 (Convergence of the eigenfunctions). Let µ ∈ σ(T ) ∖ {0} with ascent α
and algebraic multiplicity µ. Let µn,j be an eigenvalue of Tn that converges to µ. Let
wn,j be a unit vector in ker(µn,jI − Tn)` for some positive integer ` ≤ α. Then, for any
integer m with ` ≤m ≤ α, there is a vector um ∈ ker(µI − T )m ⊂ Gµ such that

∥um −wn,j∥L ≤ C∥(T − Tn)∣Gµ∥
m−`+1
α

L(Gµ;L), (2.13)

where C depends on µ but is independent of n.

3 HHO discretization

In this section we present the discrete setting underlying the HHO discretization and then
describe the discretization of the source problem (2.6) and of the eigenvalue problem (2.2)
by the HHO method. The HHO discretization of the source problem has been introduced
and analyzed in [26]; herein, we complete the error analysis by addressing the case where
the solution has minimal elliptic regularity pickup. The devising and analysis of the HHO
discretization of the eigenvalue problem is the main subject of this work.

3.1 Discrete setting

Let K be a partition of Ω into non-overlapping mesh cells. A generic mesh cell is denoted
by K and can be a d-dimensional polytope with planar faces. In what follows, we assume
that Ω is also a polytope in Rd with planar faces, so that the mesh can cover Ω exactly.
For all K ∈ K, we let nK denote the unit outward vector to K. We say that F ⊂ Rd is
a mesh face if it is a subset with nonempty relative interior of some affine hyperplane
HF . If there are two distinct mesh cells K1,K2 ∈ K so that F = ∂K1 ∩ ∂K2 ∩ HF ,
then F is called an interface. Alternatively, if there is one mesh cell K ∈ K so that
F = ∂K ∩ ∂Ω ∩HF , then F is called a boundary face. The mesh faces are collected in
the set F , interfaces in the set F i, and boundary faces in the set Fb. We let hS denote
the diameter of the set S which can be a mesh cell or a mesh face. We assume that the
mesh K is a member of a shape-regular polytopal mesh family in the sense specified in
[26, 25]. In a nutshell, there is a matching simplicial submesh of K that belongs to a
shape-regular family of simplicial meshes in the usual sense of Ciarlet [14] and such that
each cell K ∈ K (resp., face F ∈ F) can be decomposed in a finite number of sub-cells
(resp., sub-faces) with uniformly comparable diameter.

The HHO method is defined locally in each mesh cell K ∈ K from a pair of lo-
cal unknowns which consist of one polynomial attached to the cell K and a piecewise
polynomial attached to the boundary ∂K, i.e., one polynomial attached to each face F
composing the boundary of K. Let k ≥ 0 be a polynomial degree, and let Pkd′(S), with
d′ ∈ {d − 1, d} be the linear space composed of real-valued polynomials of total degree
at most k on the d′-dimensional affine manifold S ⊂ Rd (S is typically a mesh face or a
mesh cell). The local discrete HHO pair is denoted

v̂K = (vK , v∂K) ∈ V̂ k
K ∶= Pkd(K) × Pkd−1(F∂K), (3.1)
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where
Pkd−1(F∂K) = ⨉

F ∈F∂K
Pkd−1(F ), (3.2)

and F∂K is the collection of all the faces composing the cell boundary ∂K. There
is actually some flexibility in the choice of the polynomial degree for the cell unknowns
since one can take them to be polynomials of degree l ∈ {k−1, k, k+1} [16]. For simplicity,
we only consider the case l = k; all what follows readily extends to the other choices for
l. In what follows, we always use hat symbols to indicate discrete HHO pairs.

There are two key ingredients to devise locally the HHO method: a local recon-
struction operator and a local stabilization operator. The local reconstruction operator
is defined as pk+1

K ∶ V̂ k
K → Pk+1

d (K) such that for all v̂K = (vK , v∂K) ∈ V̂ k
K , we have

(∇pk+1
K (v̂K),∇w)L2(K) = (∇vK ,∇w)L2(K) + (v∂K − vK ,∇w⋅nK)L2(∂K), (3.3)

for all w ∈ Pk+1
d (K). The above Neumann problem uniquely defines pk+1

K (v̂K) ∈ Pk+1
d (K)

up to an additive constant which can be specified by additionally requiring that (pk+1
K (v̂K)−

vK ,1)L2(K) = 0 (this choice is irrelevant in what follows). Concerning stabilization, we

define the local operator Sk∂K ∶ V̂ k
K → Pkd−1(F∂K) such that, for all v̂K = (vK , v∂K) ∈ V̂ k

K ,
we have

Sk∂K(v̂K) = Πk
∂K(v∂K − γ∂K(pk+1

K (v̂K))) − γ∂K(Πk
K(vK − pk+1

K (v̂K))), (3.4)

where γ∂K denotes the trace map, i.e., the restriction to the boundary ∂K and Πk
K and

Πk
∂K denote the L2-orthogonal projectors from L1(K) onto Pkd(K) and from L1(∂K)

onto Pkd−1(F∂K), respectively. By slightly abusing the notation and letting Πk
∂K act also

on functions defined on K with the understanding that the trace is actually considered,
we can write Sk∂K(v̂K) = Πk

∂K(v∂K −P k+1
K (v̂K)) with P kK(v̂K) = vK + (I −Πk

K)(pkK(v̂K)),
which is [26, Eq. (22)]. Finally, the local HHO bilinear form for the stiffness is such that,
for all v̂K = (vK , v∂K) ∈ V̂ k

K and all ŵK = (wK ,w∂K) ∈ V̂ k
K , we have

âK(v̂K , ŵK) = (∇pk+1
K (v̂K),∇pk+1

K (ŵK))L2(K) + (τ∂KSk∂K(v̂K), Sk∂K(ŵK))L2(∂K), (3.5)

where τ∂K denotes the piecewise constant function on ∂K such that τ∂K∣F = ηh−1
F for

all F ∈ F∂K , and η > 0 is a user-specified positive stabilization parameter (the simplest
choice is to set η = 1).

3.2 HHO discretization of the source problem

Let φ ∈ L2(Ω). To discretize the source problem (2.6) using the HHO method, we
consider the following global space of discrete HHO pairs:

V̂ k
h = V k

K × V k
F , V k

K = ⨉
K∈K

Pkd(K), V k
F = ⨉

F ∈F
Pkd−1(F ). (3.6)

Here, the subscript h refers to the global mesh-size defined as h = maxK∈K hK . For a
global HHO pair v̂h = (vK, vF) ∈ V̂ k

h with vK ∈ V k
K and vF ∈ V k

F , we denote by v̂K =
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(vK , v∂K) ∈ V̂ k
K the local HHO pair associated with the mesh cell K ∈ K, and we denote

by vF ∈ Pkd−1(F ) the component associated with the mesh face F ∈ F . The homogeneous
Dirichlet boundary condition can be embedded into the HHO space by considering the
subspaces

V̂ k
h,0 ∶= V k

K × V k
F ,0, V k

F ,0 ∶= {vF ∈ V k
F ∣ vF = 0, ∀F ∈ Fb}. (3.7)

The HHO discretization of the source problem reads as follows: Find ûh ∈ V̂ k
h,0 such that

âh(ûh, ŵh) = b(φ,wK), ∀ŵh = (wK,wF) ∈ V̂ k
h,0, (3.8)

where, for all v̂h, ŵh ∈ V̂h, we have set

âh(v̂h, ŵh) = ∑
K∈K

âK(v̂K , ŵK). (3.9)

The algebraic realization of the discrete source problem (3.8) leads to a symmetric
positive-definite linear system which can be written in the following block form where
unknowns attached to mesh cells are ordered before unknowns attached to mesh faces:

[AKK AKF
AFK AFF

] [UK
UF

] = [φK
0

] . (3.10)

A computationally-effective way to solve this linear system is to use a Schur complement
technique (also known as static condensation) where the cell unknowns are eliminated
by expressing them locally in terms of the face unknowns. This elimination is simple
since the submatrix AKK is block-diagonal. The resulting linear system in terms of the
face unknowns is

KFFUF = −AFKA−1
KKφK, (3.11)

with the Schur complement matrix KFF = AFF − AFKA−1
KKAKF . As shown in [16],

the linear system (3.11) is a global transmission problem (in which a given mesh face is
locally coupled to the other mesh faces with which it shares a mesh cell) that expresses
the equilibration of a suitable flux across all the mesh interfaces.

