N

N

Poincaré and Sobolev inequalities for differential forms
in Heisenberg groups

Annalisa Baldi, Bruno Franchi, Pierre Pansu

» To cite this version:

Annalisa Baldi, Bruno Franchi, Pierre Pansu. Poincaré and Sobolev inequalities for differential forms
in Heisenberg groups. 2017. hal-01628688v1

HAL Id: hal-01628688
https://hal.science/hal-01628688v1

Preprint submitted on 3 Nov 2017 (v1), last revised 25 Nov 2017 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01628688v1
https://hal.archives-ouvertes.fr

November 3, 2017

POINCARE AND SOBOLEV INEQUALITIES FOR
DIFFERENTIAL FORMS IN HEISENBERG GROUPS

ANNALISA BALDI
BRUNO FRANCHI
PIERRE PANSU

1. INTRODUCTION

1.1. Sobolev and Poincaré inequalities for differential forms. Sobolev in-
equality in R™ deals with compactly supported O-forms, i.e. functions v on R", and
1-forms, their differentials du. It states that

lullg < Cpgnlldullp
whenever

1

p qg n
A local version, for functions supported in the unit ball, holds under the weaker

assumption

1<p,q< +o0,

1 1 1

1<pg<+4o0o, ——-—<—.

p q n
Poincaré’s inequality is a variant for functions uw defined on but not necessarily
compactly supported in the unit ball B. It states that there exists a real number

¢, such that
[|u — Cu“q < Opyq,anUHp-

Alternatively, given a closed 1-form w on B, there exists a function u on B such
that du = w on B, and such that

||u||q < Opyq,nHWHp-

This suggests the following generalization for higher degree differential forms.

Let M be a Riemannian manifold. We say that a strong Poincaré inequality
(p, q)-Poincaré(k) holds on M, if there exists a positive constant C = C(M,p, q)
such that for every closed k-form w on M, belonging to L, there exists a k — 1-form
¢ such that d¢ = w and

6llq < Cllwllp.

A strong Sobolev inequality (p,q)-Sobolev(k) holds on M, if for every closed com-
pactly supported k-form w on M, belonging to L?, there exists a compactly sup-
ported k — 1-form ¢ such that d¢ = w and

[6llg < Cllwll,-
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Both statements should be thought of as quantitative versions of the statement
that every closed k-form is exact.

For Euclidean domains, the validity of Poincaré inequality is sensitive to ir-
regularity of boundaries. One way to eliminate such a dependance is to allow a
loss on domain. Say an interior Poincaré inequality (p,q)-Poincaré(k) holds on
M if for every small enough » > 0 and large enough A\ > 1, there exists a con-
stant C'= C(M, p,q,r, \) such that for every x € M and every closed k-form w on
B(z, Ar), belonging to L?, there exists a (k—1)-form ¢ on B(x,r) such that d¢ = w
on B(z,r) and

19l La(B.r) < Cllwllrae)-

For interior Sobolev inequalities, merely add the word compactly supported. Both
properties should be thought of as quantitative versions of the statement that,
locally, every closed k-form is exact.

It turns out that in several situations, the lo on domain is harmless. This is
the case for L?P-cohomological applications, seej{?ﬁf

1.2. Contact manifolds. A contact structure on a manifold M is a smooth distri-
bution of hyperplanes H which is maximally nonintegrable in the following sense: if
6 is alocally defined smooth 1-form such that H = ker(6), then df restricts to a non-
degenerate 2-form on H. A contact manifold is the data of a smooth manifold M
and a contact structure H on M. M must be odd-dimensional. Contactomorphisms
are contact structure preserving diffeomorphisms between contact manifolds. The
prototype of a contact manifold is the Heisenberg group H", the simply connected
Lie group whose Lie algebra is the central extension h = b1 @ ha, ha = R = Z(h),
with bracket h; ® h1 — ha = R being a non-degenerate skew-symmetric 2-form.
The contact structure is obtained by left-translating ;. According to Darboux, ev-
ery contact manifold is locally contactomorphic to H”. The Heisenberg Lie algebra
admits a one parameter group of automorphisms d,

§=tonby, & =t on by,

which are analogues of Euclidean homotheties. However, differential forms on b
split into 2 eigenspaces under d;, therefore de Rham complex lacks scale invariance
under these anisotropic dilations.

A substitute for de Rham’ co.rglpgex, that recovers scale invariance under §; has
been defined by M. Rumin, . It makes sense for arbitrary contact manifolds
(M, H). Let Q° denote the space of smooth differential forms on M, let Z® denote
the differential ideal generated by 1-forms that vanish on H, let [J° denote its
annihilator. Exterior differential d : Q°* — Q° descends to first order differential
operators d. : Q°/Z* — Q°*/Z® and d. : J* — J°*. It turns out that Q"/Zh =0
for h >n+1and J" =0 for h < n. If w € Q"/T", there is a unique lift © € Q"
such that do € J"*1. Set d.w = d@. This defines a linear second order differential
operator Q" /7" — J7"*! which completes Rumin’s complex, which is homotopic
to de Rham’s complex. The homotopy is a first order differential operator.

Elements of Q°/Z° and J° can be viewed as smooth sections of sub-bundles £§
of A°H* and A°H* @ (TM/H) respectively. A Euclidean norm on H determines
Euclidean norms on A®H*. Locally, a 1-form 6 vanishing on H such that [dfy| = 1
is uniquely determined up to sign, hence a norm on TM/H. The measure on M
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defined by the locally defined top degree form 6 A (df)™ only depends on the norm
on H as well. Whence LP-norms on spaces of sections of bundles &£7.

The data of (M, H) equipped with a Euclidean norm defined on sub-bundle
H only is called a sub-Riemannian contact manifold. Poincaré and Sobolev in-
equalities for differential forms make sense on contact sub-Riemannian manifolds:
merely replace d with d.. All left-invariant sub-Riemannian metrics on Heisenberg
group are bi-Lipschitz equivalent, hence we may refer to sub-Riemannian Heisen-
berg group without referring to a specific left-invariant metric. On the other hand,
in absence of symmetry assumptions, large scale behaviours of sub-Riemannian
contact manifolds are diverse.

1.3. Results on Poincaré and Sobolev inequalities. In this paper, we prove
strong contact Poincaré and Sobolev inequalities and interior contact Poincaré and
Sobolev inequalities in Heisenberg groups, where the word “contact” is meant to
stress that the exterior differential is replaced by Rumin’s d.. The range of param-
eters differs slightly from the Euclidean case, due to the fact that d. has order 2 in
middle dimension. Let h € {0,...,2n+ 1}. Say that assumption E(h,p,q,n) holds
if 1 < p<q< oo satisfy

1 1_{5%5 it h#n+1,

P q g2 ifh=n+l.

Say that assumption I(h,p,q,n) holds if 1 < p < g < oo satisfy

11 {Zﬁi it h#n+1,

——— =<7 .
P g gz fh=n+1

Theorem 1.1. Under assumption E(h,p,q,n), strong (p,q)-Poincaré and (p,q)-
Sobolev inequalities hold for h-forms on H™.

Theorem 1.2. Under assumption I(h,p,q,n), interior (p,q)-Poincaré and (p,q)-
Sobolev inequalities hold for h-forms on H™.

Prec'sgig(c)glrrréulations of interior Poincaré and Sobolev inequalities are given in
section %

Here is a %mple consequence of these results. Combining both theorems with
results from , we get

Corollary 1.3. Under assumption E(h,p,q,n), the {£%P-cohomology in degree h of
H"™ vanishes.

1.4. Bounded geometry and smoothing. Along the way, we construct local
smoothing operators for differential forms. They can be combined to yield a global
smoothing operator on -Riemannian contact manifolds, which has independent
interest (see Theorem IT.5 below). This operator is bounded on LP provided the
sub-Riemannian metric has bounded geometry in the following sense.

Definition 1.4. Let k > 2. Let B(e,1) denote the unit sub-Riemannian ball in
H". We say that a sub-Riemannian contact manifold (M, H,g) has bounded C*-
geometry is there exist constants r > 0, C such that, for every x € M, if we
denote by B(x,r) the sub-Riemannian ball for (M, H, g) centered at x and of radius
r, there exists a contactomorphism (i.e. a diffeomorphism preserving the contact
forms) ¢y : Be,1) = M
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(1) B(z,r) C ¢2(B(e,1)).

(2) ¢ is C-bi-Lipschitz.

(3) Coordinate changes ¢, o by L and their first k derivatives with respect to
unit left-invariant horizontal vectorfields are bounded by C.

