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Cyclotomic Yokonuma—Hecke algebras are cyclotomic quiver
Hecke algebras

Salim RosTAM

Abstract

We prove that cyclotomic Yokonuma—Hecke algebras of type A are cyclotomic quiver Hecke
algebras and we give an explicit isomorphism with its inverse, using a similar result of Brundan
and Kleshchev on cyclotomic Hecke algebras. The quiver we use is given by disjoint copies of cyclic
quivers. We relate this work to an isomorphism of Lusztig.

Introduction

Iwahori-Hecke algebras appeared first in the context of finite Chevalley groups, as centralizer algebras
of the induced representation from the trivial representation on a Borel subgroup. Since then, both
their structure and their representation theory have been intensively studied. In particular, they have
been defined independently as deformations of the group algebra of finite Coxeter groups. Further,
connections with many other objects and theories have been established (this includes the theory of
quantum groups, knot theory, etc.). Many variations and generalisations of the “classical” Iwahori—
Hecke algebras have yet been defined. Among these, the following ones will catch our interest in
this paper: Ariki-Koike algebras, Yokonuma-Hecke algebras and finally cyclotomic quiver Hecke
algebras.

In their seminal paper, Ariki and Koike | ] introduced and studied generalisations of Iwahori—
Hecke algebras of type A and B: the so called Ariki—Koike algebras. It turns out that these algebras
can be seen as cyclotomic quotients of affine Hecke algebras of type A, and also as deformations of
the group algebra of the complex reflection group G(¢,1,n). Such deformations, in the general case
of complex reflection groups, have been defined by Broué, Malle and Rouquier | ]: in that sense,
Ariki-Koike algebras are the Hecke algebras associated with G(¢,1,n).

One of the most important results on the representation theory of Ariki-Koike algebras is Ariki’s
categorification theorem [Ar] (proving a conjecture of Lascoux, Leclerc and Thibon [LI'T]). This
result implies that the decomposition matrices of such algebras can be computed using the canonical
bases for quantum groups in affine type A. Partially motivated by this work, Khovanov and Lauda
[ ] and Rouquier [Rou] have independently defined the same algebra, known as quiver
Hecke algebm or KLR algebra, in order to categorify quantum groups. In fact, they have shown that
we have the following algebra isomorphism:

U; (9) ~ [Proj(H)] = €] [Proj(Hy)]

BeQT

where U, (g) is the integral form of the negative half of the quantum group Ug(g) associated with a
symmetrizable Cartan datum, with A = Z[q, ¢™'], the set QT is the positive root lattice associated
with the Cartan datum, the algebra H = @®4co+Hp is the quiver Hecke algebra corresponding to this
Cartan datum and [Proj(H)] is the Grothendieck group of the additive category of finitely generated
graded projective H-modules. A cyclotomic version of this theorem was conjectured in | I,
the cyclotomic categorification comjecture, which was later proved by Kang and Kashiwara [ ].
More specifically, for each dominant weight A the algebra H has a cyclotomic quotient H* which
categorifies the corresponding highest weight module V(A).

A big step towards understanding these cyclotomic quiver Hecke algebras was made by Brundan
and Kleshchev [ ] and independentely by Rouquier [Rou]. The first two authors proved that
cyclotomic Hecke algebras of type A are particular cases of cyclotomic quiver Hecke algebras; a similar
result in the affine case has also been proved by Rouquier. Brundan and Kleshchev also noticed that
the cyclotomic Hecke algebra inherits the natural grading of the cyclotomic quiver Hecke algebra,
whose grading allows in particular to study the graded representation theory of cyclotomic Hecke



algebras (see for example | ). Moreover, they established a connection between the cyclotomic
categorification theorem in type A for quiver Hecke algebras and Ariki’s categorification theorem.
On the other hand, Yokonuma [Yo0] defined the Yokonuma—Hecke algebras in the study of finite
Chevalley groups: they arise once again as centralizer algebras of the induced representation from
the trivial representation, but now on a maximal unipotent subgroup. Their natural presentation in
type A has been transformed since (see [Jul, , , 1), and the one we use here is given
in | ]. Similarly to Ariki-Koike algebras, Yokonuma-Hecke algebras of type A can be viewed
as deformations of the group algebra of G(d, 1,n). This deformation, unlike in the Ariki-Koike case,
“respects” the wreath product structure G(d,1,n) ~ (Z/dZ)! S,. The representation theory of