3.3 HHO discretization of the eigenvalue problem

The HHO discretization of the eigenvalue problem (2.2) consists of finding the discrete
eigenpairs (λh, ûh) ∈ R>0 × V̂ k

h,0 such that

âh(ûh, ŵh) = λhb(uK,wK), ∀ŵh = (wK,wF) ∈ V̂ k
h,0. (3.12)

The mass bilinear form on the right-hand side of (3.12) only involves discrete cell un-
knowns.

The algebraic realization of (3.12) is the matrix eigenvalue problem

[AKK AKF
AFK AFF

] [UK
UF

] = λh [
BKK 0

0 0
] [UK

UF
] . (3.13)
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Since the face unknowns do not carry any mass, they can be eliminated, leading to the
following matrix eigenvalue problem solely in terms of the cell unknowns:

KKKUK = λhBKKUK, (3.14)

with the Schur complement matrix KKK = AKK −AKFA−1
FFAFK. Therefore, there are

as many discrete eigenpairs as there are cell unknowns, i.e., the dimension of the space
V k
K which is equal to the dimension of the polynomial space Pkd times the number of

mesh cells.

3.4 HHO solution operators

Consider the HHO discretization of the source problem (3.8). We can define the cell-face
HHO solution operator T̂h ∶ L2(Ω) → V̂ k

h,0 so that

âh(T̂h(φ), ŵh) = b(φ,wK), ∀ŵh = (wK,wF) ∈ V̂ k
h,0. (3.15)

However, the operator T̂h is not convenient to handle since it does not map to a subspace
of L2(Ω). The key idea is then to introduce a cell HHO solution operator TK ∶ L2(Ω) →
V k
K ⊂ L2(Ω) by mimicking the elimination of the face unknowns presented above at the

algebraic level for the eigenvalue problem.
As a first step, we define the operator ZF ,0 ∶ V k

K → V k
F ,0 so that, for all vK ∈ V k

K ,

ZF ,0(vK) ∈ V k
F ,0 is defined as the unique solution of

âh((vK, ZF ,0(vK)), (0,wF)) = 0, ∀wF ∈ V k
F ,0. (3.16)

To allow for some generality, we also define the operator Z�
F ,0 ∶ V k

K → V k
F ,0 so that

âh((0,wF), (vK, Z�
F ,0(vK))) = 0, ∀wF ∈ V k

F ,0. (3.17)

In the present setting where the bilinear form âh is symmetric, the two operators ZF ,0
and Z�

F ,0 coincide. As a second step, we define the bilinear form aK on V k
K × V k

K such
that

aK(vK,wK) = âh((vK, ZF ,0(vK)), (wK, Z�
F ,0(wK)), (3.18)

and introduce the solution operator TK ∶ L2(Ω) → V k
K so that

aK(TK(φ),wK) = b(φ,wK), ∀wK ∈ V k
K . (3.19)

Lemma 3.1 (HHO solution operator). The following holds:

T̂h(φ) = (TK(φ), (ZF ,0 ○ TK)(φ)), ∀φ ∈ L2(Ω). (3.20)

Proof. Let φ ∈ L2(Ω). Let us set uK = TK(φ) so that uK ∈ V k
K and aK(uK,wK) = b(φ,wK),

for all wK ∈ V k
K . Let us set uF = (ZF ,0 ○ TK)(φ) = ZF ,0(uK) so that uF ∈ V k

F ,0. Setting
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ûh = (uK, uF) ∈ V̂ k
h,0, we need to verify that ûh solves the discrete HHO source problem,

i.e.,
âh(ûh, ŵh) = b(φ,wK), ∀ŵh = (wK,wF) ∈ V̂ k

h,0.

Considering first a test function in the form ŵh = (wK,0), we obtain

âh(ûh, (wK,0)) = âh((uK, ZF ,0(uK)), (wK,0))
= âh((uK, ZF ,0(uK)), (wK,0)) + âh((uK, ZF ,0(uK)), (0, Z�

F ,0(wK)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= âh((uK, ZF ,0(uK)), (wK, Z�
F ,0(wK)))

= aK(uK,wK) = b(φ,wK),

where we use the definition (3.16) of ZF ,0 in the second line and the definition (3.18)
of aK in the fourth line. Considering now a test function in the form ŵh = (0,wF), we
obtain owing to (3.16) that

âh(ûh, (0,wF)) = âh((uK, ZF ,0(uK)), (0,wF)) = 0.

This completes the proof.

The cell HHO solution operator TK defined in (3.19) is the relevant solution operator
for the discrete eigenvalue problem (3.12). Indeed, the eigenpair (λh, ûh) ∈ R>0 × V̂ k

h,0

with ûh = (uK, uF) ∈ V k
K × V k

F ,0 solves (3.12) if and only if uF = ZF ,0(uK) and the pair

(λh, uK) ∈ R>0 × V k
K solves

aK(uK,wK) = λhb(uK,wK), ∀wK ∈ V k
K , (3.21)

that is, if and only if (µh, uK) ∈ R>0 × V k
K with µh = λ−1

h is an eigenpair of the discrete
solution operator TK.

3.5 Error analysis for the source problem

In this section we briefly outline the analysis of the HHO discretization of the source
problem drawing on the ideas introduced in [26]. One novelty here is to include the case
when the exact solution has a smoothness index s ∈ (1

2 , k + 2] and not just s = k + 2
(recall that s > 1

2 follows from the elliptic regularity theory). In what follows, we use the
symbol C to denote a generic constant (its value can change at each occurrence) that
can depend on the mesh regularity, the polynomial degree k and the domain Ω, but is
independent of the mesh-size h.

Let K ∈ K be a mesh cell. We equip the local HHO space V̂ k
K defined in (3.1) with

the following seminorm (which is an HHO counterpart of the H1(K)-seminorm)

∥v̂K∥2
âK

= ∥∇vK∥2
L2(K) + ∥τ

1
2

∂K(vK − v∂K)∥2
L2(∂K), (3.22)
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for all v̂K = (vK , v∂K) ∈ V̂ k
K . We observe that ∥v̂K∥V̂ kK = 0 implies that vK and v∂K are

constant functions taking the same value. We equip the global HHO space V̂ k
h defined

in (3.6) with the seminorm (which is an HHO counterpart of the H1(Ω)-seminorm)

∥v̂h∥2
âh

= ∑
K∈K

∥v̂K∥2
âK
, ∀v̂h ∈ V̂ k

h . (3.23)

The map ∥ ⋅ ∥âh is a norm on the subspace V̂ k
h,0 defined in (3.7). [26, Lemma 4] shows

that there is a real number β > 0, uniform with respect to the mesh-size h, such that,
for all K ∈ K,

β∥v̂K∥2
âK

≤ âK(v̂K , v̂K) ≤ β−1∥v̂K∥2
âK
, ∀v̂K ∈ V̂ k

K , (3.24)

and, consequently, given the definition (3.9) of âh, that the following coercivity and
boundedness properties hold true:

âh(v̂h, v̂h) ≥ β∥v̂h∥2
âh
, ∀v̂h ∈ V̂ k

h , (3.25)

âh(v̂h, ŵh) ≤ β−1∥v̂h∥âh∥ŵh∥âh , ∀(v̂h, ŵh) ∈ V̂ k
h × V̂ k

h . (3.26)

Owing to the Lax–Milgram Lemma, we infer that the cell-face HHO solution operator
T̂h ∶ L2(Ω) → V̂ k

h,0 introduced in (3.15) is indeed well-defined. For later use in the analysis

of the eigenvalue problem, we now establish a stability property for T̂h.

