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Dam, the most described bacterial DNA-methyltransferase, is widespread in

gamma-proteobacteria. Dam DNA methylation can play a role in various genes

expression and is involved in pathogenicity of several bacterial species. The purpose

of this study was to determine the role played by the dam ortholog identified in the

entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of

an Escherichia coli dam mutant showed the restoration of the DNA methylation state of

the parental strain. Overexpression of dam in P. luminescens did not impair growth ability

in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant

decrease in motility was observed in the dam-overexpressing strain. A transcriptome

analysis revealed the differential expression of 208 genes between the two strains. In

particular, the downregulation of flagellar genes was observed in the dam-overexpressing

strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression

also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed

a delayed virulence compared to that of the control strain after injection in larvae of the

lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during

P. luminescens insect infection.

Keywords: entomopathogenic bacterium, MTase, insect, pathogenicity, flagellar genes, RNA-seq

INTRODUCTION

Enterobacteria of the genus Photorhabdus are highly pathogenic to insects and are also
symbiotically associated to nematodes of the family Heterorhabditidae. After invasion of the
insect host by the nematodes, bacteria are released into the hemocoel of the insect prey where
they multiply until septicemia occurs, employing a broad range of virulence factors that kill
the insect. The bacterial symbionts contribute to maintain suitable conditions for nematode
reproduction. During the final stages of development, the bacteria and the nematode reassociate
and subsequently leave the insect carcass in search of a new insect host (Nielsen-LeRoux et al.,
2012). As described for many other microbial pathogens, which constantly alternate between
their host and the compartment they disperse in Avery (2006), Photorhabdus displays phenotypic
heterogeneity (Boemare and Akhurst, 1988; Somvanshi et al., 2012). Such phenomena provide
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diverse phenotypes within a bacterial population, which increases
the adaptive potential to rapidly changing environmental
conditions (Avery, 2006; Grimbergen et al., 2015). For instance,
the production of the Photorhabdus luminescens Mad (Maternal
adhesion) pilus is controlled by a reversible DNA switch of the
promoter of themad operon (Somvanshi et al., 2012). Two forms
can co-exist depending on the promoter orientation: the bacteria
are in a M-form (for mutualist) when the Mad pilus is produced,
because it allows the colonization of the nematode. When the
Mad pilus is not produced, the bacteria are in P-form (for
pathogenic). In addition, it has been recently demonstrated that
the virulence strategy of P. luminescens involves the generation
of a bacterial subpopulation which causes septicemia in insects
by displaying resistance to cationic antimicrobial peptides
(Mouammine et al., 2017). Other mechanisms of phenotypic
heterogeneity within clonal bacterial cultures exist, such as
bistability (Veening et al., 2008). Phenotypic heterogeneity
involving a positive-feedback loop regulation of a transcriptional
regulator has been reported in the closely related genus
Xenorhabdus, where it controls the expression of motility and
virulence determinants (Jubelin et al., 2013). DNA methylation
is another process that has also been described as responsible for
bacterial phenotypic heterogeneity (Casadesus and Low, 2013),
but this has not been investigated in Photorhabdus.

Numerous DNA methyltransferases (MTases) are a
component of restriction-modification (RE) systems that
protect the bacterial cell from invasion by bacteriophages DNA
(Marinus and Løbner-Olesen, 2014). Other MTases are not
linked to restriction endonuclease and are classified as “orphan”
MTases (Casadesus, 2016). The best characterized orphan
MTase in bacteria is Dam (DNA adenine methyltransferase),
originally identified in Escherichia coli and widespread among
gamma-proteobacteria (Lobner-Olesen et al., 2005). Dam
MTase transfers a methyl group to an adenosine localized
in sites 5′-GATC-3′ of the DNA. After DNA replication,
the newly synthetized DNA strand is unmethylated and the
GATC sites are therefore transiently hemimethylated (Wion
and Casadesus, 2006; Marinus and Casadesus, 2009) until
the action of a Dam protein. The Dam enzyme has key roles
in bacterial genome maintenance, and E. coli dam mutants
have defects in many important physiological processes such
as DNA replication initiation, chromosome partitioning,
nucleoid structure, and mismatch repair (Lobner-Olesen et al.,
2005).

Changes in DNA methylation can also alter the affinity
of regulatory proteins to their target DNA binding sequences
(Hale et al., 1994; Tavazoie and Church, 1998). Conversely,
DNA-binding proteins can represent a hindrance to MTase for
reaching specific DNA sequences, and therefore can inhibit
DNA methylation. Both mechanisms may lead to alterations
in gene expression. Thus, DNA-methylation can play major
roles in transcriptional regulation, including genes involved
in bacterial virulence (Heusipp et al., 2007). An illustrative
example is the Pap (pyelonephritis-associated pili) pilus phase
variation of uropathogenic E. coli. The pap operon transcription
depends on the binding of the transcriptional repressor Lrp.
Such binding depends on the methylation state (on several

GATC sites) of the pap promoter because of a better Lrp
affinity for non-methylated DNA (Blyn et al., 1990; Braaten
et al., 1994). The regulation of gene that mediates adhesion to
uroepithelial cells is therefore governed by DNA methylation
state. In E. coli, Dam regulates transcription of several other pili
operons (van der Woude and Low, 1994), and expression of a
major outer-membrane protein (Ag43) (Henderson and Owen,
1999).