Yokonuma-Hecke algebras has been first studied by Thiem | , , ], while a combinatorial
approach to this representation theory in type A has been given in | , ]. In this latter
paper | ], Chlouveraki and Poulain d’Andecy introduced and studied generalisations of these

algebras: the affine Yokonuma—Hecke algebras and their cyclotomic quotients, which generalise affine
Hecke algebras of type A and Ariki—Koike algebras respectively. The interest in Yokonuma—Hecke
algebras has grown recently: in | ], the authors defined a link invariant from Yokonuma—Hecke
algebras which is stronger than the famous ones (such as the HOMFLYPT polynomial) obtained
from classical Iwahori—-Hecke algebras of type A and Ariki—Koike algebras.

The first aim of this paper is to show that cyclotomic Yokonuma—Hecke algebras are particular
cases of cyclotomic quiver Hecke algebras, generalising thus the results of Brundan and Kleshchev
[ ]; our goal will be achieved in Section 4 with Theorem 4.1. In fact, every known result on
the cyclotomic quiver Hecke algebra can be applied to the cyclotomic Yokonuma—Hecke algebra:
this includes the cyclotomic categorification theorem and the existence of a graded representation
theory. In order to prove the main result Theorem 4.1, our strategy is to define inverse algebra
homomorphisms, by constructing the images of the defining generators of the corresponding algebras;
we proceed as in | ]. In particular, we give an argument to avoid doing the calculations of | ]
again, see for instance Remark 2.7. In Section 5, as in | ] we consider the degenerate case: we will
define the degenerate cyclotomic Yokonuma—Hecke algebras and show that they are cyclotomic quiver
Hecke algebras as well (Theorem 5.15). Finally, in Section 6 we relate our results to an isomorphism
obtained in [Lu, , ]. To that end, we first prove a general result on (cyclotomic) quiver
Hecke algebras, when the quiver is the disjoint union of full subquivers. Although similar situations
have already been studied in the literature (see for instance | , Theorem 3.15] or [ , Lemma
5.33]), the result we obtain in our context seems to be new and of independent interest.

We give now a brief overview of this article. Given a base field F' and d,n € N, we first
define in Section 1 the cyclotomic Yokonuma-Hecke algebra Y2, (¢q) where ¢ € F'\ {0,1} has order
e € N>o U {co} in F* and A is a finitely-supported e-tuple of non-negative integers. We also define
the quiver Hecke algebra Ha(Q) in full generality, where « is a composition of n indexed by a set
K and Q = (Qk i)k r’ek IS a matrix satisfying some properties. Considering particular cases for
the matrix Q@ = (Q ), we define the cyclotomic quiver Hecke algebra HQ(F) where A is now a
finitely-supported tuple indexed by K and I' is a loop-free quiver without any multiple edge; in
particular, with the exception of Section 6 we consider the case where A is given by d copies of the
previous e-tuple A and I' is the quiver given by d disjoint copies of the (cyclic) quiver I'c with e
vertices used in | ]. We begin Section 2 by considering in ?dAn(q) a natural system {e(a)}q, n Of

pairwise orthogonal central idempotents. Then, we define the “quiver Hecke generators” of ?‘a\(q) =
e(a)Yfi\’n(q) and we check that they verify the defining relations of H2(I'). In Section 3 we define the
“Yokonuma-Hecke generators” of H2 (T') and again check the corresponding defining relations. We
conclude the proof of the main theorem in Section 4 by showing that we have defined inverse algebra
homomorphisms. We justify in Section 5 that the isomorphism of Theorem 4.1 remains true for the
degenerate cyclotomic Yokonuma—-Hecke algebra YQn(l) that we define in §5.1. We end the section
with Corollary 5.17, which states that, under some conditions, the algebras ?dAn(q) and ?dAn(l)
are isomorphic. Finally, we begin Section 6 by some quick calculations about the minimal length
representatives of the cosets of a Young subgroup in the symmetric group on n letters &,,. The main
results of the section are given in Theorems 6.26 and 6.30, where we prove an isomorphism about
(cyclotomic) “disjoint quiver” Hecke algebra. We end the paper with Theorem 6.35: we show that

~
1

we recover the isomorphism YQn(q) ~ DaynMatm, ﬁ‘;(q) of [Lu, , PA], where my = SviEm

and the algebra I?If\\(q) is a tensor product of cyclotomic Hecke algebras.