Lemma 3.2 (Stability of T̂h). There is C so that

∥T̂h(φ)∥âh ≤ C∥φ∥L2(Ω), ∀φ ∈ L2(Ω). (3.27)

Proof. Let φ ∈ L2(Ω) and let us write T̂h(φ) = (uK, uF) with uK ∈ V k
K and uF ∈ V k

F ,0.

Using the coercivity property (3.25), the definition (3.15) of the solution operator T̂h,
that of the bilinear form b, and the Cauchy–Schwarz inequality leads to

β∥T̂h(φ)∥2
âh

≤ âh(T̂h(φ), T̂h(φ)) = b(φ,uK) ≤ ∥φ∥L2(Ω)∥uK∥L2(Ω). (3.28)

On the broken polynomial space V k
K , we can apply the following discrete Poincaré in-

equality which has been derived in the discontinuous Galerkin context in [4, 10, 24]:

CP,dG∥uK∥L2(Ω) ≤ ( ∑
K∈K

∥∇uK∥2
L2(K) + ∑

F ∈F
h−1
F ∥[[uK]]F ∥2

L2(F ))
1
2

,

with CP,dG > 0 uniform with respect to the mesh-size h, and where [[uK]]F denotes the
jump of uK across F if F is an interface (F ∈ F i) or the value of uK on F if F is a
boundary face (F ∈ Fb). If F ∈ F i, we have [[uK]]F = uK1 ∣F − uK2 ∣F where K1,K2 are
the two mesh cells sharing F (the sign of the jump is irrelevant in what follows), and
we can therefore write [[uK]]F = (uK1 − uF )∣F − (uK2 − uF )∣F where uF is the component
of uF attached to F . If F ∈ Fb, we have [[uK]]F = uK1 ∣F where K1 is the unique mesh
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cell sharing F with ∂Ω, and we can therefore write [[uK]]F = (uK1 − uF )∣F since uF ≡ 0
(recall that uF ∈ V k

F ,0). Recalling the definition (3.23) of the ∥ ⋅ ∥âh-norm, that of τ∂K
given just below (3.5), and using the triangle inequality, we infer that

∥uK∥L2(Ω) ≤ C∥(uK, uF)∥âh = C∥T̂h(φ)∥âh .

Combining this bound with (3.28), we obtain the assertion.

An important tool in the analysis of HHO methods is the global reduction operator
Îkh ∶H1

0(Ω) → V̂ k
h,0 defined such that, for all v ∈H1

0(Ω),

Îkh(v) = (Πk
K(v),Πk

F(v)) ∶= ((Πk
K(v))K∈K, (Πk

F (v))F ∈F) ∈ V̂ k
h,0, (3.29)

where Πk
K and Πk

F denote the L2-orthogonal projectors onto Pkd(K) and Pkd−1(F ), re-
spectively (for simplicity, the trace operator is omitted for Πk

F ). We also define the local

reduction operator ÎK ∶H1(K) → V̂ k
K such that, for all v ∈H1(K),

ÎK(v) = (Πk
K(v),Πk

∂K(v)) = (Πk
K(v), (Πk

F (v))F ∈F∂K) ∈ V̂ k
K . (3.30)

Recalling the local reconstruction operator pk+1
K ∶ V̂ k

K → Pk+1
d (K) defined in (3.3), [26,

Lemma 3] shows that

ek+1
K ∶= pk+1

K ○ ÎkK ∶H1(K) → Pk+1
d (K), (3.31)

is the elliptic projector, i.e., for all v ∈ H1(K), ek+1
K (v) is the unique polynomial in

Pk+1
d (K) such that (∇(ek+1

K (v) − v),∇w)L2(K) = 0 for all w ∈ Pk+1
d (K) and (ek+1

K (v) −
v,1)L2(K) = 0. For two functions v,w ∈ H1(K), the above orthogonality condition on
the gradient implies that

(∇(ek+1
K (v) − v),∇(ek+1

K (w) −w))L2(K) = (∇v,∇w)L2(K) − (∇ek+1
K (v),∇ek+1

K (w))L2(K).
(3.32)

Lemma 3.3 (Discrete error estimate). There is C such that

∥T̂h(φ) − Îh(T (φ))∥âh ≤ Ch
t∥T (φ)∥H1+t(Ω), (3.33)

for all t ∈ [s, k + 1], and all φ ∈ L2(Ω) such that T (φ) ∈ H1+t(Ω); here, s > 1
2 is the

smoothness index resulting from the elliptic regularity theory.

Proof. Let t ∈ [s, k + 1], and let φ ∈ L2(Ω) be such that T (φ) ∈ H1+t(Ω). Proceeding as
in the proof of [26, Theorem 8], we infer that

∥T̂h(φ) − Îh(T (φ))∥âh ≤ C sup
ŵh∈V̂ kh,0
∥ŵh∥âh=1

∣δh(ŵh)∣ =∶ C ∥δh∥(V̂ k
h,0
)′ ,
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with the consistency error δh(ŵh) such that

δh(ŵh) = ∑
K∈K

(∇ξK ,∇wK)L2(K) + (∇ξK ⋅nK ,w∂K −wK)L2(∂K)

+ (τ∂KSk∂K(ÎK(u)), Sk∂K(ŵK))L2(∂K),

and the shorthand notation ξK ∶= ek+1
K (u) − u and u = T (φ) (we have used s > 1

2 in
writing the second summand in the above right-hand side). Using the Cauchy–Schwarz
inequality and recalling the definition of the norm ∥ŵh∥âh , we obtain

∥δh∥(V̂ k
h,0
)′ ≤ C ( ∑

K∈K
∥∇ξK∥2

L2(K) + hK∥∇ξK∥2
L2(∂K) + h

−1
K ∥Sk∂K(ÎK(u))∥2

L2(∂K))
1
2

.

Recalling the definition (3.4) of the stabilization operator Sk∂K and the property (3.31),
we obtain that

Sk∂K(ÎK(u)) = Πk
∂K(Πk

∂K(u) − γ∂K(ek+1
K (u))) − γ∂K(Πk

K(Πk
∂K(u) − ek+1

K (u)))
= Πk

∂K(γ∂K(u − ek+1
K (u))) − γ∂K(Πk

K(u − ek+1
K (u)))

= −Πk
∂K(γ∂K(ξK)) + γ∂K(Πk

K(ξK)).