In several bacterial species that possess a dam gene, Dam has
been described as an important virulence gene regulator.Mutants
of Salmonella Typhimurium lacking the Dam enzyme are
avirulent in mice (Garcia-Del Portillo et al., 1999; Heithoff et al.,
1999). The impact of Dam inactivation on bacterial virulence
has also been reported in Haemophilus influenzae (Watson et al.,
2004), Klebsiella (Mehling et al., 2007), Actinobacillus (Wu et al.,
2006) and Yersinia pestis (Robinson et al., 2005). In Yersinia
pseudotuberculosis, Vibrio cholera, and Aeromonas hydrophila,
inactivation of the dam gene was shown to be a lethal mutation
(Julio et al., 2001; Erova et al., 2006b; Demarre and Chattoraj,
2010). However, plasmid-mediated overexpression of the dam
gene in Y. pseudotuberculosis resulted in a virulence decrease in
mice compared to wild-type (Julio et al., 2002) and in a defect in
colonization of V. cholerae in a suckling mouse model compared
to wild-type (Julio et al., 2001). Similarly, dam-overexpressing
strains of Salmonella, Pasteurella multocida, or A. hydrophila
were also highly attenuated in mice (Heithoff et al., 1999; Chen
et al., 2003; Erova et al., 2006b).

Phenotypes associated with an alteration of the DNA
methylation state have mostly been described in mammalian
pathogens, but have not yet been reported in an insect-
pathogenic bacterium. The gene plu0087 of the P. luminescens
TT01 genome is annotated “DNA adenine methylase
(Deoxyadenosyl-methyltransferase)” (Duchaud et al., 2003)
and displays 70.7% of identity and 86.3% of similarity with the
E. coli dam gene. The purpose of this study was to determine
the role of deregulating the dam orthologous gene found in
P. luminescens TT01. In this work, we confirmed the N6-
Adenine methyltransferase function of the dam gene product.
Investigation of several phenotypes of a P. luminescens dam-
overexpressing strain revealed a major role for Dam in motility
as well as during virulence in the insect.

MATERIALS AND METHODS

Strains and Growth Conditions
The bacterial strains and plasmids used in this study are listed
in Table 1. E. coli, P. luminescens and Xenorhabdus nematophila
cells were routinely grown in Luria broth (LB)mediumwith a 180
rpm agitation at 37 and 28◦C, respectively. As required, antibiotic
concentrations used for bacterial selection were gentamycin at 15
µg mL−1, rifampicin at 100 µg mL−1 and kanamycin at 20 µg
mL−1. IPTG was added at 0.2 mM when required.

In silico Analysis
Primer sequence was designed using the Primer3 software
(Untergasser et al., 2012). The REBASE database (Roberts et al.,
2015) was used to identify a putative Dam methyltransferase,
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TABLE 1 | Strains and plasmids used in this work.

Strain or plasmid Relevant genotype and characteristicsa Reference or source

STRAINS

Photorhabdus luminescens TT01 Wild type Duchaud et al., 2003

Escherichia coli XL1 blue MRF’ ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac

[F′ proAB lacIqZ∆M15 Tn10 (Tetr)]

Agilent Technologies

E. coli WM3064 thrB1004 pro thi rpsl hsdS lacZ1M15 RP4-13601(araBAD)567 1dapA1341::[erm pir

(wt)]

Paulick et al., 2009

E. coli MG1655 Wild type Lobner-Olesen and von Freiesleben, 1996

E. coli Dam::16KM MG1655 dam16::Kmr Lobner-Olesen and von Freiesleben, 1996

Xenorhabdus nematophila F1 Wild type Lanois et al., 2013

Micrococcus luteus Wild type Pasteur Institute Culture collection, Paris,

France

PLASMIDS

pBBR1MCS-5 Cloning vector, Gmr Kovach et al., 1995

Ptet-MCS Cloning vector, Kmr Jubelin et al., 2013

Ptet-MCS-Dam 853 pb PCR fragment (dam gene) inserted between KpnI and BamHI site of

Ptet-MCS plasmid

This study

pBB-Dam 864 pb fragment (RBS and dam gene) isolated from Ptet-MCS-Dam and inserted

between EcoRI and BamHI site of pBBR1MCS-5 plasmid

This study

pJQ200KS Mobilizable vector, Gmr Quandt and Hynes, 1993

pJQ-1dam Region overlapping the dam gene disrupted by a Cmr cassette and inserted between

PstI and XbaI site of pJQ200KS plasmid

This study

aKm, kanamycin; Gm, gentamicin; Cm, chloramphenicol.

M.PluTDamP (REBASE Enzyme Number 7410), in the P.
luminescens TT01 genome. Alignments between Dam from
various organism were performed using the Multalin tool
(Corpet et al., 1998).

Nucleic Acid Manipulations
The extraction of plasmid DNA from E. coli was performed
using the GenEluteTMHP Plasmid R© miniprep purification kit
as recommended by the manufacturer (Sigma). Chromosomal
DNA was extracted from bacterial cells using the QIAamp
DNA Mini kit (Qiagen). Restriction enzymes and T4 DNA
ligase were used as recommended by the manufacturer (New
England Biolabs and Promega, respectively). Oligonucleotide
primers were synthesized by Eurogentec (Seraing, Belgium) and
are listed in Table S1. PCR was performed in a T100 thermal
cycler (Biorad) using the iProof high-fidelity DNA polymerase
(Biorad). Amplified DNA fragments were purified using a PCR
purification kit (Roche) and separated on 0.7% agarose gels after
digestion as previously described (Brillard and Lereclus, 2007).
Digested DNA fragments were extracted from agarose gels with
a centrifugal filter device (DNA gel extraction kit, Millipore,
Molsheim, France). All constructions were confirmed by DNA
sequencing (Eurofins Genomics).