On sub-Riemannian Heisenberg balls, Sobolev spaces can be defined as follows.
Fix an orthonormal basis of left-invariant vector fields W;. Express forms in this
frame, and differentiate along these vector-fields only. Let ¢ = 0,...,k. Say that
a differential form on unit ball B belongs to WP if all derivatives up to order k
of its components belong to LP(B). Using C*-bounded charts, this local notion
extends to C*-bounded geometry sub-Riemannian contact manifolds M, and the
global W¥? norm on globally defined differential forms is defined by

1/p

D By lwee s, .m)
J
where a; is an r-dense uniformly discrete subset of M (it will be shown in section
t5 that this norm does not depend on choices, up to multiplicative constants). By
duality, Sobolev spaces with negative { = —k + 1,..., —1 can be defined.

Theorem 1.5. Let (M, H,g) be a sub-Riemannian contact manifold of bounded
Ck-geometry. Under assumption I(h,p,q,n), there exist operators S and T on h-
forms on M which are bounded from WIi=1P to W31 for all 0 < j < k, and such
that1 =S +d. T+ Td..

Iterating S yields an operator which is bounded from LP to W*4, and still acts
trivially on cohomology. For instance, this allows to replace a closed form, up to
adding a controlled exact form, with a much more regular differential form.

1.5. Questions. Keeping in mind the analogous inequalities in the scalar case, the
following questions naturally arise.

1. Do balls is Heisenberg group satisfy strong (p, ¢)-Poincaré and (p, ¢)-Sobolev
inequalities? In other words, do Poincaré and Sobolev inequalities hold
without lack on domain?

2. Do interior (p, q)-Poincaré and (p, ¢)-Sobolev inequalities hold for limiting
values, i.e. for p =1 or ¢ = c0?

3. How much of these results does extend to more general Carnot groups?

2. SCHEME OF PROOF

2.1. Global homotopy operators. The most efficient way to prove a Poincaré
inequality is to find a homotopy between identity and 0 on the complex of differential
forms, i.e. a linear operator K that raises the degree by 1 and satisfies

1=dK + Kd.

More generally, we shall deal with homotopies between identity and other operators
P, i.e. of the form

1—P=dK + Kd.

In Euclidean space, the Laplacian provides us with such a homotopy. Write
A = df + dd. Denote by A~! the operator of convolution with the fundamental
solution of the Laplacian. Then A~! commutes with d and its adjoint &, hence
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K. = 0A~! satisfies 1 = dK. + K.d on globally defined LP differential forms.

Furthermore, K, is bounded LP — W14 provided % — % = % This proves the

strong (p, ¢)-Poincaré inequality for Euclidean space. Rumin defines a Laplacian

A. by A. = de6.+05.d. when both d.’s are first order, and by A, = (d.0.)?+6.d. or

A = d.b.+(5.d.)? near middle dimension, when one of them has order 2. This leads

to a homotopy of the form Ky = §.A ! or Ko = 6.d.0.A.! depending on degree.
Again, Ky is bounded LP — W4 under assumption E(h,p,q,n). This pro se;csr;c%le Lobal
strong contact (p, ¢)-Poincaré(h) inequality for Heisenberg group, Theorem [T.1.

2.2. Local homotopy operators. We pass to local results. In Euclidean space,
Poincaré’s Lemma asserts that every closed form on a ball is exact. We need a
quantitative version of this statement. The standard proof of Poincaré’s Lemma
relies on a homotopy operator which depends on the choice of an origin. Averaging
over origins yields a bounded operator K : LP — L9, as was observed by Iwaniec and
Lutoborski,%?»]. This proves the strong Euclidean (p, ¢)-Poincaré(h) inequality for

convex Euclidean domains. {X SUPPOLt preserying variant J : LP — L7 appears in
mitrea_mitrea_monniaux

Mitrea-Mitrea-Monniaux, [T6] and this proves the strong Euclidean (p, ¢)-Sobolev
inequality for bounded convex Euclidean domains. Incidentally, since, for balls,
constants do not depend on the radius of the ball, this reproves the strong Euclidean
(p, ¢)-Sobolev inequality for Euclidean space.

In this paper a sub-Riemannian counterpart is obtained using the homotopy of
de Rham’s and Rumin’s complexes. Since this homotopy is a differential operator,
a preliminary smoothing operation is needed. This is obtained by localizing (mul-
tiplying the kernel with cut-offs) the global homotopy Ky provided by the inverse
of Rumin’s (modified) Laplacian. oincare

Hence the proof goes as follows (see Section %)7

(1) Show that the inverse Ky of Rumin’s modified Laplacian on all of H" is
given by a homogeneous kernel kq. Deduce bounds L? — W14, Conclude
that Ky is an exact homotopy for globally defined LP forms.

(2) Split kg = k1 + ko where k; has small support and ko is smooth. Hence
T = K; is a homotopy on balls (with a loss on domain) of identity to
S = d.Ks5 + Kad, which is smoothing. This provides the required local
smoothing operation.

(3) Compose Iwaniec and Lutoborski’s averaged Poincaré homotopy for the de
Rham complex and Rumin’s homotopy, and apply the result to smoothed
forms. This proves an interior Poincaré inequality in Heisenberg group. Re-
placing Iwaniec and Lutoborski’s homotopy with Mitrea-Mitrea-Monniaux’s
homotopy leads to an interior Sobolev inequality.

2.3. Global smoothing. Let (M, H, g) be a bounded C*-geometry sub-Riemannian
contact manifold. Pick a uniform covering by equal radius balls. Let x; be a par-
tition of unity subordinate to this covering. Let ¢; be the corresponding charts
from the unit Heisenberg ball. Let S; and T} denote the smoothing and homotopy
operators transported by ¢;. Set

T=3"Tpg = S +Tilxde
J j

When d. is first order, the commutator [x;, d.] is an order 0 differential operator,
hence Tj[x;, d.] gains 1 derivative. When d. is second order, [x;, d.] is a first order
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differential operator. It turns out that precisely in this case, T} gains 2 derivatives,
hence Tj[x;, d.] gains 1 deri\/%tlinvae1 in this case as well.
This is detailed in section [

3. HEISENBERG GROUPS AND RUMIN’S COMPLEX (E§,d.)

3.1. Differential forms on Heisenberg group. We denote by H" the n-dimensional
Heisenberg group, identified with R?"*+! through exponential coordinates. A point

p € H" is denoted by p = (z,y,t), with both z,y € R™ and ¢t € R. If p and p’ € H",
the group operation is defined by

1 n
pp = (@ aly b oY () - )
j=1
The unit element of H" is the origin, that will be denote by e. toin

IGro]f:n‘gxlrrC% gerﬂﬁﬁ%laﬁggew on Heisenberg groups and their properties, \Aﬂf‘f ggfg Lo 1197,

[TI] and to [20]. We limit ourselves to fix some notations, following .
The Heisenberg group H" can be endowed with the homogeneous norm (Korédnyi
norm)

(1) o(p) = (I'* + p3pa
tein
and we define the gauge distance (a true distance, see [19], p. 638, that is equivalent
to Carnot—Carathéodory distance) as
(2) d(p,q) = o(p™" - q).
Finally, set B,(p,r) = {g € H"; d(p,q) < r}.
A straightforward computation shows that there exists ¢y > 1 such that
(3) ¢ 2lpl < p(p) < Ipl"?,

provided p is close to e. In particular, for » > 0 small, if we denote by Bguc(e,r)
the Euclidean ball centred ad e of radius r,

(4) Bruc(e,*) C By(e,r) C Bruc(e, cir).

It is well known that the topological dimension of H” is 2n+ 1, since as a smooth
manifold it coincides with R*"*1 whereas the Hausdorff dimension of (H",d) is
Q:=2n+2.

We denote by h the Lie algebra of the left invariant vector fields of H™. The
standard basis of § is given, for i =1,...,n, by

)1/4

)

1 1
X = aﬂﬂz - 5%31&, Y = auz + ixiata T .= at.

The only non-trivial commutation relations are [X;,Y;] =T, for j =1,...,n. The
horizontal subspace by is the subspace of h spanned by Xi,..., X, and Y7,...,Y,.
Coherently, from now on, we refer to Xi,...,X,,Y1,...,Y, (identified with first
order differential operators) as to the horizontal derivatives. Denoting by ho the
linear span of T', the 2-step stratification of § is expressed by

h=b1 D bho.

The stratification of the Lie algebra b induces a family of non-isotropic dilations
Ox, A > 0 in H". The homogeneous dimension of H"™ with respect to dy, A > 0
equals Q.
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The vector space h can be endowed with an inner product, indicated by (-, ),
making Xq,..., X, Y7,...,Y, and T orthonormal.
Throughout this paper, we write also

(5) Wi = Xi, Wi+n = Y;, W2n+1 = T, for i = 1, e, N
The dual space of § is denoted by /\1 h. The basis of /\1 b, dual to the basis
{X1,...,Y,, T}, is the family of covectors {dz1,...,dz,,dy1,...,dy,, 0} where
1 n
0:=dt -3 > (wjdy; — yjda;)
j=1
is called the contact form in H".
We indicate as (-,-) also the inner product in A’ that makes (dz1, ..., dyn,6)

an orthonormal basis. . . camoi W
Coherently with the previous notation (LS ], we set

w; =dr;, Wit i=dy;, wops1:i=0, fori=1,--- n.