Acknowledgements I am grateful to Maria Chlouveraki for many discussions about the proof
and a careful reading of the paper, to Nicolas Jacon for his corrections and to Loic Poulain d’Andecy
for useful conversations around this work.



1 Setting

Let d,n € N* and let F' be a field which contains a primitive dth root of unity £; in particular, the
characteristic of F' does not divide d. We consider an element ¢ € F* and we define e € N* U {oco} as
the smallest integer such that 14g+- - -+¢°~! = 0. We will sometimes use the quantum characteristic
of F, given by:

chary(F) := {e %f €< oo

0 ife=o0,

in particular chari(F’) is exactly the usual characteristic of F. Except in Section 5, the element ¢
will always be taken different from 1. We set I := Z/charq(F)Z,J = Z/dZ ~ {1,...,d}; unless
mentioned otherwise, we have K =1 x J.

If IC is a set, we will refer to a finitely-supported tuple of non-negative integers A = (Ag)rex €
N®) as a weight. We say that a finitely-supported tuple a = (g )rex € N®) js a K-composition of
n and we write a Ex n if (o # 0 for finitely many k € K and) EkelC ar =n. If a i n, we denote
by K% the subset of K™ formed by the elements k = (k1,...,kn) € K" such that:

Vke K, #{ae{l,....,n} ko =k} = ou,

that is, (k1,...,kn) € K if and only if for all k € K, there are exactly i integers a € {1,...,n}
such that k, = k. The subsets K are the orbits of ™ under the natural action of the symmetric
group on n letters &, in particular each K< is finite.

1.1 Cyclotomic Yokonuma—Hecke algebras

Let A = (Ai)ier € N be a weight; we assume that its level £(A) = > ier i verifies £(A) > 0.

The cyclotomic Yokonuma—Hecke algebra of type A, denoted by ?fi\’n(q), is the unitary associative
F-algebra generated by the elements

JlyeeosGn-tstiy. .. tn, X1 (1.1)
subject to the following relations:
td =1, (1.2)
taly = tbtay (13)
tbga = gatsa(b)7 (14)
9a = q+ (¢ — 1)gaca, (1.5)
gagy = gvga  Vla—0b] > 1, (1.6)
Ja+19aGa+1 = GaGa+19a, (17)

where s, is the transposition (a,a 4+ 1) € &, and eq = %Zje} tét;jl, together with the following
relations:

Xig1 Xig1 = 1 X191 X1, (1.8)
Xlga = gaXl Va > 1, (19)
Xity, = tp X1, (1.10)

and finally the cyclotomic one:

[Tx:i=a) =o. (1.11)

i€l

Note that the presentation comes from | |, excepting the normalisation in (1.5) which was
used in | ]. In particular, it comes from (1.11) that X1 is invertible in Y3, (¢). When d = 1, we
recover the cyclotomic Hecke algebra HE (q) of | ]; it is the cyclotomic Yokonuma—-Hecke algebra

\A(fn(q) In particular, the element e, becomes 1. We write g (respectively X%{) for the element g,
(resp. X1) when d = 1, that is, considered in H2(g).
Following | |, we define inductively Xq41 for a € {1,...,n— 1} by

ar+1 = gaXaga (112)



(note that the ¢ comes from our different normalisation in (1.5)). As for X, we introduce the
notation X to denote X, in the case d = 1. The family {t1,.. . tn, X1,..., X} is commutative
and we have the following equalities:

GaXp = Xb9a Vb # a,a+ 1, (1.13)

gaXat+1 = Xaga + (¢ — 1) Xat1€a, (1-14)

Xat+19a = gaXa + (¢ — 1) Xat1€aq. (1.15)

The proof of the following result is the same as in | , Proposition 4.7], where we write
gw = ga; ‘" ga, for a reduced expression w = Sq, - Sa, € Gn; by Matsumoto’s theorem (see
for instance | , Theorem 1.2.2]) the value of g., does not depend on the choice of the reduced

expression, since the generators g, satisfy the same braid relations as the s, € &,,.

