Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Frontiers in Plant Science Année : 2017

Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics

Arnaud Verbaere
Emmanuelle Meudec
  • Fonction : Auteur
  • PersonId : 1203835
Agnes Ageorges
Nicolas Sommerer
Jean Claude Boulet
Veronique Cheynier

Résumé

Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. This method enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomers…), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014–2015). Distribution of berry weights and δ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality.
Fichier principal
Vignette du fichier
2017_Pinasseau_Frontiers in Plant Science_{95C61C60-F40A-4D0F-9766-9134CEF597FB}.pdf (4.45 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01628673 , version 1 (03-11-2017)

Licence

Paternité

Identifiants

Citer

Lucie Pinasseau, Anna Vallverdu Queralt, Arnaud Verbaere, Maryline Roques, Emmanuelle Meudec, et al.. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Frontiers in Plant Science, 2017, 8, 24 p. ⟨10.3389/fpls.2017.01826⟩. ⟨hal-01628673⟩
333 Consultations
171 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More