We put Agh:=A"h=Rand, for 1 <k <2n+1,

k
/\ h:=span{w;, A Aw;, 11 <idp < <ip <2n+ 1},

The volume (2n + 1)-form 61 A -+ - A 02,41 will be also written as dV.
The same construction can be performed starting from the vector subspace h; C
b, obtaining the horizontal k-covectors

k
/\ b1 :=span{wi, A+ Aw;y 11 <idp < -+ < < 2n}.

Definition 3.1. If n # 0, n € /\1 b1, we say that n has weight 1, and we write
w(n) = 1. If n = 0, we say w(n) = 2. More generally, if n € /\h b, we say that
1 has pure weight k if n is a linear combination of covectors w;, N --- A\ w;, with
w(wil) + 4+ w(wih) =k.

Notice that, if n,¢ € /\hf) and w(n) # w(¢), then (n,¢) = 0.

3.2. Rumin’s complex on Heisenberg groups. The exterior differential d does
not preserve weights. It splits into

d=dy+d; +ds

where dy preserves weight, d; increases weight by 1 unit and ds increases weight
by 2 units. dj is a differential operator of order 0; in degree k, it vanishes on forms
of weight k and if 8 is a k — 1-form of weight k — 1, do(0 A 5) = dO A 5. A first
attempt in trying to invert d is to invert dy. For this, let us pick a complement
W to ker(dp) in A h and a complement V to Im(dp) in A® b containing W. This
allows to define d; * to be 0 on V and the inverse of dy : W — Im(dp). This defines
a left-invariant order 0 operator on smooth forms on H". Denote by V' (resp. W)
the space of smooth sections of V (resp. W).
Rumin shows that

r=1-—dy'd—ddy*!
is the projector onto the subspace

E=Vnd'v
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along the subspace
F=W+dW.
Hence, in the sequel, it will be denoted by IIg. The weight-preserving part of r,
ro =1 —dy'dy — dody*,

has order 0, it is the projector onto & := ¥V Nker(dy) along W & Im(dy). Hence, in
the sequel, it will be denoted by Ilg,, where Ej is the space of smooth sections of
&o. HE0|E and Ilg g, are inverses of each other. We use them to conjugate d|g to
an operator

de =g, dlIg1lg,

on Fy. By construction, the complex (Fy,d,.) is isomorphic to (E,d), which is
homotopic to the full de Rham complex.

3.3. Contact manifolds. We now sketch Rumin’s construction of the intrinsic
complex for general contact manifolds (M, H). Locally, H is the kernel of a smooth
contact 1-form 6. Let L: A\* H* — A® H* denote multiplication by df) .

It is well known that, for every h < n — 1, L™ : A" H* — A*" " H* is an
isomorphism. It follows that ker(L"~"*1) is a complement of Im(L) in /\h H* if
h <n, and that Im(L) = /\h H* if h > n+ 1. Therefore we set

Vh_ {aoeT*M; L " (o) =0} if h <n,
{a e T*M; oy =0} otherwise.

Similarly, Im(L"~"*1) is a complement of ker(L) in A" H* if h > n, and ker(L) =
{0} in A" H* if h < n — 1. Therefore we set

Wh — {a e T*M ; oy = 0} ifh<n-—1,
e eT*M; a e AIm(L" 1)}  otherwise.

Changing 6 to an other smooth 1-form " = f# with kernel H does not change V
and W. With these choices, spaces of smooth sections V' and W depend only on the
plane field H. We can define subspaces of smooth differential forms E =V Nd~'V
and F' = W 4+ dW and the projector IIg. Since no extra choices are involved, F, F'
and Il are invariant under contactomorphisms.

In degrees h > n+1, & = 0 A (\" H* Nker(L)) is a contact invariant. Since

(Hey) iz = (Me)E,) "

the operator d. = ((Ilg)|g,) ' o d o (Ilg)g, is a contact invariant.

In degrees h < n, the restriction of differential forms to H is an isomorphism
of & to & := A" H* Nker(L"~"*1). We note that for a differential form w such
that wyy € &), lIg(w) only depends on wg. Indeed, do_lw = 0. Furthermore, if
w=0A8,dy dw = dy*(df A B) = w, hence TIp(w) = w — ddy'w = 0. It follows
that (Ilg)|g, can be viewed as defined on the space Ej of sections of &), which is
a contact invariant. Since

(HEU)\E = ((HE)‘EO)il, it follows that (HE[’))\E = ((HE>|E6>71
and d. viewed as an operator on E,

((Mg)ygy) " odo (Tg) g
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is a contact invariant. In the sequel, we shall ignore the distinction between Ey and
E{.. The connection with the description provided in the introduction is easy. nig 2017
A ate contact invariant descriptions of Rumin’s complex can be found in %?]r_g;
and #ﬁfﬁl
By construction,
i) d? = 0;

ii) the complex & := (Eg,d.) is homotopically equivalent to the de Rham
complex Q := (Q°,d). Thus, if D C H" is an open set, unambiguously we
write H"(D) for the h-th cohomology group;

i) d. : B} — Eg“ is a homogeneous differential operator in the horizontal
derivatives of order 1 if h # n, whereas d. : E} — E(’)”rl is an homogeneous
differential operator in the horizontal derivatives of order 2.

Since the exterior differential d. on E can be written in coordinates as a left-
invariant homogeneous differential operator in the horizontal variables of order 1 if
h # n and of order 2 if h = n, the proof of the following Leibniz’ formula is easy.

Lemma 3.2. If ¢ is a smooth real function, then
e if h #n, then on El} we have:

[de, ¢l = Py (WQ),

where P(;I(WC) : E(’} — Eg“ is a homogeneous differential operator of
degree zero with coefficients depending only on the horizontal derivatives of
¢

o if h =n, then on £} we have
[de, ¢] = PI'(WQ) + P (W),

where PI*(W() : E}f — ESH is a homogeneous differential operator of
degree 1 with coefficients depending only on the horizontal derivatives of ¢,
and where PP(W?2¢) : B — E{f"’l is a homogeneous differential operator
in the horizontal derivatives of degree 0 with coefficients depending only on
second order horizontal derivatives of (.

4. KERNELS

If f is a real function defined in H", we denote by Y f the function defined
by Vf(p) == f(p~'), and, if T € D'(H"), then YT is the distribution defined by

(T o) = (T $) % r 4 dfg]%gigunction 0. o . .
Following e.g. , we can define a group convolution in H": if, for instance,

f€DH") and g € L] (H"), we set

loc

group convolution| (6) f*g(p) = /f(q)g(q_l -p)dgq for g € H".

We remind that, if (say) ¢ is a smooth function and P is a left invariant differential
operator, then

P(fxg)=fx*Pyg.
We remind also that the convolution is again well defined when f,g € D'(H"),
provided at least one of them has compact support. In this case the following
identities hold

convolutions var| (7) (fxglo)=(g]"f+¢) and (f=*glo)=(flo*"g)
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for any s fucrllctéon o.
olland_sfein
Asin 38 , we also adopt the following multi-index notation for higher-order deriva-

tives. If I = (iy,...,49,11) is a multi-index, we set W1 = W/t ... Wi Tieni1,
By the Poincaré Birkhoff-Witt theorem, the differential operators W/ form a ba-
sis for the algebra of left invariant differential operators in H". Furthermore, we
set |I| := iy + --+ + i2 + donp1 the order of the differential operator W', and
d(I) := i1 + -+ + i9n + 22,41 its degree of homogeneity with respect to group
dilations.

Suppose now f € &'(H") and g € D'(H"). Then, if ¢ € D(H"), we have

(WEF)* gloy = (Wl = Vg) = (=) (fl = (W ¥g))
= (=D)II(f =YWV glep).

1land
Following ?0, we remind now the notion of kernel of type p.