Proposition 1.1. The algebra ?9n(q) is a finite-dimensional F-vector space and a generating family
is given by the elements g X ™" -+« Xpntt -+ to" for w € Gp, uq € {0,...,L(A) — 1} and v, € J.

Remark 1.2. The above family is even an F-basis of ?Qn(q), see [ , Theorem 4.15].

1.2 Cyclotomic quiver Hecke algebras

In their landmark paper [ ], starting from a quiver without loop and multiple edges Khovanov
and Lauda have constructed the so-called “quiver Hecke algebra”. Independently, Rouquier | ]
made a similar construction, where the underlying object is a matrix Q = (Q )k, ex Which
contains the case of quivers. Here, we will first give this definition of | ], which generality will be
used in Section 6 only, and then specialise to the case of quivers.

1.2.1 General definition

Let K be a set, A a commutative ring, u and v two indeterminates and Q = (Qg i/ ),k ex @ matrix
satisfying the following conditions:

e the polynomials Qy i € Alu,v] verify Q. x(u,v) = Qi 1 (v,u) for all k, k' € K;
e we have Q,x = 0 for all k € K.

Let a =k n. The quiver Hecke algebra Ha(Q) associated with (Qg i)k ke at o is the unitary
associative A-algebra with generating set

{e(k)rexe U{yt, .., yn} U{¥h1, ..., thn_1} (1.16)

and the following relations:

e(k)e(k') = oy pe(k), (1.18)
yae(k) = e(k)ya, (1.19)
Yae(k) = e(sa - k)a, (1.20)

Ya¥o = YbYa, (1.21)

Yoo = Yoo b F# a,a+1, (1.22)

Yathp = Ppha  if la —b| > 1, (1.23)
[ (yatba + V)e(k) if ko = ar1,

waya-kle(k) = {y(ﬂ/}ae(k) i ko 2 Koot (1.24)
[ oy + De(k) i by = kot

Yatr1Pae(k) = {wayae(k) i by £ ko, (1.25)

nge(k) = Qkav’“a«#l (Ya, Ya+1)e(k), (1.26)

bentbetsre(k) = 4 Vaborivee(®) + b W V)~ Dbt W20 il) ) if oy = g,
Yahat1¥ae(k) otherwise.
(1.27)



Remark 1.3. Let k € K*,a € {1,...,n—2} and let P := Qg k,.,; the relation (1.27) for ke = kat2

at13
1S:
P ay Ya 7P a s Ja
Var1butbarre(k) = Yatbar1tae(k) + LYY *yl) = ya(i 22 Yart) gy (1.28)

Writing P(u,v) = Y u™Pmn(v), we get that the right side of (1.28) is well-defined and is an

element of Alya,Ya+1, Yat2)e(k).

Remark 1.4. The generators in [Rou] are given by 1k = e(k), Za,k = yoe(k) and 74k = Yae(k).
When the set K is finite, in a similar way we can define the quiver Hecke algebra H,(Q) as the

unitary associative A-algebra with generating set

{e(k)kexr U{yt,- o ynt U {1, ..., n_1} (1.29)

together with the same relations (1.18)—(1.27), where (1.17) is replaced by:

D elk)=1. (1.30)

keKn

Defining for o f=x n the central idempotent e() =), . (k) € Hn(Q), we have:

e(a)Hn(Q) ~ Ha(Q),

thus:
Ha(Q) ~ €P Ha(Q) (1.31)
alEn
(note that this equality can be seen as a definition of H,(Q) is K is infinite).
For each w € &,,, we now choose a reduced expression w = Sq; - - - Sq,. and we set:

T

Yw = Yay +++ Ya, € Hn(Q). (1~32)

Although this reduced expression dependence differs from the usual case of Hecke algebras (for
instance), we are still able to give a basis of H,(Q). In fact, we have the following theorem ([Rou,
Theorem 3.7], | , Theorem 2.5]).