We then have

∥Sk∂K(ÎK(u))∥L2(∂K) ≤ ∥ξK∥L2(∂K) + ∥Πk
K(ξK)∥L2(∂K)

≤ ∥ξK∥L2(∂K) +Ch
− 1

2
K ∥ξK∥L2(K)

≤ C ′(h−
1
2

K ∥ξK∥L2(K) + h
1
2
K∥∇ξK∥L2(K))

≤ C ′′h
1
2
K∥∇ξK∥L2(K),

where we used a triangle inequality and the L2-stability of Πk
∂K in the first line, a

discrete trace inequality and the L2-stability of Πk
K in the second line, a multiplicative

trace inequality in the third line, and the the Poincaré–Steklov inequality on K in the
fourth line (that is, ∥ξK∥L2(K) ≤ C ′′′hK∥∇ξK∥L2(K) since ξK has zero mean-value in K

by construction). We conclude that h
− 1

2
K ∥Sk∂K(ÎK(u))∥L2(∂K) ≤ C∥∇ξK∥L2(K) for some

generic constant C, and therefore, we have

∥δh∥(V̂ k
h,0
)′ ≤ C ( ∑

K∈K
∥∇ξK∥2

L2(K) + hK∥∇ξK∥2
L2(∂K))

1
2

.

Finally, invoking the approximation properties of the elliptic projector on all the mesh
cells leads to the assertion.
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4 Error analysis for the eigenvalue problem

The goal of this section is to perform the error analysis of the discrete eigenvalue prob-
lem (3.12) by using the abstract theory outlined in Section 2.2 in the Hilbert space
L = L2(Ω). Let T,T ∗ ∶ L2(Ω) → H1

0(Ω) ⊂ L2(Ω) be the exact solution and adjoint
solution operators defined in Section 2.1 (T = T ∗, i.e., T is selfadjoint, in the present
symmetric setting). Let TK ∶ L → V k

K ⊂ L be the discrete HHO solution operator de-
fined in (3.19). Its adjoint operator T ∗K ∶ L → VK ⊂ L is defined so that, for all ψ ∈ L,
T ∗K(ψ) ∈ VK is the unique solution of

aK(wK, T ∗K(ψ)) = b(wK, ψ), ∀wK ∈ V k
K . (4.1)

Owing to the symmetry of the bilinear forms aK and b, we have TK = T ∗K in the present
setting, i.e., TK is selfadjoint. We keep as before a distinct notation to allow for more
generality, and we also set T̂ �

h ∶ L→ V̂ k
h,0 so that T̂ �

h(ψ) = (T ∗K(ψ), (Z
�
F ,0 ○ T ∗K)(ψ)) for all

ψ ∈ L. Proceeding as in Lemma 3.1, we conclude that

âh(ŵh, T̂ �
h(ψ)) = b(wK, ψ), ∀ŵh = (wK,wF) ∈ V̂ k

h,0. (4.2)

In the present symmetric setting, we have T̂h = T̂ �
h with T̂h defined in (3.15). Finally,

the elliptic regularity theory implies that there is a real number s ∈ (1
2 ,1] so that T,T ∗ ∈

L(L2(Ω);H1+s(Ω)), with operator norm denoted by Cs.

4.1 Preliminary results

To verify that we can apply the abstract theory from Section 2.2, let us show that TK
converges to T in operator norm as the mesh-size h tends to zero, i.e., that (2.10) holds
true.

Lemma 4.1 (Bound on L ×L). The following holds true:

sup
(φ,ψ)∈L×L

∣((T − TK)(φ), ψ)L∣ ≤ Chs∥φ∥L∥ψ∥L. (4.3)

where s ∈ (1
2 ,1] is the smoothness index associated with the elliptic regularity theory.

Consequently, we have ∥T − TK∥L(L;L) → 0 as h→ 0.

Proof. For all φ,ψ ∈ L, we have

((T − TK)(φ), ψ)L
= (T (φ), ψ)L − b(TK(φ), ψ)
= (T (φ), ψ)L − aK(TK(φ), T ∗K(ψ))
= (T (φ), ψ)L − âh(T̂h(φ), T̂ �

h(ψ))
= (T (φ), ψ)L − âh(Îkh(T (φ)), T̂ �

h(ψ)) + âh(Î
k
h(T (φ)) − T̂h(φ), T̂ �

h(ψ))
= (T (φ) −Πk

K(T (φ)), ψ)L + âh(Îkh(T (φ)) − T̂h(φ), T̂ �
h(ψ)), (4.4)
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where we have used the definition of the bilinear form b in the first line of the right-
hand side, the definition (4.1) of T ∗K in the second line, the definition (3.18) of aK and
Lemma 3.1 in the third line, a simple algebraic manipulation in the fourth line, and the
property (4.2) and the definition (3.29) of Îkh in the fifth line. Let us call S1, S2 the two
summands on the right-hand side of (4.4). Owing to the elliptic regularity theory and
the approximation properties of the projector Πk

K (with k ≥ 0), we obtain that

∣S1∣ ≤ Ch∣T (φ)∣H1(Ω)∥ψ∥L.

Since ∣T (φ)∣H1(Ω) ≤ ∥T (φ)∥H1+s(Ω) ≤ Cs∥φ∥L, we infer that

∣S1∣ ≤ Ch∥φ∥L∥ψ∥L.

To bound S2, we use the boundedness property (3.26) of âh followed by the error estimate
from Lemma 3.3 (with t = s) and the stability property of T̂ �

h = T̂h from Lemma 3.2 to
infer that

∣S2∣ ≤ Chs∥T (φ)∥H1+s(Ω)∥ψ∥L ≤ CCshs∥φ∥L∥ψ∥L.
Combining the bounds on S1 and S2 and observing that s ≤ 1 concludes the proof.

Let µ ∈ σ(T ) ∖ {0} with ascent α and algebraic multiplicity m. To quantify the
smoothness of the functions in the subspaces Gµ and G∗

µ defined in (2.11), we assume
that there is a real number t ∈ [s, k + 1] and a constant Ct so that

∥φ∥H1+t(Ω) + ∥T (φ)∥H1+t(Ω) ≤ Ct∥φ∥L, ∀φ ∈ Gµ,
∥ψ∥H1+t(Ω) + ∥T ∗(ψ)∥H1+t(Ω) ≤ Ct∥ψ∥L, ∀ψ ∈ G∗

µ.
(4.5)

Note that t depends on µ, but we just write t instead of tµ to alleviate the notation.
If t = s, functions in Gµ and G∗

µ do not provide additional smoothness with respect to
that resulting from the elliptic regularity theory. In general, functions in Gµ and G∗

µ are
smoother, and one has t > s. The case t = k + 1 leads to optimal error estimates, see
Remark 4.7 below.

Lemma 4.2 (Bound on Gµ ×L and L ×G∗
µ). The following holds true:

sup
(φ,ψ)∈Gµ×L

∣((T − TK)(φ), ψ)L∣ ≤ Cht∥φ∥L∥ψ∥L, (4.6)

where t ∈ [s, k + 1] is the smoothness index associated with µ. Consequently, we have

∥(T − TK)∣Gµ∥L(Gµ;L) ≤ Cht. (4.7)

Similar bounds hold for T ∗K, and in particular, we have ∥(T − TK)∗∣G∗
µ
∥L(G∗

µ;L) ≤ Cht.
Proof. Owing to symmetry, we only need to prove the statement for TK. Our starting
point is (4.4). Owing to the smoothness of the function T (φ) resulting from (4.5), we
infer that

∣S1∣ ≤ Chmin(k+1,t+1)∥T (φ)∥H1+t(Ω)∥ψ∥L ≤ CCthmin(k+1,t+1)∥φ∥L∥ψ∥L.

Using similar arguments leads to ∣S2∣ ≤ Cht∥φ∥L∥ψ∥L and since t ≤ min(k + 1, t + 1), the
assertion follows.
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Lemma 4.3 (Bound on Gµ ×G∗
µ). The following holds true:

sup
(φ,ψ)∈Gµ×G∗

µ

∣((T − TK)(φ), ψ)L∣ ≤ Ch2t∥φ∥L∥ψ∥L, (4.8)

where t ∈ [s, k + 1] is the smoothness index associated with µ.