(8)

Definition 4.1. A kernel of type p is a homogeneous distribution of degree p — Q
(with respect to group dilations d,), that is smooth outside of the origin.
The convolution operator with a kernel of type u is still called an operator of type

I
Proposition 4.2. Let K € D'(H") be a kernel of type .

i) VK is again a kernel of type p;

il) WK and KW are associated with kernels of type u— 1 for any horizontal

derivative W
i) If >0, then K € L% (H").
Theorem 4.3. Suppose 0 < a < Q, and let K be a kernel of type a. Then
) ifl<p<Q/a, and 1/q:=1/p— a/Q, then
lu* K| pagny < Cllull ogan)
for all w e LP(H™).
i) If p> Q/a and B, B" C H" are fized balls, then for any ¢ > p
lu* K|l La(pry < CllullLogn)
for all w € LP(H™) with supp u C B.
iii) If K is a kernel of type 0 and 1 < p < oo, then
wx K|l Lr@ny < CllullLon)-
olland
Proof. For statements i) and iii), we refer to [7], Propositions 1.11 and 1.9. As for
i), if p > @/, we choose 1 < p < Q/a such that 1/p < 1/q¢+ o/Q. If we set
1/G:=1/p— a/Q < 1/q, then
HU*KHLQ(B’) S CB’ ||’LL * K||L‘7(B’) S CB’ H’U, * KHLQ(H")
< C'(B)|ull Loy < C/(B, B')|[ull o).
O

Lemma 4.4. Suppose 0 < o < Q. If K is a kernel of type a and ¢» € D(H™),
RSN ne'ighborhood of the origin, then the statements i) and i) of Proposition
% 3 still hold if we replace K by (1 —)K.

Analogou ly, gtk is a kernel of type 0 and ¢ € D(H™), then statement iii) of
Proposition %3 stll hold if we replace K by (v — 1)K.
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olland
Proof. As in E?]{_Ffroposition 1.11, we have only notice that |(1 — ¢)K(x)| <
Cylz|®~9, so that (1 —)K € LR/(Q=2):¢(H") and thereforet i) and ii) hold
true.
Suppose now a = 0. Notice that (¢ — 1)K € LY°°(H"), and therefore also
u — ((¥ — 1)K) *u is LP — LP continuous by Hausdorff-Young Theorem. This
proves that iii) holds true. O

lhls folland [truncation

truncation rem| Remark 4.5. By Theorem 7.3, Lemma I[.4 still holds if we replace (1 — 1)K b
| y i i p y
VK.

The following (well known) estimate will be useful in the sequel.

Lemma 4.6. Let g be a a kernel of type u > 0. Then, if f € D(H"™) and R is an

homogeneous polynomial of degree £ > 0 in the horizontal derivatives, we have

R(f*g)(p) = O(Ip/*~97") asp— co.
On the other hand, if g is a smooth function in H"™ \ {0} that satisfies the logarith-
mic estimate |g(p)] < C(1 4 |In|p||) and in addition its horizontal derivatives are
homogeneous of degree —1 with respect to group dilations, then, if f € D(H™) and
R is an homogeneous polynomial of degree £ > 0 in the horizontal derivatives, we
have

R(fxg)p) = O(pl™) asp—oo if£>0;
R(f=g)(p) = O(nlp]) asp—oo ifl=0.

Since we have fixed a left-invariant moving frame for Ej, a (Nj, x Nj)-matrix
whose entries are kernels of type a defines in a natural way an operator from EJ
to EY. We still refer to this operator as to an operator associated with a (matrix-
valued) kernel of type a.

. © Jrumin_
rumin 1ap1acian| Definition 4.7. In H", following [1§], we define the operator Ay, on E} by set-

ting
dob. + 0.d, if h#nn+1;
AH,h = (d060)2 + 0cde Zf h =mn;
debe + (6ede)? if h=n+1.

Notice that —Ag,o = Z?Zl(Wf) is the usual sub-Laplacian of H".
For sake of simplicity, since a basis of E! is fixed, the operator Ay j; can be
identified with a matrix-valued map, still denoted by Ag p,

9) Aw g = (AF p)ij=1,... N, 2 D (H", RVY) — D' (H", RM),

where D'(H", R¥") is the space of vector-valued distributions on H".
FTT
This identification makes possible to avoid the notion of currents: we refer to ;2

for a more elegant resentation.
It is ﬁved in ig that Ap p is hypoelliptic and maximal hypoelliptic in the

sense of [T2]. In general, if £ is a differential operator on D’(H", R¥%), then £
is said hypoelliptic if for any open set ¥V C H" where L« is smooth, then « is
smooth in V. In addition, if £ is homogeneous of degree a € N, we say that L is
maximal hypoelliptic if for any § > 0 there exists C' = C'(§) > 0 such that for any
homogeneous polynomial P in Wy,..., Wa, of degree a we have

||Pa||L2(Hn,RNh) <C (”Ea”m(Hn,RNh) + ”O‘HLQ(H",RNh)) .
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for any a € D(B,(0.4; RNR), _—
Combining , Section 3, and %3 , Theorems 3.1 and 4.1, we obtain the following
result.

Theorem 4.8 (see Eﬁ Theorem 4.6). If 0 < h < 2n + 1, then the differential op-
erator Am.p, is hypoelliptic of order a, where a = 2 if h # n,n+1 and a = 4 if
h =n,n + 1 with respect to group dilations. Then
i) for j =1,..., Ny there exists
(10) K;=(Kij,....Kn,j), j=1,...Np
with K;; € D'(H")NEMH™\ {0}), 4, =1,...,N;
ii) if a < Q, then the K;;’s are kernels of type a for i,5=1,..., Ny
If a = Q, then the K;;’s satisfy the logarithmic estimate |K;;(p)| <
C(1 4 |Inp(p)|) and hence belong to Li .(H"™). Moreover, their horizontal
derivatives WoK;j, £ =1,...,2n, are kernels of type Q —1;
iii) when o € D(H", RN, if we set

(11) Ka ::(Zozj*Klj,---,ZO‘j*KNhJ)v
J J

then Ag Ko = a. Moreover, if a < Q, also KAy pa = a.
iv) if a = Q, then for any o € D(H",RN") there exists Bo = (B1,---,0n,) €
RN such that
K:AH_’hOz — = ﬁa-

atrix form
Remark 4.9. Coherently with formula (g),_ﬁmmtor K can be identified with
an operator (still denoted by K) acting on smooth compactly supported differential
forms in D(H", EZ). Moreover, when the notation will not be misleading, we shall
denote by oo — Aﬁ}hoz the convolution with K acting on forms of degree h.

Lemma 4.10. If o € D(H", E})

i) deAgh o= Agh o dec, h=0,1,...,2n, h#n—1,n+1.
i) dAg),_ja=dd.Ay dea (h=n-1).
i) dededeAg, 0= Ay ydee, (h=n+1).
iv) dcAgha = Ay 0 h=1,....2n+1, h#n,n+2.
V) 5CAﬁ_’1n+2a = 5Cch]I§I,1n+15Ca (h=n+2).
Vi) SededeAp) o= Agl 6ea, (h=mn).

Proof. Let us prove i), ii), iii). The remaining assertions will follow by Hodge
duality. Put

wh i =deAgho—Agh qdea ifh#En—1,n+1,

—1 —1
Wnpo1:= dCAH)n_la — dcécAHmdca
—1 —1
Wpt @ = dcécchH)nHa — Ag,yodea.
lobal solution kernel

We notice first that, by Theorem B.8 and Proposition #.2, for agl h 1,...,2n,

' =
wp, = My, * o, where M), is a kernel of type 1. Thus, by Lemma ointwise
(12) wp(x) = 0(|x|1*Q) as & — 0o,

We want to show now that

(13) Agppwn=0 forh=1,...2n.
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Suppose first h #n — 1,n,n+ 1. By Theorem Ii%%ﬁg\?%
A p1wh = dcécchiLlha —d.«
= chH,hAﬁ}ho‘ —d.a = 0.
If h=n—1, then
Afinin-1 = debedodo(deAZ), 0 = dS.AZ) dea)
= debedeDun 1Ay, o — dede Ay A dea = 0.
If h = n, then (keeping in mind that dCAﬁ}na is a form of degree n + 1 and
A]{{}na is a form of degree n)
Apniiwn = ((0ede)* + dcéc)dCAﬁ}na —d.«
= de(0ede + (dede)?) Ao — dear
= chHynAﬁ)lnoz —d.a = 0.
Finally, if h = n + 1, then
AR pyoWni1 = dc5cdc5cch1§1,ln+10‘ —dca
= deAp 185, 10 — dear = 0.

armonic

This prov 5 . infinit
Thus, by [3], Proposition 3.2, w is a polynomial coefficient form. Then, by (h’Z;)—Z
necessarily w = 0.
This proves i), ii), iii).
O

5. FUNCTION SPACES

5.1. Sobolev spaces. Since here we are dealing only with integer order Folland-
Stein fu “ ]f)a% ghaces, we can give this simpler definition (for a general presentation,
see e.g. [T]).

Definition 5.1. If U C H" is an open set, 1 < p < oo and m € N, then the space
WmP(U) is the space of all w € LP(U) such that

Wlu e LP(U)  for all multi-indices T with d(I) = m,
endowed with the natural norm.