Theorem 1.5. The family {Ywy;' - yrre(k) : w € Gn,7a € Nk € K} is a basis of the free
A-module Ho (Q).

We conclude this paragraph by introducing cyclotomic quotients of these quiver Hecke algebras;
let @ = nand A = (Ay)rex € N®) be a weight. Following | , §4.1], we define the cyclotomic
quiver Hecke algebra H2(Q) at a as the quotient of the quiver Hecke algebra H, (Q) by the following

relations:
Aky

D emyie(k) =0 Vke K, (1.33)

m=0
where ¢, € A with cay,, = 1. Similarly, if K is finite we define the cyclotomic quiver Hecke algebra

H2(Q)
Theorem 1.6 (] , Corollary 4.4]). The A-module H2(Q) is finitely generated.

1.2.2 Case of quivers

With the exception of Section 6, throughout this paper our matrix @ will always be associated with
a loop-free quiver without multiple edges and with vertex set K. If I is such a quiver, following | ,
§3.2.4] we associate the following matrix (Qg r )k, exc:

0 itk =k
1 i kK

Qrpr(u,v) = Qv —u if k— K, (1.34)
U—v if k&,

—(u—-v)? fkSK,
where:
e we write k—/ k' when k # k' and neither (k, k") or (k', k) is an edge of T;

e we write k — k' when (k, k) is an edge of T and (k’, k) is not;



e we write k < k' when (k’, k) is an edge of T and (k, k') is not;
e we write k < k' when both (k, k') and (k', k) are edges of T.
Moreover, we define:
Ha(T) = Ha(Q),
H

and if IC is finite we also set H,(T") : (Q). Note that, in the setting of (1.34), the defining

relations (1.26) and (1.27) become in Hqo (T):

0 if ka - ka+17
e(k) if ko 7/ Ka+1,
Yae(k) = { (a1 — ya)e(k) if ko = ka1, (1.35)
(Ya — Ya+1)e(k) if ko < Ka+1,
(Ya+1 = Ya)(Wa — Yat1)e(k) if ka S ka1,
(wa¢a+1wa - 1)€(k) if ka+2 = ko — ka+1,
aWa o+ 1 k 'fka :ka<_ka s
wa+11/)a1/)a+1€(k) - (w 1/) _Hw )6( ) 1 +2 ! (136)
(YaVat1Va + 2Yat1 — Ya — Yat2)e(k) if kar2 = ka S kat1,
Yaar1ae(k) otherwise.

We now give a remarkable fact about quiver Hecke algebras; its proof only requires a simple check
of the different defining relations.

Proposition 1.7. Let I be a loop-free quiver without multiple edges with verter set K. The quiver
Hecke algebra Ho (') is Z-graded through:

dege(k) =0,
deg yae(k) = 27
deg wae(k) = Ckq,kat1>

where C' = (i1 )ik’ exc s the Cartan matrix of I', defined by:

2 ifk=Fk,
0 if k /- k'
Cl ! — Zf 7L /7 , (137)
’ -1 ifk—=k ork« kK,
2 fksSk.

We now define the quivers which will be particularly important to us; we recall that I =
Z/chary(F)Z and J = Z/dZ. We denote by I'c the following quiver:

e the vertices are the elements of I;
e for each ¢ € I there is a directed edge from ¢ to 7 + 1.
In particular, for 4,7’ € I:
e we have i — ¢ ifand only if i’ =4+ 1 and i Z4 + 1;
e we have i <4’ if and only if i =4 + 1 and i’ # i + 1;
e we have i ¢’ if and only if i =i’ + 1 and 4’ = i + 1 (thus this only happens when e = 2);
e we have i / i if and only if 5 # 4,4 £ 1.
We give some examples in Figure 1. We now define the quiver
r=]]r. (1.38)
jed
given by d disjoint copies of I'e. Hence, our quiver I' is described in the following way:
e the vertices are the elements of L := K =1 x J;

e for each (i,7) € K there is a directed edge from (i, ) to (i + 1, j).