Proof. Our starting point is again (4.4), but we can now derive sharper bounds on the
two summands S1 and S2 by exploiting the smoothness of both φ and ψ. On the one
hand, we have

S1 = (T (φ) −Πk
K(T (φ)), ψ)L = (T (φ) −Πk

K(T (φ)), ψ −Πk
K(ψ))L,

so that

∣S1∣ ≤ Ch2 min(k+1,t+1)∥T (φ)∥H1+t(Ω)∥ψ∥H1+t(Ω) ≤ CC2
t h

2 min(k+1,t+1)∥φ∥L∥ψ∥L,

where we used the smoothness of the functions T (φ) and ψ resulting from (4.5). On the
other hand, we have

S2 = âh(Îkh(T (φ)) − T̂h(φ), T̂ �
h(ψ))

= âh(Îkh(T (φ)) − T̂h(φ), Îkh(T ∗(ψ))) + âh(Îkh(T (φ)) − T̂h(φ), T̂ �
h(ψ) − Î

k
h(T ∗(ψ)))

= a(T (φ), T ∗(ψ)) − âh(T̂h(φ), Îkh(T ∗(ψ)))
+ âh(Îkh(T (φ)), Îkh(T ∗(ψ))) − a(T (φ), T ∗(ψ))
+ âh(Îkh(T (φ)) − T̂h(φ), T̂ �

h(ψ) − Î
k
h(T ∗(ψ)))

= (φ −Πk
K(φ), T ∗(ψ) −Πk

K(T ∗(ψ)))L
+ âh(Îkh(T (φ)), Îkh(T ∗(ψ))) − a(T (φ), T ∗(ψ))
+ âh(Îkh(T (φ)) − T̂h(φ), T̂ �

h(ψ) − Î
k
h(T ∗(ψ)))

where we have used simple algebraic manipulations to derive the second and third iden-
tities, and the definition of T together with that of T̂h and of Îkh to derive the last
identity. Let us call S2,1, S2,2, S2,3 the three summands on the right-hand side of the
above equation. Reasoning as above while invoking the smoothness of the functions φ
and T ∗(ψ) resulting from (4.5), we infer that

∣S2,1∣ ≤ CC2
t h

2 min(k+1,t+1)∥φ∥L∥ψ∥L.

To bound S2,2, we observe that

S2,2 = ∑
K∈K

(∇ek+1
K (T (φ)),∇ek+1

K (T ∗(ψ)))L2(K) − (∇T (φ),∇T ∗(ψ))L2(K)

+ ∑
K∈K

(τ∂KSk∂K(Îkh(T (φ))), Sk∂K(Îkh(T ∗(φ))))L2(∂K) =∶ S2,2,1 + S2,2,2.
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Since ek+1
K is the elliptic projector, the identity (3.32) implies that

S2,2,1 = ∑
K∈K

−(∇(T (φ) − ek+1
K (T (φ))),∇(T ∗(ψ) − ek+1

K (T ∗(ψ))))L2(K),

Using Lemma 3.3 and the definition of the ∥ ⋅ ∥âh-norm, we infer that

∣S2,2,1∣ ≤ Ch2t∥T (φ)∥H1+t(Ω)∥T ∗(ψ)∥H1+t(Ω) ≤ CC2
t h

2t∥φ∥L∥ψ∥L.

Moreover, reasoning as in the end of the proof of Lemma 3.3, we obtain that

∣S2,2,2∣ ≤ Ch2t∥T (φ)∥H1+t(Ω)∥T ∗(ψ)∥H1+t(Ω) ≤ CC2
t h

2t∥φ∥L∥ψ∥L.

Hence, we have
∣S2,2∣ ≤ CC2

t h
2t∥φ∥L∥ψ∥L.

Finally, the bound on S2,3 results from the boundedness property (3.26) of âh and the
error estimate from Lemma 3.3 which lead to

∣S2,3∣ ≤ Ch2t∥T (φ)∥H1+t(Ω)∥T ∗(ψ)∥H1+t(Ω) ≤ CC2
t h

2t∥φ∥L∥ψ∥L.

Collecting the above estimates concludes the proof.

4.2 Main results

We can now present our main results. Let µ ∈ σ(T ) ∖ {0} with ascent α and algebraic
multiplicitym. Owing to the convergence result from Lemma 4.1, there arem eigenvalues
of TK, denoted µh,1, . . . , µh,m, that converge to µ as h → 0. Let ⟨µh⟩ = ∑mj=1 µh,j denote
the arithmetic mean of these eigenvalues.

Theorem 4.4 (Error estimate on eigenvalues and eigenfunctions in L). Assume that
there is t ∈ [s, k + 1] so that the smoothness property (4.5) holds true, where s > 1

2
is the smoothness index resulting from the elliptic regularity theory. Then there is C,
depending on µ (and on the mesh regularity, the polynomial degree k and the domain Ω)
but independent of the mesh-size h, such that

max
1≤j≤m

∣µ − µh,j ∣α + ∣µ − ⟨µh⟩∣ ≤ Ch2t. (4.9)

Furthermore, let uK,j ∈ V k
K be a unit vector in ker(µh,jI − TK)` for some positive integer

` ≤ α. Then, for any integer m with ` ≤m ≤ α, there is a unit vector um ∈ ker(µI−T )m ⊂
Gµ such that

∥um − uK,j∥L ≤ Cht
m−`+1
α . (4.10)

Proof. Combining the results from Lemma 4.2, and Lemma 4.3 with Theorem 2.1 and
Theorem 2.3 completes the proof.

Remark 4.5 (Error estimate on eigenvalues). Since the eigenvalues λ and λh associated
with (2.2) and (3.12), respectively, are such that λ = µ−1 and λh = µ−1

h , we infer that the
same estimate as (4.9) holds true for the error between λ and λh.
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Corollary 4.6 (Eigenfunction error estimate in H1). Assume that α = m = 1 for the
exact eigenvalue µ. Since µh is simple, we drop the index j for the approximate eigen-
function uK and we set ûh = (uK, ZF ,0(uK)). Then the following holds true:

âh(ûh − Îh(u), ûh − Îh(u))
1
2 ≤ Cht. (4.11)

Consequently, we have

( ∑
K∈K

∥∇(u − pk+1
K (ûK))∥2

L2(K))
1
2

≤ Cht. (4.12)

Proof. Since α = m = 1, we have ` = 1 in (4.10); moreover, µh = λ−1
h is also simple and

we drop the index j. The bound (4.10) becomes ∥u − uK∥L ≤ Cht. We observe that

λh(uK, u)L = λh(uK,Πk
K(u))L = λhb(uK,Πk

K(u)) = aK(uK,Πk
K(u))

= âh((uK, ZF ,0(uK)), (Πk
K(u), Z

�
F ,0(Π

k
K(u)))

= âh((uK, ZF ,0(uK)), (Πk
K(u), Z

�
F ,0(Π

k
K(u)))

+ âh((uK, ZF ,0(uK)), (0,Πk
F(u) −Z

�
F ,0(Π

k
K(u)))

= âh(ûh, Îh(u)),

where we have used the definition of ΠK and (3.21) in the first line, the definition (3.18)
of âh in the second line, the property (3.16) of ZF ,0 in the third line, and the definition of

Îh in the last line. Setting δu ∶= âh(Îh(u), Îh(u))−a(u,u) and recalling the normalization
∥u∥L = ∥uK∥L = 1, we infer that

âh(ûh − Îh(u), ûh − Îh(u)) = âh(ûh, ûh) − 2âh(ûh, Îh(u)) + âh(Îh(u), Îh(u))
= λh∥uK∥2

L − 2λh(uK, u)L + λh∥u∥2
L − (λh − λ)∥u∥2

L + δu
= λh∥uK − u∥2

L + λh − λ + δu,

which is a generalization of the Pythagorean eigenvalue error identity (see [41]) in the
HHO context. The bound (4.11) then follows from the bounds derived in Theorem 4.4.
Finally, the bound (4.12) follows from the definition of the bilinear form âh, the iden-
tity (3.31), the triangle inequality, and the approximation properties of the elliptic pro-
jector.