Theorem 5.2. [fU C H", 1 <p < o0, and k € N, then
i) Wk»(U) is a Banach space;
ii) WkP(U) N C>=(U) is dense in W*P(U);
iii) if U = H", then D(H") is dense in W*P(U).

Definition 5.3. If 1 < p < oo, we denote by I/?/k’p(U) the completion of D(U.) in
WkP(U). If U is bounded, then by (iterated) Poincaré inequality (see e.g. Ll
follows that the norms

lullwer@y and > W]l
d(D)=k

o
are equivalent on W*P?(U) when 1 < p < oc.
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Finally, Wél’]pC(U ) denotes the usual Sobolev space.

5.2. Negative spaces.

negative spaces| Definition 5.4. If U C H" is an open set and 1 < p < oo, W=RP(U) is the dual
space of I/f/k’p/(U), where 1/p+1/p" = 1. It is well known that

WP (U) = {fo + Z W1, fo, fr € LP(U) for any I such that d(I) = k},
a(I)=k

and
ullw ko = Wt {| foll oy + Y Ifillerwy s dI) =k, fo+ > W fr=u}.
1 d(I)=k
If U is bounded, then we can take fy = 0.

Finally, we stress that

{fo+ Z Wi, fo, fr € D(U) for any I such that d(I) = k}
d(1)=k

is dense in W—rP(U).

dual spaces forms | Definition 5.5. If U C H" is an open set, 0 < h<2n+1,1<p<oc and m >0,
we denote by W™P(U, N"b) (by W™P (U, N" b)) the space of all sections of \"b
such that their components with respect to a given left-invariant frame belong to
wWmP(U) (to W™P(U), respectively), endowed with its natural norm. Clearly, this
definition is independent of the choice of the frame itself.

The spaces W™P(U, E}) and W™P (U, E}) are defined in the same way.

On the other hand, the spaces

Womp(U, Bl o= (v?/mvp/(U, E{;))*

BETT
ca Fblxerm'ewed as spaces of currents on (E§,d.) as in [2], Proposition 3.14. Again as
in (2], Proposition 3.14, an element of W=""P(U, E(’}) can be identified (with respect
to our basis) with a Np-ple

Np

(Th,....Tn,) € (W*mvP(U, E{;))

(this is nothing but the intuitive notion of “currents as differential form with distri-
butional coefficients”). The action of u € W="P(U, E}) associated with (Ty,...,Tx,)

on the form 3=, ajﬁjh € I/?/m’p/(U, El) is given by
(ule) ==Y (Tjlay).

J

On th gtézgfvéz%ngbe%uppose for sake of simplicity that U is bounded, then by Defi-
nition %5 there exist f{ € LP(U), j=1,...,Np, i=1,...,2n+ 1 such that

dual spaces forms eqzl‘ (14) (ula) = Z Z /Ufg(;g)WIaj(:v) dzx.

J d(I)=m
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Alternatively, one can express duality in spaces of differential forms using the
pairing between h-forms and 2n + 1 — h-forms defined by

a,ﬁ'—>/Ua/\ﬁ.

Note that this makes sense for Rumin forms and is a nondegenerate pairing. In this
manner, the dual of LP(U, E}) is L¥' (U, E2"*1="). Hence W~"P(U, E}) consists of
differential forms of degree 2n 41 — h whose coefficients are distributions belonging
to W=mP(U).

5.3. Contact invariance.

Lemma 5.6. Let U, V be open subsets of H". Let ¢ : U — V be a C*-bounded
contact diffeomorphism. Let { = —k+1,... k — 1. Then the pull-back operator ¢*
from WP forms on V. to WP forms on U is bounded, and its norm depends only
on the C* norms of ¢ and ¢~ 1.

When ¢ > 0, this follows from the chain rule and the change of variables formula.
According to the change of variables formula

/U&aw%—/vam,

the adjoint of ¢f with respect to the above pairing is (¢~1)f. Hence ¢* is bounded
on negative Sobolev spaces of differential forms as well.

5.4. Sobolev spaces on contact sub-Riemannian manifolds. We define Sobolev
spaces (involving a positive or negative number of derivatives) on bounded geometry
contact sub-Riemannian manifolds.

Let (M,H,g) be a bounded C*-geometry sub-Riemannian contact manifold.
Pick a uniform covering U by equal radius balls (uniform means that distances be-
tween centers are bounded below). Let ¢, : B — U; be C*-bounded contact charts

from the unit Heisenberg ball. Given a differential form w on M, let w; = ¢g—w. Let
—k+1</¢<k—1be an integer. Define

1/p
llewes= | S 1ol
J
Let us show that an other uniform covering U’ and other choices of controlled

charts lead to an equivalent norm. Every piece U of U is covered with boundedly
many pieces U/ of U’. Thus

i lyer < D Mg, 1) e, 0
Since Wi, 1 (U) is t%lleb pgll-back by the contactomorphism ¢ = ¢; o ¢;—1 of
k3 . ac.
Wilg —1(17.y, Lemma E.G implies that
lo; = (U;)
g, -2 o llwer o, =2y = Cllwipgg -1 llwer o1,

where the constant only depends on the uniform bound on horizontal derivatives
of order < k of ¢. Thus

sl < S 1ty
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When summing over j, each term ||w!|| on the right hand side occurs only a bounded
number N of times. This yields

lwller.e.p < CNYPllwllerr e

6. HOMOTOPY FORMULAE AND POINCARE AND SOBOLEV INEQUALITIES

In this paper we are mainly interested to obtain functional inequalities for differ-
ential forms that are the counterparts of the classical (p, ¢)-Sobolev and Poincaré
inequalities on a ball B C R™ with sharp exponents of the form

lu—up|ra(B) < C(r)[[Vul > (B)

(as well as of its counterpart for compactly supported functions). In this case, we
can choose ¢ = pn/(n — p), provided p < n.

Definition 6.1. Take A > 1 and set B = B(e,1) and B' = Ble, \), where the
B(z,r)’s are the Kordnyi balls in H"™ (in particular the balls centered at x = e,
and then all balls, are convez). If 1 <k <2n+1 and ¢ > p > 1, we say that the
interior (p, q)-Poincaré inequality holds in E¥ if there exists a constant C such that,
for every d.-closed differential k-form w in LP(B'; EY) there exists a differential
k — 1-form ¢ in LY(B, Eg_l) such that d.¢ = w and

H¢||Lq(B7E§71) < Cllwl e, ey  interior H-Poincaré, 4 (k)).

Remark 6.2. If k=1 and Q > p > 1, then (H-Poincaré, ,(1)) is nothing but the

1 1 _
usual Poincaré inequality with — — — = — (see e.g. [9], 6],
p g Q
Remark 6.3. If we replace Rumin’s complex (EJ,d.) by the usual de Rham’s com-
plex (2%, d) in R*" 1 then the (p, q)-Poincaré inequality holds on Euclidean balls for
k=1andn >p>1. Ifk > 1, then the (p, q)-Poincaré inequality for 2n+1>p > 1

1 1 1 L
and — — — = is proved by Iwaniec & Lutoborski (see %1'3], Corollary 4.2).

p q 2n+1

The H-Poincaré, ,(k) inequality (as well as its Euclidean counterpart) can be
formulated by duality as follows.

Definition 6.4. Take A > 1 and set B = B(e,1) and B’ = B(e, \). If 1 < k < 2n,
1<p<g<ooandq>p, we say that the (local) H-Sobolev, 4(k) inequality holds
if there exists a constant C' such that for every compactly supported smooth d.-
closed differential k-form w in LP(B; E{f) there exists a smooth compactly supported
differential (k — 1)-form ¢ in LY(B', Eg ") such that d.¢ = w in B’ and

(15) ||¢HLq B/, EF! < CHw||LP(B,Ek)'
( 0o ) o

Notice that, in this case, we do not distinguish interior inequalities (in other
words, we can always assume B = B’), basically since, when dealing with compactly
supported forms, the structure of the boundary does not affect the estimates.

Remark 6.5. If k =1 and Q > p > 1, then (H-Sobolevy, 4(1)) is nothing but the
1 1

1
usual Sobolev inequality with — — — =

¢ Q
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L
In h], starting from Cartan’s homotopy formula, the authors proved that, if
D C RV is a convex set, 1 < p < 00, 1 < k < N, then there exists a linear bounded
map:

(16) Kguex : LP(D, \*) = WP (D, AF1)

that is a homotopy operator, i.e.