Cloning the P. luminescens dam gene was performed as
follows. The plu0087 gene was PCR amplified using two primers
mapping immediately upstream and downstream (Cp-plu087-
F and Cp-plu087-R, respectively, Table S1) the 804 bp ORF
(open reading frame), using the following cycling conditions:
98◦C, 10 s; 56◦C, 30 s; 72◦C, 30 s for 35 cycles. The 853 bp-
long amplified DNA fragment was then digested according to

the endonuclease sites introduced in the primers (KpnI and
BamHI). Because the P. luminescens dam gene has no clear
ribosome binding site (RBS), the generated DNA fragment was
first inserted immediately downstream of the RBS already present
in the plasmid Ptet-MCS (Jubelin et al., 2013), to create the Ptet-
MCS-Dam (Table 1). A 864 bp-long fragment corresponding to
this insert together with the RBS was then isolated from the
Ptet-MCS-Dam plasmid by EcoRI and BamHI endonucleases,
and was inserted between the corresponding sites of the low-
copy plasmid pBBR1MCS-5 (Kovach et al., 1995) downstream
of the Plac promoter. The recombinant plasmid (pBB-dam)
was introduced in E. coli strains by electroporation, or
transferred in P. luminescens and X. nematophila by conjugative
mating as previously described (Givaudan and Lanois, 2000).
Transconjugants harboring the pBBR1MCS-5 empty plasmid
were used as a control.

Attempts to construct a dam mutant were performed as
follows. Briefly, DNA fragments of the plu0087 upstream (540
pb) and downstream (569 bp) regions were PCR-amplified
using the primer pairs upF-plu0087/upR-plu0087 and dnF-
plu0087/dnR-plu0087, respectively (Table S1). PCR products
were digested with PstI/BamHI and BamHI/XbaI using the
primer-incorporated restriction sites (Table S1). In parallel, the
� interposon harboring a Cmr cassette was digested with BamHI,
as previously described (Brillard et al., 2002). The three digested
DNA fragments were purified, ligated in PstI/XbaI-digested
pJQ200KS (Table 1), and introduced by electroporation in E.
coli XL1. The resulting pJQ-1dam plasmid was transferred
in P. luminescens by conjugative mating. Four independent
transconjugants clones were then subjected to allelic exchange
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in LB at 28◦C, following the protocol routinely used in
the laboratory (Brillard et al., 2002; Derzelle et al., 2004b;
Brugirard-Ricaud et al., 2005). Because several attempts were
unsuccessful, the transconjugants were additionally subjected to
allelic exchange in a M9 minimal medium instead of LB, or
incubated at room temperature or at 15◦C instead of 28◦C.

DNA Methylation State Analysis in E. coli

dam Mutant Expressing the P. luminescens

dam Gene
The methylation state of GATC sites was assessed in an E.
coli dam mutant strain Dam 16::KM (Lobner-Olesen and von
Freiesleben, 1996) harboring pBB-Dam or the pBBR1MCS-
5 empty plasmid, in order to determine the P. luminescens
dam functionality in E. coli. These strains were grown in
LB supplemented with gentamycin (to maintain the plasmid)
and IPTG (Isopropyl β-D-1-thiogalactopyranoside) to allow the
activation of the Plac promoter controlling the expression of the
dam gene. Fifty nanogram of plasmid DNA extracted from these
strains were then digested during 2 h at 37◦C by MboI (which
digests only non-methylated GATC sites) or DpnI (which digests
only methylated GATC sites) and DNA digestions were analyzed
after electrophoresis on a 1% agarose gel.

Phenotype Analysis of P. luminescens
Bromothymol blue adsorption was determined after growth on
NBTA (nutrient agar supplemented with 25mg of bromothymol
blue and 40mg of triphenyltetrazolium chloride per liter).
It allows the identification of variant forms (Boemare and
Akhurst, 1988). Antibiotic production was assessed bymeasuring
antibacterial activity against Micrococcus luteus (Table 1).
Hemolysis was determined by the observation of a clearing
surrounding bacteria grown on standard sheep blood agar plates
as previously described (Brillard et al., 2001). Bioluminescence
production, lipase activity on Tween 20, 40, 60, 80, and 85 were
also assessed as previously described (Boemare and Akhurst,
1988).

For motility assays, agar plates were prepared with LB broth
supplemented with 0.35% agar and inoculated using 5 µL of
cells grown in exponential phase (OD540 nm = 0.8), as previously
described (Givaudan et al., 1995). The diameter of the halo size of
swimming motility was measured 24 h and 30 h after incubation.
Data from 3 independent experiments (with 10 plates used in
each condition) were analyzed using Wilcoxon test.

Growth of P. luminescens was monitored with a TECAN
automated turbidimetric system (Infinite M200 TECAN R©).
Estimation of maximum specific growth rate (µmax) was
performed on 4 independent biological replicates for each strain,
using serial dilution of the inoculum as previously described
(Augustin et al., 1999).

The P. luminescens biofilm formation was determined as
follows. Five milliliters of LB medium in glass tubes were
inoculated at 10% with an overnight culture and incubated for
12 days at 28◦C in static conditions. The tubes were then rinsed
with PBS before the addition of 7 mL of Crystal violet solution
at 0.01% (in PBS) to stain the biofilms during 15 min. Biofilms
were rinsed with PBS and then dissolved 3 h in 7mL ethanol. The

OD570 nm measurement allowed the quantification of the biofilm-
associated crystal violet. Data from 3 independent experiments
with replicates (totalizing 17 tubes for each strain) were analyzed
using Wilcoxon test.

The P. luminescens spontaneous mutation rate was assessed
by quantifying the emergence of rifampicin-resistant CFUs
as follows. P. luminescens was grown overnight in 100 mL
of LB medium supplemented with gentamycin (for plasmid
maintenance) before plating on LB and LB with rifampicin.
The mutation rate was calculated as the rifampicin-resistant
population divided by the total population. Data from 3
independent experiments were compared using the Student
t-test.

