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Abstract. Side-channel attacks of maximal efficiency require an accurate
knowledge of the leakage function. Template attacks have been introduced by
Chari et al. at CHES 2002 to estimate the leakage function using available
training data. Schindler et al. noticed at CHES 2005 that the complexity of
profiling could be alleviated if the evaluator has some prior knowledge on the
leakage function. The initial idea of Schindler is that an engineer can model
the leakage from the structure of the circuit. However, for some thin CMOS
technologies or some advanced countermeasures, the engineer intuition might
not be sufficient. Therefore, inferring the leakage function based on profiling is
still important. In the state-of-the-art, though, the profiling stage is conducted
based on a linear regression in a non-orthonormal basis. This does not allow
for an easy interpretation because the components are not independent.
In this paper, we present a method to characterize the leakage based on a
Walsh-Hadamard orthonormal basis with staggered degrees, which allows for
direct interpretations in terms of bits interactions. A straightforward application
is the characterization of a class of devices in order to understand their leakage
structure. Such information is precious for designers and also for evaluators,
who can devise attack bases relevantly.

Key words: side-channel analysis, stochastic attacks, leakage model, pseudo-
Boolean functions, orthonormal bases, leakage characterization.

1 Introduction

The existence of side-channels weakens the security of embedded devices, as it
allows an attacker to retrieve information about secret keys. The best attacks
require the best possible knowledge about the leakage function. A first method in
this direction consists of exhaustive characterizations, referred to as templates by
Chari et al. [5]. Templates are asymptotically perfect estimations of the model,
but as pointed out by Schindler [15], they may be inaccurate when there is only a
limited amount of profiling traces. Therefore, Schindler has suggested to simplify
the characterization using stochastic attacks. While the template method consists
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in profiling leakage values for all configurations of intermediate variables, which
Schindler describes as a projection over a full basis, stochastic attacks consist
in characterizing the leakage over a basis of smaller dimensionality.
Leakage characterization does not only benefit to actual attacks. As shown

by Kasper et al. [11], it is also a constructive feature: when the basis is able
to describe the switching activity of the circuit, the estimated weights (basis
coefficients) highlight specific exploitable security flaws in the implementation. In
their case study, the absolute value of the weight corresponding to one specific bit
showed that is was leaking in an outstanding way, and this could be connected to
the underlying hardware components (that bit was driving a multiplexer network).

Another motivation is for implementing masking countermeasures. The sen-
sitive data is split into shares which should not interfere physically. Stochastic
characterization of the leakage of a bit pairs (and in general, of a bit tuples)
belonging to different shares can reveal flaws in the implementation.
Additionally, stochastic characterization can also benefit to the analysis of

unprotected implementations. Recent works showed that, if the linear basis de-
scribing the switching activity of each bit independently is extended to a nonlinear
basis which also includes interactions between bits, then attacks are more success-
ful in terms of success rate (see e.g., [8,13]). Interestingly, while we know that the
consideration of nonlinear bases improves the attack, no sound explanations have
been given about what precise information is captured by these nonlinear basis
vectors. In [10,13] the authors mention cross-talk and glitch effects as one possible
reason. Up to now, these effects could not be precisely accounted for. One possible
reason is that a badly chosen nonlinear basis extension, made with products
of bits (i.e., monomials), is neither normalized nor orthogonal. As a result, the
estimated weights cannot be compared to each other and it seems difficult to draw
conclusions about the influence of either individual bits or bit interactions. While
the basis normalization can be easily carried out (see e.g., [10]), any unstructured
orthogonalization procedure comes at the expense of the loss of its interpretability
in terms of bit interactions, due to the underlying complex change of basis.

Contributions. The goal of this paper is to describe the best possible basis decom-
position that is able to isolate leakage from a given coupling of pairs, triples, . . . ,
tuples of bits, independently of the others. We conduct an extensive study of the
underlying basis and find a surprisingly simple method to compute the orthonor-
malized basis. Our method does not only give a feasible solution to interpret the
results but it also helps avoid stability problems that occur using standard proce-
dures [16, Sec. 4.2]. The practicability of our methods is tested using simulations
and measurements where a leakage is attributed to a tuple of interacting bits.