(17) w = dKguc kw + Kgue,k+1dw for all w € C(D, A\F)

(see Proposition 4.1 and Lemma 4.2 in }'H:?) More precisely, Kgyu. has the form
(18) Kgue pw(z / Y(y) Kyw(z) dy,

where ¢ € D(D), [, (y)dy =1, and

(19)

1
(Kyw(@)[&e A-- Adg-1)) :=/ T w(te + (1= Y@ —y) A& A~ A&r1))-

mitrea_mitrea_monniaux

Starting from %1’3 in [[T6], Section 4, the authors define a compact homotopy op-
erator Jgye x in Lipschitz star-shaped domains in the Euclidean space RY, providing
an explicit representation formulas for Jgyuc x, together with continuity properties
among Sobolev spaces. More precisely, if D C RY is a star-shaped Lipschitz domain
and 1 < k < N, then there exists

Jeuek : LP(D, \F) = Wi (D, A7)

such that
w = dJEuc 1w+ JEuc k+1dw for all w € D( ,/\k)
E

Take now D = B(e,1) =: Band N =2n+ 1. If w € C*(B,
(20) K:HEOOHEOKEuCOHE

(for sake of simplicity, from now on we drop the index k - the degree of the form -
writing, e.g., Kguc instead of Kgyc, -
Analogously, we can define

(21) J=1Ilg, ollg o Jgyc o llg.

Then K and J invert Rumin’s differential d. on closed forms of the same degree.
More precisely, we have:

Lemma 6.6. If w is d.-closed, then
(22) w=dKw ifl<k<2n+1 and w=d.Jw if1<k<2n.

In addition, if w is compactly supported in B, then Jw is still compactly supported
in B.

Proof. Consider for instance d.Kw. If d.w = 0, then d(Ilgw) = 0, and hence
Mpw = dKpu.(Ipw),
(ﬁ?) by (EU) (and recalhng that dllg = lpd and Hpllg g = Ig),
dKw = g, dllgllp, g Kpwllpw =g, dllg Kpyllpw
= g HpdKpwllpw =g lpllpw =g, pllgw=w.

Finally, if suppw C B, then supp Jw C B since both IIg and IIg, preserve the
support. (I

), then we set
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Lemma 6.7. Put B = B(e,1). Then:
i)ifl<p<ooandk=1,....2n+1, then K : W?(B, E}) — LP(B,Eg_l)

s bounded;

ii) ifl<p<ooandn+1<k<2n+1, then K : L(B,E}) — L?(B,E;™")
18 compact;

iii) if 1 <p<ooandk =n+1, then K : LP(B,E}™) — LP(B,E}) is
bounded.

Analogous assertions hold for 1 < k < 2n when we replace K by J. In addition,
supp Jw C B.

Proof. By its very definition, I : WYP(B, E}) — LP(B, EY) is bounded. By (h’%yfc
Kgye is continuous from LP(B, EY) to Wlp(B,Ek 1y and hence, in particular,
from LP(B, Ef) to WhP(B, EE™). Then we can conclude the proof of i), keeping
again into account that I1g is a differential operator of order < 1 in the horizontal
derivatives.

To prove ii) it is enough to remind that K = I1g, Kgy. of forms of degree h > n,
together with Remark 4.1 in %3]

As for iii), the statement can be proved similarly to i), noticing that K =
g, 1 KEye on forms of degree n + 1.

Finally, supp Jw C B since both IIg and IIg, preserve the support.

O

The operators K and J provide a local homotopy in Rumin’s complex, but fail
to yield the Sobolev and Poincaré inequalities we are looking for, since, because
of the presence of the projection operator Il (that on forms of low degree is a
first order differential operator) they loose regularity as is stated in Lemma 6.7, 11
above. In order to build “good” local homotopy operators with the desired gain of
regularity, we have to combine them with homotopy operators which, though not

local, in fact provide the “good” gain of regularity.
Proposition 6.8. If a € D(H", EL) forp > 1 and h =1,...,2n, then the follow-
ing homotopy formulas hold:
e ifh#n,n+1, then a = d. Ko+ f(ldca, where K1 and K, are associated
with kernels ki, k1 of type 1; R
e if h=mn, then a = d. Ky + Kad.o, where K1 and Ko are associated with
kernels ki, ks of type 1 and 2, respectively;
e ifh=n+1, then a = d. Koo + Kld «, where Ko and K1 are associated
with kernels kg, ky of type 2 and 1, respectively.
comm
Proof. Suppose h #mn — 1,n,n+ 1. By Lemma IZL_[U, we have:
o= AH,hA]IE}hO‘ = dc(écAﬁ}h)oz + 5C(chﬁ71h)oz
= de(0eAg} )+ (65 41 )decr.
%I%Ielge 0 A h and §.A ok a@ I ﬁH%L{‘()enabssocwtted with a kernel of type 1 (by Proposition
h 2 and Theorem li g).
Analogously, if h=n —1
a=Aun 18510 =do(0cAg), )+ 0e(deAR), o
= dc(écAﬁ)n_l)a + (5Cd050AH)n)dca.
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Again 6cAy ., | and dcdcdcAy,, are associated with kernels of type 1.
Take now h =n. Then

o= AHHAH?"Q = (d.0.)2A ﬁlna + 5C(chﬁ}n)a

= do(0cded A1 o+ 0.AFY L dear

where 5Cd050AH§1}n and 50AH,n 41 are associated with a kernel of type 1 and 2, re-
spectively).
Finally, take h = n + 1. Then
a=Ag n+1A11741,1n+10‘ =d.0 AHanrla + (0.d.)? AH pRYe
=d.0 AHanrla + 50Aﬁ1n+2dca

where 6. Ay 1n 41 and 5CAH nao associated with kernels of type 2 and 1, respectively.
O

The LP — L? continuity properties of convolution operators associated with Fol-

land’s kernels yields the.z follovx./ing §tr0ng H—Po'sr%cr%ré §£{Lo)l ei‘pequality in H" (the
strong H-Sobolev,, ,(h) is obtained in Corollary 6.17).

Corollary 6.9. Take 1 < h < 2n+ 1. Suppose 1 < p < Q if h #n+1 and
1<p<Q/2ifh=n+1. Let g > p defined by

1 1_{% ifh#n+1,

23 e
(23) P q 3 ifh=n+1

Then for any d.-closed form o € D(H™, El') there exists ¢ € LI(H EX 1) such that
dep = o and

||¢HLq(Hn7E(’;*1) < C”O‘HLp(Hn,E(’;*)
(i.e., the strong H-Poincaré, 4(h) inequality holds for 1 <h <2n+1).

Theorem 6.10. Let B = B(e,1) and B’ = B(e,\), A > 1, be concentric balls
of H*. If1 < h < 2n+ 1, there exist operators T and T from C>*(B',EQ3) to
C>®(B,Ey™") and S from C=(B', E3) to C=(B, E3) satisfying
(24) dT+Td.+S=1  onB.
In addition
i) T:W-'P(B,EMY) = LP(B,E}) if h # n, and T : W—2P(B,Ey*™) —
LP(B, B);
i) T : LP(B,El) — WY"(B,El ), h #n+1,T:T: LP(B,E;"™) —
WE(B Eg) ifh=n+ 1,
i) S: LP(B',El) — W*»(B, B,

approx homo opy tilde

so that (b4) still holds wn LP(B,Eg). In addition, for every (h,p,q) satisfying
iv) T: LP(B',El) — LY(B, El);

inequalities
S {
)i
v) S:LP(B',El) — W*4B, El);
vi) WUP(B' El) — W*9(B, El™1) for any s > 0.

ifh#£n+1,
ifh=n+1,

1
(25) l<p<g<oo, -
P

Qo Q=

we have:
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Proof. Suppose first h # n,n+ 1. We consider a cut-off function ¢ supported in a

R-neighborho d of the c%r%nl, such that g = 1 near the origin. With the notations
of Proposmon% g, We Can Write k1 = kivr+(1—vYR)k; and ki = kﬂ/)R—l—( 1/)R)k1

Let us denote by K; g, K. _r the convolution operators associated with ¢ rk;, 1/)Rk:1,
respectively. Le us fix two balls By, B; with

varie B| (26) BEeBy,eB €B,
and a cut-off function x € D(By), x = 1on By. If a € C™(B’, EY), we set ag = x«,

continued by zero OutcsolnvolB‘Elon by partslkernel

Keeping in mind (I&) and Proposition 1.2, we have

(27) ap = d.K1 rao + K1 rdeag + Soao,

where Sy is

Soag = dc((l — ’lﬁR)kl * ao) + (1 - 2/13)]%1 * d.og.
We set
To = Kl,RQOa TO& = KldecOéo, Sa = S()O[().

We notice that, provided R > 0 is small enough, t e (%e@ngti.qn of T and T does not
depend on the continuation of a outside By. By (27) we have

a=d.Ta+Td.a+ Sa in B.