Plasmid Curing of P. luminescens Strains
Plasmid curing was performed as follows. For each P. luminescens
transconjugant strain, a fresh colony was used to inoculate 5mL
LB and incubated overnight with shaking in the absence of
antibiotic pressure. These cultures were used to inoculate 100mL
fresh LB at an OD540 nm = 0.05, and incubated with shaking until
OD540 nm = 0.8 was reached. These cultures were then diluted
and spread on LB agar-plates prior incubation until CFU were
visible. For each strain, 50 CFU were then streaked on LB Gm
and LB without antibiotic in parallel to check for the plasmid
stability. The loss of the pBB-Dam plasmid, as well as that of the
pBBR1MCS-5, was observed for all the 50 tested CFU. Four GmS

clones from each strain were then tested for their motility ability
after inoculation on low-agar plates as described above. Finally,
one clone from each strain was tested for insect virulence.

Insect Virulence Assay
The virulence-related properties of dam-overexpression were
assessed by comparing the killing effect of P. luminescens
transconjugants harboring either the pBB-Dam or the
pBBR1MCS-5 empty plasmid during infection in the common
cutworm Spodoptera littoralis as previously described (Brillard
et al., 2002). Four to five independent pathogenicity assays
were performed for each bacterial strain. Briefly, 20 µL of
exponentially growing bacteria (DO540 nm = 0.3) diluted in LB,
corresponding to about 1 × 104 CFU (1.4 × 104, mean value of
4 experiments or 1.2 × 104, mean value of 5 experiments, for P.
luminescens harboring pBBR1MCS-5 or pBB-Dam, respectively),
were injected into the hemolymph of 20 fifth-instar larvae of
S. littoralis reared on an artificial diet. Insect larvae were then
individually incubated at 23◦C. Altogether, the survival rate of
80–100 larvae for each bacterial strain were analyzed. The CFU
of bacteria were determined by plating dilutions on LB agar.
Insect death was monitored over time for up to 60 h. The time for
killing 50% of the insect larvae (LT50) was calculated. Statistical
analysis (Wilcoxon test) was performed as previously described
(Givaudan and Lanois, 2000; Brillard et al., 2002) using SPSS
version 14.0 (SPSS, Inc., Chicago, IL) to compare the mortality
state.

RNA Preparation
Total RNA extraction was performed on cells harvested at
OD540 nm = 0.5, from nine independent cultures for each
strain, using RNeasy miniprep Kit (Qiagen), according to the
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manufacturer’s instructions. An additional incubation step with
DNase I (Qiagen) was performed. The quantity and quality of
RNA were assessed with an Agilent 2100 Bioanalyzer with the
RNA 6000 Nano LabChip kit. Lack of DNA contamination
was controlled by carrying out a PCR on each RNA
preparation.

RNA Sequencing
The RNA-sequencing was performed as previously described
(Mouammine et al., 2017) with the following changes. Equal
amounts of total RNA from three independent samples per
strain were pooled together to generate one final biological RNA
sample per strain. Thus, from the initial nine independent RNA
samples per strain, three final RNA samples were generated for
each strain and subsequently treated as follows prior sequencing.
Ribo-Zero rRNA Removal Kit Bacteria (illumina, San Diego, CA)
was used to remove ribosomal RNA from 4 µg of total RNA.
For each sample, 100 ng of rRNA-depleted RNA was used to
construct sequencing libraries using Illumina’s TruSeq Stranded
mRNA Sample Prep Kit (Low throughput). The mRNA was
chemically fragmented. The first cDNA strand was generated by
reverse transcription with random hexamer primers, SuperScript
IV Reverse Transcriptase (Life Technologies), Actinomycine D.
The Second strand cDNA was synthesized by replacing dTTP
with dUTP. A single “A” nucleotide was added to the 3′ end and
ligation was carried out with Illumina’s indexed adapters. After 15
cycles of PCR, libraries were validated on a Fragment Analyzer
(AATI, Ankeny, IA) and quantified with a KAPA qPCR kit. On
a sequencing lane of a flowcell V4, nine libraries were pooled in
equal proportions, denatured with NaOH and diluted to 8 pM
before clustering. Clustering and 50 nt single read sequencing
were performed according to the manufacturer’s instructions.
Cluster formation, primer hybridisation and single end-read
50 cycles sequencing were performed on cBot and HiSeq2500
(Illumina, San Diego, CA), respectively. Image analyses and
basecalling were performed using the Illumina HiSeq Control
Software and Real-Time Analysis component. Demultiplexing
was performed using Illumina’s conversion software (bcl2fastq
2.17). The quality of the data was assessed using FastQC from the
Babraham Institute and the Illumina software SAV (Sequencing
Analysis Viewer). Potential contaminants were investigated with
the FastQ Screen software from the Babraham Institute.

RNA-Seq Analysis
High-throughput transcriptomic sequencing data were processed
with a bioinformatic pipeline implemented at the Microscope
platform (Vallenet et al., 2013). The reads were mapped onto
the P. luminescens subsp. laumondi TT01 genome sequence
(EMBL accession number: BX470251) with BWA software (v.
0.7.4) (Li and Durbin, 2009). We then used SAMtools (v.0.1.12)
(Lister et al., 2009) to lower the false-positive discovery rate and
to extract reliable alignments from BAM-formatted files. The
number of reads matching each genomic object harbored by the
reference genome was then calculated with the Bioconductor-
GenomicFeatures package (Lawrence et al., 2013). For reads
matching several genomic objects, the count number was
weighted so as to keep the total number of reads constant.

Finally, we used the Bioconductor-DESeq package (Anders and
Huber, 2010) with default parameters to analyze raw count
data, to normalize the samples to the reliable reads and to
evaluate differential expression between conditions, as previously
described (Jubelin et al., 2013). Between 14 and 19 million
Illumina sequences (50-base reads) were obtained for each
sample and between 80 and 93% of high-quality sequences
mapped to at least one site in the reference genome. The complete
dataset from this study has been deposited in NCBI’s Gene
Expression Omnibus (GEO) database, under accession number
GSE100650.