Outline. The remainder of the paper is organized as follows. Section 2 provides
mathematical background for stochastic profiling. Our contribution starts at
Section 3, where we derive a novel basis for leakage function decomposition which
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allows for an easy interpretation in terms of degrees. The method consists in
applying a Gram-Schmidt transform on the monomial basis, ordered according
to monomial degrees. In Section 4 we investigate the leakage estimation in the
new basis, together with a fast computation based on the Fourier transform.
Practical validation on simulated and real-world traces is shown in Section 5.
Finally Section 6 concludes. Appendix A shows how to estimate projections,
and gives an example of a “bad” projection into a non-orthogonal basis.

2 Stochastic Profiling

2.1 Leakage Model

Consider a leaking device which manipulates some secret key k. The crypto-
graphic operations involve xoring k with some (plain or cipher) text T . The
attacker focuses on manageable parts of the text and key, and T is taken as
an n-bit byte (typically n=8). Thus the leakage function f applies to T⊕k
together with some additive noise N , modeled as a normal random variable
N∼N (0,σ2). The resulting leakage X is given by the equation

X=f(T⊕k)+N. (1)
The purpose of this paper is to characterize f which maps the finite set
Fn2 ={0,1}n to the set of real numbers R. A simple example would be the Ham-
ming weight f=wH . Often, f is taken as the composition of some cryptographic
function, such as a substitution box S :{0,1}n→{0,1}n, and a leakage function,
such as the Hamming weight wH . This is represented in Fig. 1. In practice, the
mapping from S(T⊕k)∈{0,1}n to R can be more complex.

k

T

S

function f

unknown leakage

wH

N

X

Side-channel measurementCryptographic algorithm

Analog world (R)Digital world ({0, 1}n)

Fig. 1: Setup considered in this paper: f is the unknown

In the following, we consider several independent and identically distributed
(i.i.d.) realizations of T , N and X, denoted by (t1, ... , tQ) = (tq)q∈{1,...,Q},
(nq)q∈{1,...,Q} and (xq)q∈{1,...,Q}, respectively, where Q denotes the number of
queries.
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2.2 Notations for sums and products.

Sum notations will differ depending on whether the considered variables lie in Fn2
or R. Let t∈Fn2 be any n-bit vector with bits t0,t1,...,tn−1. We let ti⊕tj be the
exclusive-or addition of bits ti and tj in F2, such that 1⊕1=0, while the usual sum
notation ti+tj refers to the addition inR, where 1+1=2. For the product, there is
no such complication. Letting ∧ be the ‘and’ operator for multiplication in F2 and
× be the usual multiplicative product in R, we have in fact ti∧tj=ti×tj for any
two bits ti and tj in {0,1}. Therefore, we will simply denote this product by titj,
and use the notation

∏n−1
i=0 ti to denote the conjunction of all bits of bit vector t.

2.3 Template and Stochastic Attacks

Template attacks [5] consist in an offline estimation of Eqn. (1) for all values
t of realizations of T and all choices of the secret key k. This profiling phase is
followed by an online application of the maximum likelihood principle to uncover
the unknown key. However, template attacks cannot provide an analytic char-
acterization of the leakage. For instance, templates cannot answer the question:
“are bits 2 and 3 of T leaking together? ”. We will show in Fig. 4(b) and (c) that
our leakage characterization can give a quantitative answer.

While template attacks are data-driven, stochastic attacks are model-driven:
They assume authoritatively that Eqn. (1) can be considered to belong to a
specific subset of functions Fn2→R. However, the classical approach is to assume
some basis for f based on the engineer’s intuition. In contract, we aim to find
a method to select the most suitable basis for the representation of f.