Remark 4.7 (Optimal convergence). If t = k + 1, we recover a convergence of order
h2k+2 for the eigenvalues and of order kk+1 for the eigenfunctions in the H1-seminorm.

5 Numerical experiments

In this section, we first verify the error estimates from Section 4 for eigenvalues and
smooth eigenfunctions approximated by the HHO method in 1D (unit interval) and in
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2D (unit square). We then report extra-superconvergence results for 1D uniform meshes
for a particular choice of the stabilization parameter. Finally, we present convergence
results on an L-shaped domain (which includes the case of a non-smooth eigenfunction)
as well as on the unit disk. We consider the eigenvalues λ and λh associated with (2.2)
and (3.12), respectively; both eigenvalues are sorted in increasing order as λ1 < λ2 . . .

and λ1,h < λ2,h . . ., and we report the normalized eigenvalue errors
∣λj−λh,j ∣

λj
.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 3.19e-2 — 1.17e-1 — 3.50e-1 — 6.99e-1 —

20 8.16e-3 1.97 3.19e-2 1.87 1.17e-1 1.58 3.50e-1 1.00

40 2.05e-3 1.99 8.16e-3 1.97 3.19e-2 1.87 1.17e-1 1.58

0 80 5.14e-4 2.00 2.05e-3 1.99 8.16e-3 1.97 3.19e-2 1.87

160 1.28e-4 2.00 5.14e-4 2.00 2.05e-3 1.99 8.16e-3 1.97

320 3.21e-5 2.00 1.28e-4 2.00 5.14e-4 2.00 2.05e-3 1.99

10 1.10e-4 — 1.81e-3 — 3.25e-2 — 4.01e-1 —

20 6.78e-6 4.01 1.10e-4 4.05 1.81e-3 4.16 3.25e-2 3.63

40 4.23e-7 4.00 6.78e-6 4.01 1.10e-4 4.05 1.81e-3 4.16

1 80 2.64e-8 4.00 4.23e-7 4.00 6.78e-6 4.01 1.10e-4 4.05

160 1.65e-9 4.00 2.64e-8 4.00 4.23e-7 4.00 6.78e-6 4.01

320 1.01e-10 4.03 1.65e-9 4.00 2.64e-8 4.00 4.23e-7 4.00

10 1.15e-7 — 7.52e-6 — 5.28e-4 — 6.08e-2 —

20 1.79e-9 6.01 1.15e-7 6.03 7.52e-6 6.13 5.28e-4 6.85

2 40 2.78e-11 6.01 1.79e-9 6.01 1.15e-7 6.03 7.52e-6 6.13

80 9.88e-14 8.14 2.78e-11 6.01 1.79e-9 6.01 1.15e-7 6.03

5 1.56e-8 — 4.23e-6 — 1.59e-3 — 5.09e-1 —

3 10 6.01e-11 8.02 1.56e-8 8.09 4.23e-6 8.55 1.59e-3 8.32

20 1.06e-13 9.14 6.00e-11 8.02 1.56e-8 8.09 4.23e-6 8.55

Table 1: Unit interval, relative eigenvalue errors, η = 1.

5.1 Smooth eigenfunctions in 1D and 2D unit domains

Let Ω = (0,1) or Ω = (0,1) × (0,1) be the unit interval in 1D or the unit square in 2D,
respectively. The 1D problem (2.1) has exact eigenvalues λj = j2π2 and corresponding
eigenfunctions uj(x) = sin(jπx) with j = 1,2,⋯, whereas the 2D problem (2.1) has
exact eigenvalues λjk = π2(j2+k2) and eigenfunctions ujk(x, y) = sin(jπx) sin(kπy) with
j, k = 1,2,⋯. We discretize the unit interval uniformly with N = 10,20,40,80,160,320
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elements and the unit square uniformly with N ×N squares with N = 4,8,16,32,64,128.
The default stabilization parameter of the HHO method is η = 1. The relative eigenvalue
errors are reported in Table 1 in 1D and in Table 2 in 2D for the first, second, fourth, and
eighth eigenvalues and for the polynomial degrees k = 0,1,2,3. These tables show good
agreement with the convergence order predicted by Theorem 4.4, i.e., the convergence
order for the eigenvalues is indeed h2k+2. The H1-seminorm errors on the first, second,
fourth, and eighth eigenfunctions in 1D are reported in Table 3. We observe a good
agreement with the convergence order predicted by Corollary 4.6, that is, the convergence
order for the eigenfunctions in the H1-seminorm is indeed hk+1.

k N first mode second mode fourth mode eighth mode

error order error order error order error order

4 2.51e-1 — 5.11e-1 — 6.36e-1 — 7.39e-1 —

8 7.70e-2 1.70 2.16e-1 1.24 2.51e-1 1.34 4.08e-1 0.86

16 2.04e-2 1.92 6.57e-2 1.72 7.70e-2 1.70 1.33e-1 1.61

0 32 5.18e-3 1.98 1.74e-2 1.92 2.04e-2 1.92 3.73e-2 1.84

64 1.30e-3 1.99 4.41e-3 1.98 5.18e-3 1.98 9.62e-3 1.96

128 3.25e-4 2.00 1.11e-3 1.99 1.30e-3 1.99 2.42e-3 1.99

4 2.27e-2 — 1.62e-1 — 3.32e-1 — 5.10e-1 —

8 1.45e-3 3.97 9.75e-3 4.06 2.27e-2 3.87 6.35e-2 3.01

16 9.15e-5 3.98 5.96e-4 4.03 1.45e-3 3.97 3.90e-3 4.02

1 32 5.74e-6 3.99 3.71e-5 4.00 9.15e-5 3.98 2.45e-4 3.99

64 3.59e-7 4.00 2.32e-6 4.00 5.74e-6 3.99 1.54e-5 4.00

128 2.25e-8 4.00 1.45e-7 4.00 3.59e-7 4.00 9.61e-7 4.00

4 5.71e-4 — 8.46e-3 — 4.91e-2 — 2.31e-1 —

8 8.63e-6 6.05 1.07e-4 6.30 5.71e-4 6.43 2.33e-3 6.64

2 16 1.34e-7 6.01 1.62e-6 6.05 8.63e-6 6.05 3.34e-5 6.12

32 2.09e-9 6.00 2.51e-8 6.01 1.34e-7 6.01 5.14e-7 6.02

64 3.26e-11 6.00 3.92e-10 6.00 2.09e-9 6.00 8.01e-9 6.00

4 6.48e-6 — 2.18e-4 — 2.20e-3 — 2.42e-2 —

3 8 2.43e-8 8.06 7.13e-7 8.25 6.48e-6 8.41 4.24e-5 9.15

16 9.46e-11 8.01 2.69e-9 8.05 2.43e-8 8.06 1.52e-7 8.13

Table 2: Unit square, relative eigenvalue errors, η = 1.