RT-qPCR Analysis
For the validation of RNA-seq data, quantitative reverse
transcription-PCR (RT-qPCR) were carried out as previously
described (Mouammine et al., 2017). Briefly, RNA samples from
9 biological replicates for each strain were used for cDNA
synthesis. The SuperScript II reverse transcriptase (Invitrogen)
was used on 1 µg of total RNA with random hexamers (100
ng/µl; Roche Diagnostics). qPCR analyses were performed using
SYBR green Master kit (Roche Diagnostics) with 1 µl of cDNA
and specific gene primers at 1 µM (Table S1). The reactions were
performed in triplicate at 95◦C for 10clones from each strainmin,
followed by 45 cycles at 95◦C for 5 s, 61◦C for 10 s, and 72◦C
for 15 s and monitored in the LightCycler 480 system (Roche).
Melting curves were analyzed and always contained a single peak.
The data analyzed with the REST software 2009 (Pfaffl et al.,
2002) using the pairwise fixed randomization test with 2,000
permutations are presented as a ratio with respect to the reference
housekeeping gene gyrB, as previously described (Jubelin et al.,
2013).

RESULTS

Conservation of Major Amino Acids in
P. luminescens Dam Protein
Functional characterization of Dam proteins has been described
in several organisms, and allowed the identification of several
amino-acids essential for the Dam function (Yang et al., 2003;
Erova et al., 2006a; Horton et al., 2006). Comparing these protein
sequences with that of M.PluTDamP by a multiple alignment
revealed that all major amino acids described in these organisms
were conserved in P. luminescens Dam protein (Figure S1). They
were also conserved in a protein encoded by a dam ortholog
(XNC3v2_1950011) (83.3% of identity and 92.6% of similarity
with M.PluTDamP) found in the closely related bacterium X.
nematophila (Lanois et al., 2013). These findings strongly suggest
that M.PluTDamP plays a role in DNA adenine methylation, as
described for other Dam proteins.

Complementation by M.PluTDamp of an
E. coli dam Mutant
In order to confirm the P. luminescensDam function, the plu0087
gene was cloned and introduced in an E. coli dammutant or in its
E. coli parental strain. The pBBR1MCS-5 empty plasmid was used
as a control. The recombinant strains harboring pBB-Dam or
pBBR1MCS-5 were assessed for their ability to methylate GATC
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sites. Plasmid DNA extracted from these strains were digested
by enzymes sensitive to DNA methylation. Results presented in
Figure 1 show that the DNA extracted from the E. coli MG1655
strain harboring either the pBB-Dam or the empty plasmid was
digested by DpnI, but not by MboI, as expected, indicating
that the GATC sites of the DNA are methylated in this strain,
whatever the plasmid introduced. However, the DNA extracted
from the E. coli dammutant harboring the control empty plasmid
was digested by MboI, but not by DpnI, confirming that the
GATC sites are not methylated in this mutant strain. In contrast,
the DNA extracted from the E. coli dam mutant harboring the
pBB-Dam was digested by DpnI, but not by MboI, revealing a
methylation on GATC sites. This indicates that the P. luminescens
dam gene was able to complement the E. coli dam mutant,
and therefore confirms that it is a genuine dam ortholog, with
M.PluTDamP being able to methylate adenine on GATC sites of
DNA.

dam Overexpression in P. luminescens

Does Not Alter Growth Nor Several Major
Phenotypes
Construction of a P. luminescens dam-mutant failed despite
several attempts. The role of P. luminescens dam gene was
therefore investigated by using a strain overexpressing dam.
In P. luminescens, genes placed under the control of the Plac
promoter are constitutively expressed (Lanois et al., 2011;
Mouammine et al., 2014). Therefore, the additional copy of the
dam gene caused by the presence of pBB-Dam plasmid, together
with constitutive expression of the strong Plac promoter are
supposed to induce a dam overexpression in P. luminescens.
This postulate was confirmed by quantification of mRNA

corresponding to the dam gene. RT-qPCR experiments showed
an average of 23.1-fold induction of expression of dam in P.
luminescens harboring pBB-Dam when compared to the control
strain (ie, harboring a pBBR1MCS-5 empty plasmid).

Considering that this dam overexpression may modify
P. luminescens physiology, growth of both strains was monitored
with an automated turbidimetric system, and the maximum
specific growth rate (µmax) was estimated (Figure 2). The growth
curves of both strains overlapped with the same shape: their
slope were similar during the exponential phase and they
reached the same maximum OD during stationary phase. No
lag-phase was observed. Moreover, the calculated µmax were
not different: 0.647 h−1 for P. luminescens harboring pBB-
Dam vs. 0.636 h−1 for the control strain (p = 0.92, Student
t-test). Several phenotypes were also assessed to compare the
dam-overexpressing strain to the control strain. No significant
difference was observed between P. luminescens harboring pBB-
Dam when compared to the control P. luminescens strain
for bromothymol blue adsorption on NBTA, bioluminescence
production, antibiotic production, hemolysis, lipase activities
and mutation rate (Table 2). Altogether, these findings indicate
that many P. luminescens phenotypes are not altered by dam
overexpression.

dam Overexpression Impairs the Bacterial
Motility
The halo size of motility, assessed on low agar LB medium,
was much smaller in P. luminescens harboring pBB-Dam when
compared to that of the control strain (Figure 3). Data revealed
that for P. luminescens harboring pBB-Dam, the median halo
size after 30 h of incubation was 59.3% that of the control strain