2.4 Bases and Orthonormality

Let E be the set of so-called pseudo-Boolean [4, § 2.1]) functions Fn2→R, which
forms a Euclidean vector space over R of dimension 2n. The scalar product
between two vectors f0 and f1 in E is 〈f0|f1〉=

∑
t∈Fn2 f0(t)f1(t) and the corre-

sponding norm is ||f||2=
√
〈f|f〉. Any linearly independent family of 2n vectors

(ψu)u∈Fn2 form a basis of E. This basis is orthonormal if 〈ψu|ψv〉=0 for all u 6=v
and =1 if u=v. In this case an arbitrary pseudo-Boolean function f ∈E can
be written as the sum of orthogonal projections

f=
∑

u∈Fn2

auψu where au=〈f|ψu〉∈R (2)

The leakage function f :Fn2→R is an element of E that we would like to
characterize through a convenient vector basis of E. Two requirements are:

– the basis should somehow relate to bit combinations to make an easy inter-
pretation of the leakage structure in terms of the interactions between bits;
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– the basis should be orthonormal so that the characterization of each basis
vector is uncorrelated to the other basis vectors.

Appendix A provides an analysis which explains why the use of a non-orthogonal
basis is misleading for the interpretation of bit interactions. Sec. A.1 details how
coordinates in an orthonormal basis can be estimated with a correlation method,
and Sec. A.2 shows that the blind application of this method to a non-orthogonal
basis yields erroneous results.

2.5 Canonical and Monomial Bases; Degree

The canonical basis (δu)u∈Fn2 of E is defined by

δu(t)=
n−1∏

i=0

(ti⊕ui)=
{
1 if t=u,
0 otherwise,

while the monomial basis (φu)u∈Fn2 of E is defined by

φu(t)=
∏

i |ui=1

ti=

n−1∏

i=0

tuii . (3)

where the power notation is simply t0i =1 and t1i =ti.

Definition 1 (Degree). The degree of the monomial φu(t)=
∏n−1
i=0 t

ui
i is the

number of coordinates involved in the product, that is, the Hamming weight
wH(u)=

∑n−1
i=0 ui of u.

The degree deg(f) of any pseudo-Boolean function f :Fn2→R is the maximum
value of the degrees of the monomials φu in the decomposition of f over the
monomial basis.

A function of unit degree is simply a linear combination of bit values, also
referred to as Unevenly Weighted Sum of Bits (UWSB) in the side-channel
literature [9,17]. A function of degree>1 has interacting bits in its decomposition.
For example, when the degree is two, product of bits titj for i 6=j are involved.
The degree represents the maximum number of interacting bits.

2.6 Why Canonical and Monomial Bases are Not Suitable

Properties of the canonical and monomial bases in terms of orthogonality and
degree are as follows.

Lemma 2. The canonical basis is orthonormal, but all vectors have degree n.

Proof. Clearly ‖δu‖=1 and 〈δu|δv〉 vanishes when u 6=v since the supports of
δu and δv are disjoint. This shows orthonormality. Regarding the degree, we
have, for all t,u∈Fn2 :

δu(t)=
∏

i/ui=1

ti
∏

j/uj=0

(1−tj).
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Expending this sumwe see that it includes the term (+1)wH(u)(−1)n−wH(u)φ(1,...,1),
where (1,...,1) is the all-one n-bit vector. Since the latter has Hamming weight
equal to n, the corresponding φ(1,...,1), and so δu, has degree n. ut

As a consequence, the canonical functions δu, albeit simple, are not of practical
interest since being all of degree n they are not easily interpretable in terms
of “interactions between bits”.
On the other hand, the monomial basis is considered in the seminal paper

on stochastic side-channel analysis by Schindler et al. [15, Eqn. (23)], and is
customary in side-channel analysis and well understood by engineers because
the basis functions have staggered degrees 0,1,...,n: While φ0 is the constant
1, the basis vector φu simply represents the interactions between those bits ti
for which u1=1. These basis functions, however, are not even orthogonal:

Lemma 3. Any monomial basis function φu has degree equal to wH(u) ∈
{0,1,...,n}, but the monomial basis is not orthonormal (not even orthogonal):

〈φu|φv〉=2n−wH(u∨v)

where u∨v denotes the bitwise inclusive ‘or’ of u and v.