5.2 Superconvergence with rate (2k + 4) in 1D

We now report some striking numerical results for the HHO method with the stabilization
parameter η = 2k + 3 on 1D uniform meshes. In this case, we observe numerically two
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k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 2.08e-1 — 9.87e-1 — 4.39e0 — 1.61e+1 —

20 1.02e-1 1.03 4.16e-1 1.25 1.97e0 1.15 8.78e0 0.88

0 40 5.05e-2 1.01 2.03e-1 1.03 8.32e-1 1.25 3.95e0 1.15

80 2.52e-2 1.00 1.01e-1 1.01 4.06e-1 1.03 1.66e0 1.25

160 1.26e-2 1.00 5.04e-2 1.00 2.02e-1 1.01 8.13e-1 1.03

10 8.17e-3 — 9.87e-2 — 3.33e0 — 1.54e+1 —

20 2.04e-3 2.00 1.63e-2 2.60 1.97e-1 4.08 6.67e0 1.21

1 40 5.11e-4 2.00 4.09e-3 2.00 3.27e-2 2.60 3.95e-1 4.08

80 1.28e-4 2.00 1.02e-3 2.00 8.17e-3 2.00 6.53e-2 2.60

160 3.19e-5 2.00 2.55e-4 2.00 2.04e-3 2.00 1.63e-2 2.00

10 2.17e-4 — 4.36e-3 — 1.52e0 — 1.54e+1 —

20 2.71e-5 3.00 4.34e-4 3.33 8.71e-3 7.45 3.05e0 2.33

2 40 3.39e-6 3.00 5.42e-5 3.00 8.67e-4 3.33 1.74e-2 7.45

80 4.24e-7 3.00 6.78e-6 3.00 1.08e-4 3.00 1.73e-3 3.33

160 5.30e-8 3.00 8.47e-7 3.00 1.36e-5 3.00 2.17e-4 3.00

10 4.29e-6 — 2.06e-4 — 1.85e0 — 1.38e+1 —

20 2.68e-7 4.00 8.58e-6 4.59 4.13e-4 12.13 3.69e0 1.90

3 40 1.68e-8 4.00 5.37e-7 4.00 1.72e-5 4.59 8.26e-4 12.13

80 1.05e-9 4.00 3.35e-8 4.00 1.07e-6 4.00 3.43e-5 4.59

160 7.50e-11 3.81 2.10e-9 4.00 6.71e-8 4.00 2.15e-6 4.00

Table 3: Unit interval, H1-seminorm errors on eigenfunctions, η = 1.

extra orders in the convergence of the relative eigenvalue errors, i.e., these errors now
converge with order h2k+4, as reported in Table 4. We thus obtain relative eigenvalue
errors close to machine precision already on relatively coarse meshes. Moreover, we
observe numerically (results are not reported for brevity) that taking values different
from 2k + 3 for the stabilization parameter does not improve the relative eigenvalue
errors. We also point out that the choice η = 2k + 3 does not increase the convergence
order of the eigenfunctions. In 2D, we observe that the choice η = 2k + 3 improves the
approximation significantly in the sense of a much smaller constant C in (4.9) but with
order h2k+2. The results are reported in Table 5 (compare with Table 2). The theoretical
analysis of the above observations will be the subject of future work.
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k N first mode second mode fourth mode eighth mode

error order error order error order error order

10 4.07e-5 — 6.59e-4 — 1.10e-2 — 1.80e-1 —

20 2.54e-6 4.00 4.07e-5 4.02 6.59e-4 4.05 1.10e-2 4.04

40 1.59e-7 4.00 2.54e-6 4.00 4.07e-5 4.02 6.59e-4 4.05

0 80 9.91e-9 4.00 1.59e-7 4.00 2.54e-6 4.00 4.07e-5 4.02

160 6.19e-10 4.00 9.91e-9 4.00 1.59e-7 4.00 2.54e-6 4.00

320 4.18e-11 3.89 6.21e-10 4.00 9.91e-9 4.00 1.59e-7 4.00

5 1.66e-6 — 1.13e-4 — 1.19e-2 — 1.74e-2 —

10 2.55e-8 6.02 1.66e-6 6.09 1.13e-4 6.72 1.19e-2 0.54

1 20 3.98e-10 6.00 2.55e-8 6.02 1.66e-6 6.09 1.13e-4 6.72

40 5.95e-12 6.06 3.98e-10 6.00 2.55e-8 6.02 1.66e-6 6.09

4 9.18e-9 — 2.42e-6 — 1.34e-2 — 5.20e-1 —

2 8 3.57e-11 8.01 9.18e-9 8.04 2.42e-6 12.43 1.34e-2 5.28

16 1.04e-13 8.42 3.57e-11 8.01 9.18e-9 8.04 2.42e-6 12.43

Table 4: Unit interval, relative eigenvalue errors, η = 2k + 3.

5.3 Hexagonal meshes in 2D

To illustrate the fact that the same convergence orders can be obtained if the HHO
method is deployed on general meshes, we consider now a quasi-uniform sequence of
hexagonal meshes of the unit square; see Figure 1 (also [28]). The coarsest mesh in the
sequence (` = 0) is composed of predominantly hexagonal cells with average diameter
0.065301; the average diameter is halved from one mesh in the sequence to the next mesh.
Table 6 shows the relative eigenvalue errors for k = 0,1,2 with stabilization parameter
η = 1 and η = 2k + 3 for the first (j = 1) and third (j = 3) eigenpairs. We observe a
convergence of order h2k+2, in agreement with Theorem 4.4. Once again, the choice
η = 2k + 3 for the stabilization parameter does not change the convergence order, but
substantially improves the constant C.

5.4 L-shaped domain

We study the Laplacian eigenvalue problem on the L-shaped domain Ω = Ω0/Ω1, where
Ω0 = (0,2) × (0,2) and Ω1 = [1,2] × [1,2]. The L-shaped domain Ω has a reentrant
corner at the point (1,1), which results in possibly non-smooth eigenfunctions. In fact,
the first eigenfunction is in H1+t with t = 2

3 and the corresponding eigenvalue is λ1 =
9.6397238440219 [7]. There are also smooth eigenfunctions. For example, the third
eigenfunction is smooth and the corresponding eigenvalue is known exactly to be λ3 =
2π2. Figure 2 shows the HHO approximations (with η = 1) of the first and the third
eigenfunctions using quasi-uniform triangulations of Ω.
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k N first mode second mode fourth mode eighth mode

error order error order error order error order

4 4.23e-2 — 1.41e-1 — 1.66e-1 — 3.97e-1 —

8 1.06e-2 1.99 3.60e-2 1.97 4.23e-2 1.97 7.84e-2 2.34

16 2.66e-3 2.00 9.04e-3 1.99 1.06e-2 1.99 1.98e-2 1.99

0 32 6.65e-4 2.00 2.26e-3 2.00 2.66e-3 2.00 4.96e-3 2.00

64 1.66e-4 2.00 5.66e-4 2.00 6.65e-4 2.00 1.24e-3 2.00

128 4.16e-5 2.00 1.41e-4 2.00 1.66e-4 2.00 3.10e-4 2.00

4 2.74e-4 — 3.33e-3 — 5.80e-5 — 1.73e-2 —

8 2.13e-5 3.69 1.69e-4 4.30 2.74e-4 -2.24 1.75e-4 6.63

16 1.40e-6 3.93 9.93e-6 4.09 2.13e-5 3.69 3.47e-6 5.66

1 32 8.82e-8 3.98 6.11e-7 4.02 1.40e-6 3.93 4.41e-7 2.97

64 5.53e-9 4.00 3.80e-8 4.01 8.82e-8 3.98 3.11e-8 3.83

128 3.46e-10 4.00 2.37e-9 4.00 5.53e-9 4.00 2.00e-9 3.96

4 1.75e-5 — 3.33e-5 — 8.23e-4 — 1.28e-3 —

8 2.90e-7 5.91 8.50e-7 5.29 1.75e-5 5.56 4.54e-5 4.82

2 16 4.60e-9 5.98 1.45e-8 5.87 2.90e-7 5.91 8.01e-7 5.82

32 7.20e-11 6.00 2.32e-10 5.97 4.60e-9 5.98 1.29e-8 5.96

64 2.66e-13 8.08 3.02e-12 6.26 7.20e-11 6.00 2.02e-10 5.99

Table 5: Unit square, Relative eigenvalue errors, η = 2k + 3.