FIGURE 1 | Differential plasmid DNA digestion from E. coli. An E. coli dam mutant (Dam::16KM) or its parental strain (MG1655) were complemented with either a

plasmid harboring the P. luminescens dam gene (Dam) or the pBBR1-MCS5 empty vector (MCS5). Plasmid DNA was extracted and digested by MboI (active on

unmethylated 5′-GATC-3′ sites) or DpnI (active on 5′-GmeATC-3′ sites). pBBR1-MCS5 (4,768 bp) has 17 GATC sites and pBB-Dam (5,618 bp) has 19 GATC sites.
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FIGURE 2 | Growth comparison between P. luminescens overexpressing dam gene (red) and control harboring an empty plasmid (blue). (A) Growth curves in LB of

the P. luminescens Dam-overexpressing strain and control strain (inoculated at 1.61 × 105 and 1.86 × 105 CFU/ml, respectively). Mean values ± SDs of at least 3

independent biological replicates for each strain are shown. (B) Two-fold serial dilutions of cultures containing 1.25 × 104 CFU/ml for each strain have been performed

in LB. Growth was quantified by absorbance at 600 nm and measured every 30min. Four independent biological replicates for each strain were used. The time of

growth detection was defined as an increase of 0.1 unit of absorbance at 600 nm, and recorded for each dilution. The Ln of the dilutions as a function of the time for

growth detection is indicated. Similar slopes indicate similar growth rates (see Methods section for details). Differences were not significant (p = 0.92, Student t-test).

(17.5 vs. 29.5mm, respectively). This difference was significant
as early as 24 h after inoculation (p < 0.01, Wilcoxon test), and
highly significant after 30 h of incubation (p < 0.001, Wilcoxon
test). This indicates that motility is significantly reduced but not
abolished in the dam-overexpressing P. luminescens strain.

Because introducing the pBB-Dam plasmid led to an impaired
motility, we checked if the loss of the plasmid would restore
the WT phenotype. After growth in a liquid medium followed
by growth on agar plates, both in the absence of antibiotic
pressure, the loss of the pBB-Dam plasmid, as well as that of
the pBBR1MCS-5, was observed for all the 50 tested CFU of
P. luminescens (not shown). Four Gm-sensitive CFU originating
from each strain were then tested for their motility ability
after inoculation on low-agar plates, as described above. No
significant difference in the halo size of motility was observed
between the cured strains originating either form the dam-
overexpressing P. luminescens strain or from the control strain,
after 30 h of incubation (p = 0.44, Wilcoxon test). These results
revealed that motility was fully restored in pBB-Dam cured cells,
confirming that dam-overexpression causes an impaired motility
in P. luminescens.

We wondered if dam overexpression in another species closely
related to P. luminescens would also cause an impaired motility.
We therefore introduced the pBB-Dam plasmid, or the control
empty plasmid, in X. nematophila and checked the motility on
a low agar medium. Results from 5 independent experiments
showed that the median halo size after 30 h of incubation was
13mm for X. nematophila harboring pBB-Dam vs. 19mm for
the control strain. This difference was significant (p = 0.001,
Wilcoxon test) indicating that swimming motility is reduced, but
not abolished, in the dam-overexpressing X. nematophila strain,
similarly as it was observed for P. luminescens.

dam Overexpression Increases the Biofilm
Formation Ability
Determination of the biofilms formed in glass tubes by the
P. luminescens strain overexpressing dam and the control strain

was analyzed by a crystal violet staining method (Figure 4). The
results revealed a significant increase of biofilm-associated crystal
violet measured for the P. luminescens overexpressing dam strain
(p = 0.003, Wilcoxon test), suggesting an increase in adhesion
properties for this strain.

Effect of dam Overexpression on
P. luminescens Insect Virulence
The insect virulence of the P. luminescens strain overexpressing
dam was compared to that of the control strain. It was assessed
by injection of bacterial cells in S. frugiperda (Figure 5). Both
strains were pathogenic, being able to cause death of all injected
larvae in <60 h. However, while the time needed to kill 50% of
infected larvae (LT50) was about 38 h for the control strain, it
was significantly increased in P. luminescens pBB-dam, reaching
44.5 h (p < 0.001, Wilcoxon test). This delay in killing insect
larvae indicates a reduction in virulence properties of the P.
luminescens strain overexpressing dam.

After loss of the dam overexpressing plasmid as described
above, cured strains displayed a significantly lower LT50

compared to that of the dam overexpressing P. luminescens strain
(data not shown), confirming that dam-overexpression causes an
impaired virulence in P. luminescens.

Flagellar Genes Are Downregulated in the
P. luminescens dam-Overexpressing Strain
Wewondered if the reducedmotility and the delayed virulence in
insects observed for the P. luminescens strain overexpressing dam
were associated to changes in gene expression. RNA sequencing
was therefore performed on the dam overexpressing strain and
the control strain during exponential phase of growth. The
transcriptome analysis revealed significant differences (log2 fold
change ≥1; adjusted p ≤ 0.005) in expression for 208 genes
between the two strains, with 121 down-regulated and 87 up-
regulated genes in the P. luminescens strain overexpressing
dam (Table S2). Both up- and down-regulated genes were
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distributed all over the chromosome (Table S2). The percentages
by COG class in TT01 genome revealed that the 208 differentially
expressed genes belong to various COG categories (Figure 6).
Interestingly, we observed an enrichment in genes encoding
proteins belonging to the N category, and putatively involved
in “cell motility” (Figure 6 and Table S2). Most of them are
either flagellar genes or encode putative pili/fimbrial proteins
(Table S2).When focusing on the 49 flagellar genes that are found
in the P. luminescens TT01 genome, 48 of them displayed a lower
expression in the strain overexpressing dam when compared to
the control strain, although not always reaching a significant
adjusted p-value to be considered as differentially expressed
(Table S3). Interestingly, 16 genes encoding putative pili or
fimbrial proteins were upregulated in the dam-overexpressing
strain (Table S2), including pilL (plu1049), the first gene of an
operon encoding a type IV pilus. This result may explain the
observed increased biofilm formation in this strain.