Proof. By definition deg(φu)=wH(u). We have

〈φu|φv〉=
∑

t

φu(t)φv(t)=
∑

t0,...,tn−1

n−1∏

i=0

tui+vii (4)

=
n−1∏

i=0

(∑

ti

tui+vii

)
=

∏

i |ui=vi=0

2 (5)

which is always nonzero. ut

3 Orthonormalizing the Monomial Basis

The monomial basis is ordered by increasing degree (or Hamming weight). For
example for n=3, the basis vectors are enumerated in the following weighting
order : φ(0,0,0), φ(1,0,0), φ(0,1,0), φ(0,0,1), φ(1,1,0), φ(1,0,1), φ(0,1,1) and φ(1,1,1). Vec-
tors of same weight represent the same number of interacting bits. We proceed
to carry out an orthonormalization process that preserves the weight ordering.

3.1 Gram-Schmidt Orthonormalization in Weighting Order

The new orthonormal basis ordered by degree is obtained from the monomial
basis by the well-known Gram-Schmidt orthonormalization, yielding an orthonor-
mal basis (ψu)u∈Fn2 which can be constrained to preserve the degree (as we shall
prove in Proposition 4). Algorithm 1 below is Gram-Schmidt procedure oper-
ating on vectors φu with u sorted by weighting order. We write interchangeably
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u=(u0,...,un−1)∈Fn2 and its equivalent u=
∑n−1

i=0 ui2
i in {0,...,2n−1}. As the

set {0,...,2n−1} is totally ordered, this induces the natural lexicographical order
on Fn2 .

Input : (φu)u∈Fn2 , a basis of E
Output : (ψu)u∈Fn2 , an orthonormal basis of E
// Creation of the weighting order..........................................

1 W←∅
2 for w=0 to n do
3 for j=0 to 2n−1 do
4 if wH(j)=w then
5 W←W∪{j}

// Orthonormalization using Gram-Schmidt process...........................

6 for j=0 to 2n−1 do
7 ξW [j]←φW [j]−

∑j−1
i=0

〈φW [j]|ξW [i]〉
〈ξW [i]|ξW [i]〉

ξW [i]

8 ψW [i]←
ξW [j]

||ξW [j]||2

9 return (ψu)u∈Fn2

Algorithm 1: Gram-Schmidt orthonormalization in weighting order

Proposition 4 (Degree Preservation of the Gram-Schmidt Orthonor-
malization in Weighting Order). Let (φu)u∈Fn2 be a basis of E, such that
deg(φu)≤ deg(φv) if u is smaller than v with respect to the weighting order
(that is wH(u)≤wH(v)). Then the Gram-Schmidt orthonormalization process in
weighting order (Alg. 1) applied on (φu)u∈Fn2 yields a new basis (ψu)u∈Fn2 where
deg(ψu)=deg(φu), for all u∈Fn2 .

Proof. The weighting order is computed in Alg. 1 between its lines 1 and 5. It
consists in a permutation W of {0,...,2n−1}, which is such that:

∀j,j′∈{0,...,2n−1}, j≤j′ =⇒ wH(W [j])≤wH(W [j′]). (6)
In Alg. 1, the first vector fetched from the monomial basis is φ0, which has
degree zero. Thus, the degree of ψ0=φ0/||φ0||2 is also zero. Then, by induction
on the loop index j (see line 6 of Alg. 1), we see that the degree of ψW [j] is
equal to that of φW [j]. Indeed:

– at line 7, we see that ξW [j] is equal to φW [j] minus terms of lower (or equal)
degree, owing to the weighting ordering of W [j] (recall Eqn. (6));

– at line 8, we see that the degree of ψW [j] is the same as that of fW [j], because
ψW [j] is the unitary scaling of fj, operation which keeps the degree unchanged.
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ut
The application of Alg. 1 on (φu)u∈Fn2 thus yields a new basis (ψu)u∈Fn2 which

meets our requirements: it is orthonormal and ordered by degree.