If h = n we can carry out the same construction, replacing Ky by ko (keep in mind
that ko is a kernel of type 2). Analogously, if h = n + 1 we can carry out the same
construction, replacing k1 by ko (again a kernel of type 2).

Let us prove i). Suppose h # n, and take € W‘l’p(B’ El). The operator
K R 1s associated with a matrix-valued kernel 1/}R(I€1) By and [ is identified with

[dual spaces forms

a vector-valued distribution (81, ..., 8n,), with 8; = >, W; f/ as in Definition Ib 5}
with

S M sy < ClBlw-rn (s, m1):
P
Thus (Bo);, the j-th component of By = x 8 has the form

(Bo)s = D_Wilxt?) = Do (W) ] =2 D Walfl)o = 3 (W) f7.

In order to estimate the norm of T8 in L?(B, E(’})7 we take
6= ¢;& €DBEY),  with Y il py <1,
J

dual spaces forms eq:1

and we estimate (T8|¢), that, by (Il4), is a sum of terms of the form

(28) /B (ks * fo) (@) Wid(x) dz = (brr * Wi fold)

or of the form
(29) [ G (W) @)ota) de

where x denotes one of the kernels (151)“\ of type 1 associated with /~€1, f is one of
the f’s and ¢ one of the ¢;s,




caso 3

caso 4

POINCARE AND SOBOLEV INEQUALITIES FOR DIFFERENTIAL FORMS 21

lcaso 1 |convolution by parts

As for (28], by (B),
(e * Wifold) = ("W [rk] * folo)
= (Wr" W'k x folo) = ("W Y 0r)k * folo)
We notice now that YW Vk is a kernel of type 0. Therefore, by Lemma Iﬁ%m
WRW! Yk folg) < [Wr"W! ¥k * follLo(m) |9l Lo ()
< Wr"W!"E x foll o) < Cll follLe (s
< CHﬁ”W*LP(B’,E{})'

2
t}%g te %nir%eglbcag iocan b.e .han Clgdo ip the same way, keeping into account Remark
(A5). Eventually, combining (28} and (29) we obtain that
ITBNrB) < CllBllw-10(5,E2)-

The assertion for h = n can be proved in the same way, taking into account
that T is built from a kernel of type 2, and that the space W‘27P(B,Eg+1) is
characterized by “second order divergences”.

Let us prove now ii). Suppose h # n + 1 and take a = 3~ a;él € D(B',EY).
Arguing as above, in order to estimate HTOéle’p(B)E[})z—l) we have to consider terms
of the form

(30) Wi(vrk * (xa;)) = Yre * (We(xa;))

(when we want to estimate the the LP-norm of the horizontal derivatives of Ta),
or of the form

(31) YRk * (Xa;)

(when we want to estimate the LP-norm of T'ar). Both (ﬁ%%%%d (E‘ﬁ%m be handled
as in the case i) (no need heye of the duality argument). caso 3

We point out that (%Ts)?elds a LP — L7 estimates (since, unlike (lKD's),‘lnvolves
only kernels of type 1) and then assertion iv) follows.

Let us prove v). Then also iii) will follow straightforwardly.

It is easy to check that Sy can be written as a convolution operator with matrix-
valued kernel sg. In turn, each entry of sy (that we still denote by sp) is a sum of
terms of the form

(I = Yr)Wek — (Wepr) k.
Thus, the kernels are smooth and then regularizing from £'(B’) to C*° of a neigh-
borhood of B. Thus

[Wsg x ajllLaey < Cllagll L),

for all p, q.
O

Remark 6.11. Apparently, in previous theorem, two different homotopy operators
T and T appear. I@ fact, the‘y‘ co%o%gteogghfzgm%ﬁggzg on form of the same degree.
More precisely, in Proposition 6.8 The homotopy formulas involve four operators
Ky, Ky, Ko, Ko, where the notation is meant to distinguish operators acting on d.c
(the operators with tilde) from those on which the differential acts (the operators

without tilde), whereas the lower index 1 or 2 denotes the type of the associated
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kernels. Alternatively, a different notation could be used: if « € D(H", El') we can
write
a=d.Kp+ Kh-l—ldcau
where the tilde has the same previous meaning, whereas the lower index refers now
to the degree of the forms on which the operator acts.
It is important to notice that

Kh+1:Kh+1, h=1,,2n

Indeed, take h < n — 1. Then Kh-i—l = 50A1§1}h+1 (as it appears in the homotopy
formula at the degree h), that equals Kp11 (as it appears in the homotopy formula
at the degree h +1 < n —1). Take now h = n — 1. Then K, = 5CdcécAﬁ1n (as
it appears in the homotopy formula at the degree n), that equals K, (as it az;pears
in the homotopy formula at the degree n). If h = n, then Kpy1 =6 Aﬁln_i_l (as it
appears in the homotopy formula at the degree n), that equals Kn+1 (as it appears in
the homotopy formula at the degree n+1). Finally, if h > n, then Kni1=29 Ath_i_l
(as it appears in the homotopy formula at the degree h), that equals Kpi1 (as it
appears in the homotopy formula at the degree h+1).

Once this point is established, from now on we shall write
K=K, =K,
without ambiguity.
lapprox homotopy tilde

Therefore T =T and the homotopy formula (24) reads as
(32) dT+Td.+S=1 on B.

smoothin,
Remark 6.12. By the arguments used in the proof of Theorem m‘%he proof of
the LP —W*4 continuity of S can be adapted to prove that S is a smoothing operator,
ie for any m,s € NU{0}, S is bounded from W—"P(B’, E) to W*9(B, E3) when
(25) holds. In particular, if o € W~""P(B’, E3) then Sa € C>(B, EY).

Remark 6.13. It is worth pointing out the followigg fact: take o, B € LP(B', Eg),
a = [ on By (Bi has been introduced in |‘26i) Then ag = By in By, so that

K1 raog = K1 rfBo and K1 rde0g = KliﬁdStB in B. In other words, (d.T+Td.)a =
(d.T+Td,. )B in B. Thus, by (%5% Sa = S(E in B.

The following commutation lemma will be helpful in the sequel.

Lemma 6.14. We have:
[S,d.] =0 in LP(H", EY).

approx homoto

Proof. Take first « € C®(B',El), 1 < h < 2n+ 1. By ( . = d.S on
D(B, EY).

Take now o € LP(B', E}), and let y1.be a cut-off function supported in B, x1 =
1 on By (B; has been deﬁned in ( y convolution with usual Friedrichs’ molli-

fiers, we can find a sequence (ag)ren in D(B’ EP) converging to xi in LP(B', E}).
By Theorem E%%%C — S(x1) in W2P(B, EMY), and hence d.Sau, — deS(Xa)
in LP(B,E}) as k — oo (obviously, if h # n — 1, it would have been enough to
have Say, — S(x %Qai]%tWLp(B’EgH))' On the other hand, y;& = « in By, and
then by Remark 6. X1«) = Sa in B, so that d.Sa, — d.Sa in LP(B,E(’}) as
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k — oco. Moreover deag — de(xga) in W—HP(B', Eg) (in W=P(B', Ef) if h = n)
and hence, again by Theorem % 0, Sicak Totatde(x10) in B as n — oco. Again
d.(x1e) = dea in By and then, by Remark %TB_S%CCM;C — Sd.ain B as k — oc.
Finally, since d.Say = Sd.ay for all £ € N, we can take the limits as & — oo
and the assertion follows. ]

[k oincare def
Theorem 6.15. Let p,q,h s in (bﬁ With the notations of Definitions %.7, iof

1 < p < o0, then both an interior H-Poincaré, ,(h) and an interior H-Sobolev, 4(h)
inequalities hold for 1 < h < 2n.

Proof. H-Poingaré, .(h) inequality: let w € LP(B', E!) be such tEat dew =10,

moothing negative
S con}{ﬂu(ﬁa_ we can erte w = d.Tw + Sw in B. By Remark 12_and Lemma
% 14, Sw € &(B, E}), and d.Sw = 0. Thys we can apply (BZ; fo 5w and we get
Sw = d.KSw, where K is defined in (EU%. In B, put now

¢:=(KS+Tw.
bi
Trivially de¢p = d. KSw + dTw = Sw + w — Sw = w. By Theorem Er.ﬂol lolf =
||¢HLG(B,E‘S‘"1) < ||KSW||L<1(B,E{,H) + ”Tw”LQ(B-,ES”l)
< ”KSWHLq(B EM1 + OHw||LP(B/ EM1

timat 33 e e
(33) < C{lISwllragp pn-t) + 19l pogpe gr-y} (by Lemma 67—

< CHw||LP(B/7ES'71)'

H-Sobolev, ,(h) inequality: let w € LP(B, E}') be a compactly supported form such

that d.w = 0. Since w vanishes in a neighborhood of 9B, without loss of ge erality,
we can assume that it is continued by zero on B’. In addition, w = yw. By (k}%f we

have w = d.Tw+Sw. On the other hand, Tw is supported in By (since R is small), s
that also Sw is suppprted in g%e%gain as above Sw € C*(B, E}), and d.Sw =

'31 eq:2
Thus we carL %POQI% (22]; to 5 and we get Sw = d.JSw, where J is defined in (Bal o

By Lemma 6.6, JSw is supported in By C B’. Thus, if we set ¢ := (JS + T)w,
then ¢ is supported in B’. Moreover d.¢ = chfS;%lJa;ci;g Tw=Sw+w-—Sw=w.
At this point, we can repeat the estimates (E%) and we get eventually

190l Lo 1y < Cllwll Lo, m2-1):

This completes the proof of the theorem. O

Let B(p,r) a Koranyi ball of center p € H" and radius r > 0. The map = —
f(z) = 71p6,(x) provides a contact diffeomorphism from B(e, p) to B(p,rp) for
p > 0. Therefore the pull-back f# : E§ — EJ. In addition, if o € E!, then

ffa=rtaof ifh<n and ffa=r"*aof if h > n.