To assess the convergence orders, we consider a sequence of triangulations where
each of the three unit squares composing the L-shaped domain Ω is discretized uniformly
with 2 ×N ×N triangular elements, where N = 4,8,16,32,64,128. Table 7 reports the
relative eigenvalue errors for the first and third eigenpairs. We consider the values η = 1
and η = 2k + 3 for the stabilization parameter together with the polynomial degrees
k = 0,1,2. The relative error on the first eigenvalue converges with order h4/3 = h2t,
whereas the relative error on the third eigenvalue converges with optimal order h2k+2.
These results are again in agreement with Theorem 4.4. The errors with η = 2k + 3
are, as observed above, smaller than those with η = 1. Comparing with the results
reported in [32] with HDG and k = 0, the HHO approximation of the first eigenvalue
converges with order h4/3 whereas the HDG approximation converges with order h; the
HHO approximation of the third eigenvalue converges with order h2 whereas the HDG
approximation converges with order h.
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Figure 1: First and third approximate eigenfunctions with hexagonal meshes.

Figure 2: First and third approximate eigenfunctions in the L-shaped domain.

5.5 Unit disk

Lastly, we consider the Laplacian eigenvalue problem (2.1) in the unit disk Ω = {(x, y) ∶
x2 + y2 ≤ 1}. Using polar coordinates, the eigenpairs are

((s2
n,m, Jn(sn,mr) cos(nθ))n=0,1,2,⋯, ((s2

n,m, Jn(sn,mr) sin(nθ))n=1,2,⋯, (5.1)

where Jn is the Bessel function of order n, and sn,m are the zeros of the Bessel functions
with m = 1,2,3,⋯ Figure 3 shows the first and seventh approximate eigenfunctions.

We approximate the unit disk using a sequence of unstructured triangulations where
the coarsest mesh in the sequence (` = 0) is composed of triangular cells with average
diameter 0.0329182; the average diameter is halved from one mesh in the sequence to the
next mesh. Since the boundary of the disk is approximated by straight lines, the error
committed by this discretization is of order h2. Thus, we only consider the lowest-order
HHO approximation with k = 0. Table 8 reports the relative eigenvalue errors with
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k ` j = 1, η = 1 j = 1, η = 2k + 3 j = 3, η = 1 j = 3, η = 2k + 3

error order error order error order error order

0 3.20e-1 — 8.72e-2 — 6.69e-1 — 2.78e-1 —

1 1.19e-1 1.43 2.21e-2 1.98 3.52e-1 0.93 8.41e-2 1.73

0 2 3.56e-2 1.74 5.45e-3 2.02 1.28e-1 1.45 2.15e-2 1.97

3 9.60e-3 1.89 1.35e-3 2.02 3.73e-2 1.78 5.37e-3 2.00

4 2.48e-3 1.95 3.34e-4 2.01 9.84e-3 1.92 1.33e-3 2.01

0 1.97e-2 — 1.10e-3 — 3.16e-1 — 1.43e-2 —

1 1.33e-3 3.89 8.28e-5 3.73 2.40e-2 3.72 1.32e-3 3.43

1 2 8.74e-5 3.92 5.63e-6 3.88 1.45e-3 4.05 9.01e-5 3.88

3 5.64e-6 3.95 3.66e-7 3.94 9.11e-5 3.99 5.86e-6 3.94

4 3.59e-7 3.97 2.33e-8 3.97 5.75e-6 3.98 3.73e-7 3.97

0 2.99e-4 — 1.09e-5 — 4.09e-2 — 8.54e-4 —

1 5.15e-6 5.86 2.26e-7 5.59 3.63e-4 6.82 1.42e-5 5.91

2 2 8.55e-8 5.91 3.97e-9 5.83 5.59e-6 6.02 2.53e-7 5.81

3 1.38e-9 5.95 6.52e-11 5.93 8.88e-8 5.98 4.17e-9 5.92

4 2.21e-11 5.97 9.32e-13 6.13 1.41e-9 5.98 6.69e-11 5.96

Table 6: Unit square with hexagonal meshes, relative eigenvalue errors, η = 1 and η =
2k + 3.

η = 2k + 3 = 3 for the stabilization parameter. We observe a convergence order of h2 as
predicted.

6 Concluding remarks

In this paper, we devised and analyzed an approximation of the eigenvalues and eigen-
functions of a second-order elliptic operator using the Hybrid High-Order (HHO) method.
Using polynomials of degree k ≥ 0 for the face unknowns, and assuming smooth eigen-
functions, we established theoretically and observed numerically that the errors on the
eigenvalues converge at rate (2k + 2) whereas the errors on the eigenfunctions converge
at rate (k + 1) in the H1-seminorm. We considered triangular and polygonal meshes
in the numerical experiments for the Laplace eigenproblem in two-dimensional domains
with smooth and non-smooth eigenfunctions. Additionally, we observed numerically in
one dimension that the eigenvalue error converges at the even faster rate (2k+4) for the
particular choice η = 2k + 3 of the stabilization parameter in the HHO method. Several
extensions of the present work can be considered, among which we mention biharmonic
eigenvalue problems and nonsymmetric second-order eigenvalue problems as well as the
Maxwell eigenvalue problem in a curl-curl setting.
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k N j = 1, η = 1 j = 1, η = 2k + 3 j = 3, η = 1 j = 3, η = 2k + 3

error order error order error order error order

4 2.36e-1 — 1.25e-1 — 3.60e-1 — 1.82e-1 —

8 7.79e-2 1.60 4.12e-2 1.61 1.24e-1 1.54 5.32e-2 1.77

0 16 2.37e-2 1.72 1.37e-2 1.59 3.42e-2 1.86 1.39e-2 1.94

32 7.32e-3 1.70 4.75e-3 1.53 8.77e-3 1.96 3.52e-3 1.98

64 2.36e-3 1.63 1.71e-3 1.47 2.21e-3 1.99 8.82e-4 2.00

4 2.08e-2 — 1.04e-2 — 2.24e-2 — 4.62e-3 —

8 5.92e-3 1.81 4.12e-3 1.34 1.37e-3 4.04 2.77e-4 4.06

1 16 2.18e-3 1.44 1.64e-3 1.33 8.50e-5 4.01 1.72e-5 4.01

32 8.55e-4 1.35 6.51e-4 1.33 5.31e-6 4.00 1.07e-6 4.00

64 3.39e-4 1.34 2.58e-4 1.33 3.32e-7 4.00 6.71e-8 4.00

4 6.52e-3 — 4.35e-3 — 1.11e-3 — 6.08e-5 —

8 2.48e-3 1.39 1.73e-3 1.33 1.54e-5 6.17 9.33e-7 6.03

2 16 9.82e-4 1.34 6.87e-4 1.33 2.34e-7 6.04 1.44e-8 6.01

32 3.89e-4 1.33 2.73e-4 1.33 3.63e-9 6.01 2.24e-10 6.01

64 1.54e-4 1.33 1.08e-4 1.33 5.65e-11 6.01 3.52e-12 5.99

Table 7: L-shaped domain, relative eigenvalue errors, η = 1 and η = 2k + 3.
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