3.2 Link to Walsh-Hadamard Matrix or Fourier Transform

The Walsh-Hadamard matrices of dimension 2n for n∈N+ are given by the
recursive formula:

H(2n)=

[
+H(2n−1) +H(2n−1)
+H(2n−1) −H(2n−1)

]
(n>1)

where the lowest order of Walsh-Hadamard matrix is
H(2)=

[
+1 +1
+1 −1

]
.

A matrix built according to this definition is also referred to as a lexicographical
ordered Walsh-Hadamard matrix. Walsh-Hadamard matrices are specific square
matrices with dimensions of some power of 2, entries of ±1, and the property
that the dot product of any two distinct rows (or columns) is zero.
It is well known that the Walsh-Hadamard matrix Hn is of the form

Hn=2n/2(ψu(t))u∈Fn2 ,t∈Fn2 , where u and t are listed in lexicographical order (that
is, u∈Fn2 ordered by increasing values of

∑n−1
i=0 ui2

i), and where

ψu(t)=
1

2n/2
(−1)u·t

(where u·t=⊕n−1
i=0 uiti is the dot product of bitvectors u and t) forms a basis

of E known as the Fourier basis.

Theorem 5 (Main Theoretical Result of the Paper). The basis (ψu)u∈Fn2 ,
obtained by Alg. 1 from the monomial basis (φu)u∈Fn2 , coincides with the Fourier
basis.

Proof. Let u∈Fn2 . We have that

ψu(t)=
1

2n/2
(−1)u·t= 1

2n/2

n−1∏

i=0

(1−2ti)ui.

The development of the product yields a sum of monomials of degrees at most
wH(u). The (only) monomial of degree wH(u) is cφu(t), where the constant c
is equal to 1

2n/2
(−2)wH(u). Thus, we have that:

ψu(t)=cφu(t)−monomials of degree strictly smaller than that of ψu︸ ︷︷ ︸
orthogonal projection of φu on ψu′ ,

for each u′ is smaller than u in the weighting order.

.

This is exactly the procedure of the Gram-Schmidt orthonormalization process
in weighting order (line 7 in Alg. 1). ut
Therefore, we have proven that using the Fourier basis (ψu)u∈Fn2 for the

projection of the leakage function, the evaluator keeps the mapping between:
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– the basis vector ψu :t 7→ 1
2n/2

(−1)u·t, and
– the bit lines which interact (namely, the bits {0≤i<n, s.t. ui=1}).

Therefore, the leakage can be directly interpreted from the orthonormal pro-
jection of the leakage on ψu. and the corresponding coefficients au of f :Fn2→R
are those on the Fourier basis:
f(t)=

∑

u

〈f|ψu〉ψu(t)=
1

2n/2

∑

u

au(−1)t·u (Eqn. (2) in Fourier basis),

(7)
which is a Fourier transform. The coefficients au can be recovered as:

au=
1

2n/2

∑

t

f(t)(−1)t·u, (8)

which is the corresponding inverse Fourier transform. Notice that direct (Eqn. (7))
and inverse (Eqn. (8)) Fourier transforms are the same in characteristic two
(because ∀u∈Fn2 , −u=u); put differently, the Fourier transform is involutive.

(a) (b)

Fig. 2: (a) Walsh-Hadamard 256×256 matrix representation, (b) Truth table
of Fourier basis (multiplied by

√
256=16), in weighting order.