Theorem 6.16. Toke 1 < h < 2n+ 1. Suppose 1 < p < Q if h #n+1 and
1<p<Q/2ifh=n+1. Let ¢ > p such that

11 Lo ifh +1,
0 Loloiy V7T
p q e} ifh=n+1.
Then there exists a constant C such that, for every d.-closed differential h-form

w in LP(B(p, \r); El) there exists a h — 1-form ¢ in LY(B(p,r), E}~") such that
dep = w and

101l LB pry.zn-y < Cr¥ VP Wl o ppam,myy R FEn+1
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and

¢l La(B.r).Ey) < CrQ/a=Q/r+2 [lwll 1o

B(pAr),Eg )
Analogously there exists a constant C such that, for every compactly supported d.-
closed h-form w in LP(B(p,r); E}) there exists a compactly supported (h —1)-form

¢ in LY(B(p,\r), E'™Y) such that d.¢ = w in B(p, \r) and

sobolev interior ball| (35) HQS”LQ(B(;D,M),E(’,“”) <C ||o.)HLp(B(p7T))E§)

Proof. We have just to take the pull-back f#w and then apply Theorem % gc.’mcare
O
kpq 2
If the choice of ¢ is ?sho%%lfeg'?htier% i(git‘rhe equality holds), then the constant on
the right hand side of (B5) 1s independent of the radius of the ball, so that a global
H-Sobolev,, ,(h) inequality holds.

strong sobolev| Corollary 6.17. Take 1 < h < 2n+ 1. Suppose 1 < p < Q if h #n+1 and
1<p<Q/2ifh=n+1. Let ¢ > p defined by

1 1 Lo ifh#n+1,
e -1y
P q ol ifh=n+1.
Then H-Sobolev,, 4(h) inequality holds for 1 < h < 2n+ 1.

7. CONTACT MANIFOLDS AND GLOBAL SMOOTHING
Throughout this section, (M, H, g) wi | be a sub-Riemannian contact manifold
of bounded C*-geometry as in Definition [[.4. We shall denote by (Eg,d.) both the

Rumin’s complex in (M, H, g) and in the Heisenberg group.

Proposition 7.1. If ¢ is a contactomorphism from an open set U C H™ to M,
and we set V := ¢(U), we have
i) $FES(V) = E§(U);
ii) de¢® = ¢*d.;
iii) if ¢ is a smooth function in M, then the differential operator in U C H"
defined by v — ¢ [d., C](¢~1)#v is a differential operator of order zero if
v e EMU), h#n and a differential operator of order 1 if v € EJ(U).

Proof. Assertions i) and ii) folloyy straightforwardly since ¢ is a contact map. As-
sertion iii) follows from Lemma 13.2, since, by definition,

(25# (de, C](d)*l)#v = [d¢, 0 ¢Jv.
[l

Remark 7.2. Let {¢.,(B(e, 1))} a countable locally finite subcovering of {¢.(B(e, 1)),z €
M}. From now on, for sake of simplicity, we shall write ¢; := ¢,,. Without loss

of generality, we can replace B(e,1) by B(e,\), where X > 1 is fived (just to be
congruent in the sequel with the notations of previous sections).

Let {x;} be a partition of the unity subordinated to the covering {¢;(B(e, )} of
M. As above, without loss of generality, we can assume ¢;1(supp x;) C B(e, 1).

If w € LP(M, EY), we write

UZZXju
J



‘ homotopy manifold ‘

homotopy M

S commuta su M|
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We can write
xgu = (65 %67 ) =: (65 )% v,
smoothln
We use now the homotopy formula in H" (see Theorem
vj =d.Tv; + Td.vj + Sv; in B(e, 1).

Without loss of generality, we can assume that R > 0 in the definition of the kernel
of T has been chosen in such a way that the R-neighborood of qﬁj_l(supp X;) C
B(e, 1). In particular v; — d.Tv; — T'd.v; is supported in B(0,1) and therefore also
Sw; is supported in B(0, 1).

In particular, ((bj_l)#(dcT’Uj + Tdevj + Svj) is supported in ¢;(B(e, 1)) so that
it can be continued by zero on M.

Thus
u= Z(afl)#(d Tvj + Tdevj + Sv;)
ded_ (67 )FTe] (xju)
(@7 FTe) xj)dew = 3 (67 FTOY (I, delu)
+ Z S¢#XJ)
We set
(37) Tu:=3 (67 )*Te} (xju)
and |
(38) Su = (657 86] () = 367 )F T} (D delw).

The core of this section consists in the following approximate homotopy formula,
where the “error term” Sy, has the maximal regularising property compatible with
the regularity of M.

Theorem 7.3. Let (M, H,g) be a bounded C*-geometry sub-Riemannian contact
manifold, k > 2. Then

(39) I =d. Ty + Thyd. + SM,

where s
=()_s)T,  Sun=5"

T s
and T and S are defined in (137) and (138)
By definition
(40) deSu = Sd.u.
In addition, the following maps are continuous:
i) Top : WLP(M,EY™) — LP(M,EY) if h # n, and Tap - W=22(M, Ef ) —
LP(M,E});
i) Tar : LP(M,E}) — WYP(M,E}™Y), h # n+1, Tar = LP(M,E}™) —
W2P(M,E}) if h=n+1,
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iii) Sy : LP(M, El) — WEP(M, ER).
% t By ifold
In order to prove Theorem om? c ugag}o%e the following preliminary result:

Lemma 7.4. Let (M, H,g) be a bounded C*-geometry, sub- Riergannian contact
manifold. If2<{<k—1and T and S are defined in (B7) and ( 8 then

(41) I=d.T+Td.+S.
In addition, the following maps are continuous:
i) T:W-bP(M,EFTY) — LP(M,El) if h #n, and T : W=2P(M, Ey™) —
LP(M,E});
i) T : LP(M,El) — W'"»(M,E}"Y), h # n+1, T : LP(M,E}"™) —
W2P(M,E}) if h=n+1,
iit) if 1 <L <k, then S: W=12(M, E}) — WHP (M, E}).

Proof. First of all, we notice that, if o is supported in ¢, (B(e, A)), then, by Defi-

77" |contact
nition II. € norms

Ha”WmvP(M.,E[’)) and ||¢;%O‘HW7””’(H",E5)
are equivalent for —k < m < k, with equivalence constants i s%gg)telr%%lent of 7. Thus,
assertions i) and ii) follow straightforwardly from Theorem % 10

b 1)#T¢#[XJ7 dc] are
ll)gllg}gized from W =LP(M, E3) — WHP(M, E3) in every degree Indeed, by Lemma
%_Z_ali)ve the differential operator in H" (b# (X, de] (&5 1# has order 1 if h = n,
and order 0 if A ## n. Since the kernel of T' can be estimated by kernel of type 2 if
acts on forms of degree h = n, and of type 1 if acts on forms of degree h # n, the
assertion follows straightforwardly

Summing up in 7 and keeping into account that the sum is locally finite, we
obtain:

HZ¢#T #Ix;.d Jllwer <ZH¢ ) G delllwer o,y

To get iii) we only need to note that the operators (¢

<CY NTi67 gy dellwew ) < CZ 167 ullwe-1n¢
J
< Cllullwe=1.0(ar)-

lhomoto i a suM

Proof of Theorem [7.3. By
dTh +Thde + Su

k—1 k—1
=d.(>_ ST+ (D S")Tde+ S
i=0 =0

k—1

=Y "5(d.T+Td.)+S*
=0
k—1

=» S(I-8+8"=1
=0

opy mani

%%‘0 n statements i), i) and iii) follow straightforwardly from i), ii) and ii) of Lemma
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