However, while an impaired virulence was observed in the
P. luminescens strain overexpressing dam, only a limited number
of genes (n = 5) encoding effectors influencing the infection
process were differentially regulated (Table S2). In order to
confirm these observation, a few genes related to the two major
impaired phenotypes (i.e., motility and insect virulence) were
therefore selected and their level of expression was quantified
by RT-qPCR in the P. luminescens strain overexpressing dam
in comparison to the control strain. As mentioned above,
the dam gene was up-regulated about 23-fold. Results also
showed that 7 of the 10 tested flagellar genes were significantly
downregulated in the dam-overexpressing strain (Figure S2),
in agreement with the results of the RNA-seq analysis. This
result confirmed that a reduced expression at the transcriptional
level of flagellar genes was responsible for the impaired motility.
In contrast, 5 additional genes (manA, sodA, luxS, tcaZ, lopT)
likely involved in insect virulence displayed similar level of
expression between the two strains (Figure S2). Finally, RT-qPCR
confirmed the overexpression of a fimbrial gene (madA) in the
dam-overexpressing strain (Figure S2).

DISCUSSION

Given the high degree of conservation of Dam methyltransferase
among enterobacteria and several other Gram-negative bacteria
(Lobner-Olesen et al., 2005; Casadesus and Low, 2013; Marinus
and Løbner-Olesen, 2014), the identification of a dam ortholog
in P. luminescens was expected. We first showed that the amino-
acids previously described as essential for the Dam function in
several organisms (Erova et al., 2006a; Horton et al., 2006) were
conserved in the predicted amino-acid sequence of the plu0087
dam orthologous gene. This result strongly suggested that the
predicted encoded enzyme, M.PluTDamP, has the same DNA
methylation function in P. luminescens as that described for Dam
proteins from other Gram-negative bacteria. The finding that the
P. luminescens dam gene was able to complement the E. coli dam
mutant, confirmed that M.PluTDamP was able to induce DNA-
adenine methylation of GATC sites. Since our results confirmed
the putative function of M.PluTDamP, the enzyme should now
be named M.PluTDam (or M.PluTII) (Roberts et al., 2003).
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FIGURE 3 | Swimming motility of P. luminescens overexpressing dam gene (Dam) and control (MCS5). (A) Swimming halos were observed on low agar LB medium

inoculated by 5 µL of exponentially growing cells. (B) Boxplots of the diameter of the halo size of motility of each strain measured after 30 h of incubation (see

Methods section for details). Difference between the two strains is significant (p < 0.001, Wilcoxon test).

FIGURE 4 | Biofilm formation ability of P. luminescens overexpressing dam gene (Dam) and control (MCS5). (A) Biofilms formed in a glass tube after 12 days of

incubation in LB medium were stained with crystal-violet. (B) Boxplots of the biofilm-associated crystal violet measured at OD570 nm (see Methods section for details).

Difference between the two strains is significant (p < 0.01, Wilcoxon test).

The pleiotropic role of DNA-methylation by Dam has been
illustrated in many bacterial species (Marinus and Casadesus,
2009). In some of them, it was proposed an essential function of
dam for cell viability (Julio et al., 2001; Erova et al., 2006b). In
particular, the role of Dam during bacterial-host interactions has
been reported in several bacterial species (Heusipp et al., 2007),
and mostly in the mammalian pathogen Salmonella (Garcia-
Del Portillo et al., 1999; Heithoff et al., 1999), but also in E.
coli, H. influenzae, Mycobacterium tuberculosis, Campylobacter,
Klebsiella, Actinobacillus, Yersinia pseudotuberculosis, and Y.
pestis (Julio et al., 2001; Watson et al., 2004; Robinson et al., 2005;
Wu et al., 2006; Mehling et al., 2007; Kim et al., 2008; Shell et al.,

2013). However, the role of DNA methylation in host-pathogen
interaction remains unexplored in bacterial insect pathogens.
Construction of a P. luminescens dam-mutant failed despite
several attempts, suggesting that the presence of Dam itself is
possibly required for some essential mechanisms, as described
in other bacterial species (Julio et al., 2001; Erova et al., 2006b;
Demarre and Chattoraj, 2010). We therefore investigated the role
of Dam in P. luminescens by using a strain overexpressing dam.
Growth in standard conditions together with the observation of
most major phenotypes were found unmodified by the 23-fold
increase of dam expression. Remarkably, two major phenotypes
were impaired when compared to the control strain: motility and
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virulence properties were significantly reduced in P. luminescens
overexpressing dam. P. luminescens harbors a large repertoire
of factors involved in bacterial-host interaction (Clarke, 2008),

FIGURE 5 | Infection of Spodoptera littoralis larvae by P. luminescens

overexpressing dam and the control strain. Proportion of survival of S. littoralis

after injection of 104 CFU of P. luminescens overexpressing dam (TT01 +

pBB-Dam, green) or carrying the vector control (TT01 + pBBR1-MCS5, blue).

Graph represents the results from 4 to 5 independent experiments (with 20

insect larvae per experiment). The survival of 50% of the infested larvae is

represented by the dotted line. The time needed to kill 50% of infected larvae

(LT50) was significantly different between the two strains (p < 0.001, Wilcoxon

test).

and several genes have been described to contribute to insect
virulence (Nielsen-LeRoux et al., 2012). For instance, isogenic
mutants of genes encoding the SodA or the LuxS proteins
display reduced virulence (Krin et al., 2006; Chalabaev et al.,
2007). The Tc toxins and the type III secretion system (T3SS)

are also considered to play key roles during P. luminescens-
insect interactions (Bowen et al., 1998; Brugirard-Ricaud et al.,

2005; Gatsogiannis et al., 2013). In addition, a manA-mutant
is impaired in motility, insect virulence, but also in biofilm

formation (Amos et al., 2011). Despite a significantly impaired
virulence in P. luminescens overexpressing dam, no change in
gene expression was detected for manA, sodA, luxS, tcaZ, lopT