Application to the Case n=8. In the case of byte-oriented block ciphers,
such as the AES, the manipulated data are bytes of n=8 bits. TheH(256)Walsh-
Hadamard matrix is illustrated in Fig. 2(a). Dark pixels are −1 whereas white
pixels are +1 values. The truth table of the Fourier basis (without the scaling fac-
tor of 2−n/2), represented in weighting order, is depicted in Fig. 2(b). This second
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matrix is simply the Walsh-Hadamard matrix where lines have been permuted to
match the weighting order. One can see that the H(256) matrix is symmetrical.
In contrast, the truth table of the Fourier basis is structured as 9 horizontal
stripes, comprising 1 (resp. 8, 28, 56, 70, 56, 28, 8 and 1) lines, corresponding to
Hamming weight 0 (resp. 1, 2, 3, 4, 5, 6, 7 and 8). It is not immediate visually
from Fig. 2(b) that the projection vectors have the same degrees in each “stripe”.

3.3 Attribution of Leakage Using the Fourier Basis

Owing to the above properties, the attribution of the leakage using Fourier basis
is straightforward:

– build a bitvector u∈{0,1}n where the bits =1 are those we intend to test
the interaction in terms of leakage. For instance, to extract the amount of
leakage of the Least Significant Bit (LSB), use u=(1,0,0,...,0). Or to test
the joint amount of leakage of bits 0 and 1, use u=(1,1,0,...,0);

– compute the projection of the leakage on vector ψu (see next section for an
estimation method).

4 Estimation of the Projection onto the Fourier Basis

4.1 Exact Solution for the Estimation of the Basis Coefficients

Suppose we have Q leakage values (x1,...,xQ)∈RQ and let a=(au)u∈Fn2 ∈R2n

be the basis coefficients to be found. Due to the Gaussian nature of the noise,
the minimum likelihood determination of a is the following convex optimization
problem [10], which happens to be a linear regression problem:

min
a∈R2n

Q∑

q=1

(
xq−2−n/2

∑

u∈Fn2

au(−1)u·(tq⊕k)
)2

= min
a∈R2n

||x−aG||2, (9)

where in this case ||·|| is the norm-2 over RQ, and where G is a 2n×Q matrix,
whose elements are G[u,q]=2−n/2(−1)u·(tq⊕k).

Proposition 6. The optimal value in Eqn. (9) is a=xGT(GGT)−1.

Proof. This is standard; see [1].

4.2 Fast (Approximate) Solution for the Estimation of (au)u∈Fn2

The expression of Proposition 6 is well known to be a Moore-Penrose pseudo-
inverse, see e.g. [16, p. 491]. However, it has never been explained in the field of
side-channel analysis that the coefficients au can be estimated with the following
fast formula (in the limit of the low of large numbers), which is an (inverse)
Fourier transform:



Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition 11

Theorem 7 (SecondMain Result of the Paper).GivenQ traces (x1,...,xQ)
and the Q corresponding texts (t1,...,tQ), where the texts are assumed uniformly
distributed over Fn2 , the estimation of au in the law of large numbers is:

au≈
2n/2

Q

∑

t∈Fn2

( ∑

q/tq=t

xq

)
(−1)u·(t⊕k) when Q→∞. (10)

Proof. Let us notice that xGT is a vector of length 2n, whose value at index
u ∈ {0,1}n is 2−n/2

∑Q
q=1xq(−1)u·(tq⊕k). Using the reordering of sums put

forward in [12], this quantity is also 2−n/2
∑

t∈Fn2

(∑
q/tq=t

xq

)
(−1)u·(t⊕k). Now,

assuming that T is uniformly distributed on {0,1}n, the 2n×2n matrix GGT

has coefficient at position (u,v)∈{0,1}n×{0,1}n equal to

2−n

Q

Q∑

q=1

(−1)(u⊕v)·(tq⊕k)=2−n
∑

t∈Fn2

(
1

Q

∑

q/tq=t

1

)
(−1)(u⊕v)·(t⊕k)−−−−−→

Q→+∞
1

2n
Iu,v,

by the law of large numbers, where Iu,v is the element at position (u,v) in the iden-
tity matrix. The limit comes from the fact that 1

Q

∑
q/tq=t

1≈ 1
2n when Q→+∞,

hence the limit using proposition 7 of [4]. Therefore GGT is inversed trivially. ut
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t xt(−1)t·u

Fig. 3: Butterfly algorithm to compute au from the average 1
Q

∑
q/tq=t

xq
using (10)
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The expression of au given in equation (10) is (proportional to) the (inverse)
Fourier transform of the average of leakage traces in each class (xq)q/qt=t. It
is easily computed as follows:
1. sum the traces per value of t, which yields the vector (

∑
q/tq=t

xq)t∈Fn2 ,
2. multiply this vector by the Walsh-Hadamard matrix 2n/2

Q H(2n).

The second step can be optimized with the classical butterfly FFT algorithm,
which is sketched in Fig. 3 for n=4. Overall, the complexity of the computation
of (au)u∈Fn2 from the pairs (xq,tq)1≤q≤Q is O(Q+n·2n).

5 Application of the Results

We first consider a simple example from synthetic traces with a linear model and
centered Hamming Weight (HW), i.e. wH(t)= n

2− 1
2

∑n−1
i=0 (−1)ti, and Gaussian

noise of variance σ2=2. Figure 4 shows the coefficients a2u for all u∈Fn2 and
a varying number of profiling traces. One can observe in Fig. 4a that indeed
the coefficients are all converging to the same value due to the HW model. Next,
we change our model to additionally capture two second order terms, namely
1
4(−1)t2+t4 and 1

4(−1)t6+t7, which are clearly observable in Fig. 4b (in grey).
Moreover, these results show that the estimation of au is already reasonable
stable using only a small number of profiling traces (approximately 200).

Additionally, we compute a2u for all u∈Fn2 in the case of almost linear model
from real measurement traces. For this purpose, we use the traces from the DPA
contest v4 (knowing the mask). Figure 4c shows indeed that in this practical
scenario mostly first order coefficients are visible with a minor contribution of
second order terms. As these examples show, using our basis we can clearly
identify when higher order leakages are present, and directly pinpoint them.

6 Conclusion

In this paper, we have discussed the suitability of “classical” (canonical and
monomial) bases for side-channel leakage characterization by stochastic analysis.
We show that classical bases are not suitable for this purpose: The canonical
basis is of few interest to the evaluator because all elements have maximum
degree. The monomial basis, employed in all papers discussing stochastic at-
tacks [6,7,10,11,14,15] is neither interesting since it is not orthonormal: extracted
contributions of bit tuples in the leakage function overlap. Of course, the mono-
mial basis can still be used to attack, since the goal is to extract the key (the
linear span of a non-orthogonal basis is equal to that of its orthogonalized basis).
By the use of Gram-Schmidt orthonormalization of the monomial basis, we have
found that the Fourier basis with vectors ordered in Hamming weight first and lex-
icographical second is the suitable basis. We explain that leakage characterization
can be computed fast using a Fourier transform on partially accumulated traces.
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(a) Centered Hamming weight

(b) Centered Hamming weight with two second-order leakages (of half amplitude)

(1 & 3)
leakage
2-bit

(2 & 4)
leakage
2-bit

(c) DPAcontest v4 traces (unprotected scenario) [degree 0 is not represented]

Fig. 4: Estimation of coefficients au using Fourier transform
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A Estimations of the Projections

A.1 Estimation of Coordinates in an Orthonormal Basis

We consider a profiling situation where the attacker knows the secret key k,
but does not know the model f in Eqn. (1). Thanks to an orthonormal basis
(ψu)u∈Fn2 , the model f can be profiled easily from (xq)1≤q≤Q measurements,
corresponding to (tq)1≤q≤Q (uniformly distributed) plaintexts.