(encoding an effector of the T3SS), neither by RNA-seq nor RT-

qPCR analysis. Thus, the precise factors involved in the observed
impaired virulence of the P. luminescens strain overexpressing

dam remains to be elucidated.
Our findings suggest that genome-wide alterations of

methylation states may significantly impact some major
phenotypes, although the specific mechanisms by which DNA

methylation regulates the expression of the genes involved in

these phenotypes remains unknown in P. luminescens. Strikingly,
there is no GATC site in the promoter region of flhD, the gene

encoding the master regulator of flagellar cascade. Therefore, the

flhD downregulation (and consequently, of other flagellar genes)
in the Dam overexpressing strain cannot be directly related to a

difference in GATC methylation states in this locus. However,
the observed downregulation of flagellar genes in P. luminescens
dam-overexpressing strain opens new fields of investigation.
The impaired motility coupled with an impaired ability to kill
insects identified in this study may illustrate the occurrence
of a direct mechanism, yet undescribed, involving these two

FIGURE 6 | Classification by COG (cluster of orthologous group) annotation of the 208 genes differentially expressed between P. luminescens overexpressing dam

and the control strain. Results show the percentage of genes from each COG class differentially expressed between the P. luminescens dam-overexpressing strain

and the control strain, according to the 2014 update (ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/static/lists/homeCOGs.html).
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phenotypes. Indeed, a complex interplay between the regulation
of flagellar motility and the expression of virulence factors exists
in several bacterial pathogens (Josenhans and Suerbaum, 2002).
In particular, these two phenotypes were previously shown as
being linked in the closely related genus Xenorhabdus (Givaudan
and Lanois, 2000, 2017). In this bacterium, the global regulators
encoded by the class I operon flhDC, controls the expression
of class II genes, including most of the structural genes for the
flagellar hook-basal body, but also the fliAZ operon encoding
the alternative sigma factor FliA and another flagellar regulator,
FliZ (Givaudan and Lanois, 2000, 2017; Park and Forst, 2006).
FliZ was found to upregulate many genes, including genes
encoding 2 hemolysins, and a toxin complex (Tc) protein, all of
them being considered as virulence factors (Lanois et al., 2008).
In P. luminescens, no mutant in flagellar regulators has been
described (Givaudan and Lanois, 2017). However, the mutation
of a response regulator of a two-component system (i.e., AstR)
in P. luminescens TT01, which regulates the flhDC transcription
level, causes an impaired motility but has no impact on virulence
in insects (Derzelle et al., 2004a). In addition, it was shown
that two distinct flagellar genes (flgG and motAB) deletion
mutants, that were consequently non-motile, were as efficient
as their parental strain in killing insects (Easom and Clarke,
2008). Our result revealed that dam overexpression causes
both a reduced motility linked to a downregulation of flagellar
genes (i.e., flhDC, motAB...) and an impaired virulence. Thus,
further investigations are required in P. luminescens in order to
determine if a common regulator (such as FlhD, FlhC, FliA, or
FliZ) is involved in both motility and the ability to kill insects, as
already described in X. nematophila. Then, it will be important to
determine if the changes in the global methylation state caused
by dam-overexpression involve such common regulator, or in
contrast if it impairs distinct mechanisms that are involved in
each of these two phenotypes.

A differential expression of several genes encoding virulence
factors such as pap, agn43, sci1 in E.coli (Blyn et al., 1990;
Henderson and Owen, 1999; Brunet et al., 2011), but also gtr, or
opvAB in Salmonella (Broadbent et al., 2010; Cota et al., 2016),
is related to a differential methylation state of the GATC sites
found in their respective promoters. This is caused mostly by
differences in DNA affinity, depending on the DNA methylation
state, of various transcriptional repressors (OxyR, Lrp, or Fur).
In X. nematophila, virulence attenuation in insects was shown to
be associated with an lrp mutation and Lrp positively regulates
the expression of the flhD gene encoding the master flagellar
regulator (Cowles et al., 2007; Lanois et al., 2008). Thus, because
of the presence of lrp (plu1600) but also of oxyR (plu4740) and
fur (plu1327) orthologs in the P. luminescens genome (Duchaud
et al., 2003), it remains to be determined if similar mechanisms
exist in P. luminescens.

It was shown that GATC methylation itself but also the
level of Dam, have multiple functions in the cell (Low
and Casadesus, 2008). These functions are correlated with
three DNA transactions: DNA mismatch repair, initiation of
chromosome replication, and regulation of gene expression
(Marinus and Løbner-Olesen, 2014). Our results confirm that
modifying the dam level of expression in P. luminescens
causes major phenotypes, presumably in the regulation of gene

expression. However, dam overexpression did not significantly
cause difference in the growth rate (Figure 2). In addition,
this overexpression did not lead to the identification of drug-
induced mutators in the tested conditions (Table 2). This is in
contrast to what was described in other species (Chen et al.,
2003) for which the general mutation rate is however similar
to what is observed in P. luminescens. Our result suggests that
after DNA replication, the Mismatch Repair (MMR) apparatus is
highly efficient and therefore still able to discriminate between
the nascent (error-containing) DNA strand and the mother
strand. Many genes putatively involved in regulation of the
chromosome replication, in MMR (including mutH, the gene
encoding the nuclease which relies on the DNA methylation
state to identify the correct strand), in double strand breaks
(DSBs) repair and/or required for viability of dam mutants in
other bacterial species are conserved in P. luminescens TT01
(Table S4). Such mechanisms may require the presence of Dam
for cell viability in P. luminescens during the growth conditions
tested. In contrast, our results suggest that an elevated level
of dam expression does not drastically affect the mechanisms
involved in chromosomal replication or in DNA mismatch
repair.

This study revealed that DNAmethylation state onGATC sites
seems to be critical in P. luminescens for phenotypes involving
interactions with the insect host. Eleven additional MTases are
found in the genome and probably contribute to the global DNA
methylation state which may also account for some of the P.
luminescens phenotypes during bacterial-insect interaction.
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