Lemma 8. Decompose the unknown function f as f =
∑

u∈Fn2 auψu, where
au=〈f|ψu〉. For every u∈Fn2 , au is consistently estimated as âu, the empirical
correlation1 between X and ψu(T⊕k):

âu=
2n

Q

Q∑

q=1

xqψu(tq⊕k).

Proof. By the law of large numbers,

1

Q

Q∑

q=1

xqψu(tq⊕k)−−−−−→
Q→+∞

E(Xψu(T⊕k)).

1 The term correlation is used here in the sense of scalar product between two data series.
This shall not be confused with the Pearson correlation coefficient used, for instance, in
the Correlation Power Analysis [2].
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But from Eqn. (1),
E(Xψu(T⊕k))=E((f(T⊕k)+N)ψu(T⊕k)) (11)

=E(f(T⊕k)ψu(T⊕k))+E(Nψu(T⊕k))︸ ︷︷ ︸
0

=E(f(T⊕k)ψu(T⊕k))

=
1

2n

∑

t∈Fn2

f(t)ψu(t)=
1

2n
〈f|ψu〉=

1

2n
au,

where the noise term disappeared because N is centered and independent from
T , and where the first expectation term is a balanced sum over t because T
is uniformly distributed. ut
This theoretical result justifies rigorously why it is customary in the side-channel
literature to make use of correlation (or the sibling covariance tool) to profile
a leakage model [3].

A.2 Incorrect Estimation of Coordinates in a Nonorthogonal Basis

We illustrate in the following example why the monomial basis (though extensively
used in the side-channel literature [11,14,15]) is not appropriate for estimating
the deterministic part (that is, the function f in Eqn. (1)) of the leakage model.

Example 9. Let a leakage function f :Fn2→R, which simply consists in f(t)=t0t1.
In the understanding of the state-of-the-art, this function models the sole in-
teraction of bits 0 and 1 of bitvector t=(ti)0≤i≤n−1.

We show that the blind application of the above correlation method (Lemma 8)
does not allow to recover easily the fact that f consists in the interaction between
bits 0 and 1. In fact, letting u∈Fn2 , the correlation between the monomial basis
vector φu and leakage X (Eqn. (11)) equals
au=2nE(Xφu(T⊕k)) (12)

=
∑

t∈Fn2

t0t1 φu(t) (by the change of variable t←t⊕k)

=
∑

t∈Fn2

t0t1
∏

i/ui=1

ti=
∑

t∈Fn2

∏

i∈{0,1}∪{i/ui=1}
ti=2n−2−

∑n−1
i=2 ui

=





2n−2 for u=(0,0,0,...,0), (1,0,0,...,0), (0,1,0,...,0), (1,1,0,...,0);
2n−3 for all u such that

∑n−1
i=2 ui=1, e.g., u=(0,0,0,...,0,1),

(1,0,0,...,0,1), (0,1,0,...,0,1), (1,1,0,...,0,1), etc.
...
2 for u such that

∑n−1
i=2 ui=n−3, and

1 for u such that
∑n−1

i=2 ui=n−2.

(13)
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While the value of au is indeed largest for u=(1,1,0,...,0) as expected, this
maximum value (=2n−2) is also reached by u=(1,0,0,...,0) and =(0,1,0,...,0),
which represent single bits. Moreover, there are non-zero terms (albeit smaller)
for coefficients au such that wH(u)>2.

Therefore, the covariance method is clearly ill-fitted to characterize that par-
ticular leakage function f . The reason for this failure is of course that Lemma 8
is applied in this (counter-)example using the monomial basis (φu)u∈Fn2 , which
is not orthonormal.

In summary, we face the problem that the leakage model f cannot be
characterized using the covariance tool in the monomial basis. This explains
why, from Section 3 onwards, we investigate a suitable basis, which should have
both properties of: (1) being orthonormal (for easy application of the covariance
method of Lemma 8) and (2) being interpretable in terms of bits interaction. This
will allow to select which vectors of the basis to keep when performing an attack.
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