Quiver I’y 051

l

N &— =

Quiver I'y

w— O

f

Quiver I' -2 -1 0—1—92 —>---

Figure 1: Three examples of quivers I,

In particular, there is an arrow between (4, ) and (i, j') in T if and only if there is an arrow between
i and i’ in I'e and j = j'. Moreover, the set K is finite if and only if e is finite.
We consider the diagonal action of &, on K™ ~ I"™ x J", that is, 0 - (3,j) := (¢ -¢,0 - 5). We will

need the following notation:

I“={iel":3jeJ" (i,j) € K},

J*={jeJ": el (i,3) € K}
The sets I* and J< are finite and stable under the action of &,,; note that K< is included in I x J¢
(we don’t have the equality in general).

Let now A := (Ax)rex € N be a weight. The cyclotomic quiver Hecke algebra H2 (T') is given
by the quotient of the quiver Hecke algebra H (I') by the relations:

yte(k) =0, VkeK® (1.39)

note that this is indeed a particular case of (1.33). Note that the grading described in Proposition 1.7
is compatible with this quotient.
Remark 1.8. The cyclotomic Khovanov-Lauda algebra of | ] is the quiver Hecke algebra H2(T'.),
that is, the algebra H2(I') for d = 1. We write e™(2), y& and 9! the generators of HA(T'.); the
reason for this notation will appear in §2.1.

The proof of the following result is the same as in | , Lemma 2.1].
Lemma 1.9. The elements y, € H2(I') are nilpotent for a € {1,...,n}.

As a corollary, together with Theorem 1.5 we recover a particular case of Theorem 1.6: in
particular the algebra HQ(F) is a finite-dimensional F-vector space.
Remark 1.10. Let us assume e < oo; the algebra Hﬁ?(l") is hence finite-dimensional. However,

comparing with Remark 1.2, it does not seem that easy to get its F-dimension; an answer will be
given with Theorem 4.1 and (4.2).

2  Quiver Hecke generators of Yé}(q)

Let A = (Ag)rex € N be a weight; we assume that £(A) = > rex Ak verifies £(A) > 0. Moreover,
we suppose that for any i € I and j,j’ € J, we have:
Ai,j = Az’,j/ = A;.
In particular, we will write A as well for the weight (A;)ier.
In this section, our first task is to define some central idempotents e(«) € Yfi\’n(q) with )~ e(a) =
1 for o Ex n. We will then prove the following theorem.

Theorem 2.1. For any « Ex n, we can construct an explicit algebra homomorphism:
p:HY(T) = Ya(a),
where ?g(q) = e(a)\?(ﬁn(q).

Note that \A(fl\(q) is a unitary algebra (if not reduced to {0}), with unit e(a). To define this
algebra homomorphism, it suffices to define the images of the generators (1.16) and check that they
verify the defining relations of the cyclotomic quiver Hecke algebra: the same strategy was used by
Brundan and Kleshchev in | | for d = 1.

For a generator g of H2(T"), we will use as well the notation g for the corresponding element that
we will define in ?Q(q) There will be no possible confusion since we will work with elements of
Y2(q).



2.1 Definition of the images of the generators

We define now our different “quiver Hecke generators”.

2.1.1 Image of e(i,7)

Let M be a finite-dimensional ?fi\’n(q)—module. Each X, acts on M as an endomorphism of the
finite-dimensional F-vector space (see Proposition 1.1); in particular, by (1.11) the eigenvalues of X1
can be written ¢ for 4 € I. Hence, applying | , Lemma 5.2] we know that the eigenvalues of
each X, are of the form ¢* for i € I. Concerning the t4, by (1.2) (they are diagonalizable and) their
eigenvalues are dth roots of unity.

As the elements of the family {Xa, tq}1<a<n pairwise commute, using Cayley—Hamilton theorem
we can write M as the direct sum of its weight spaces (simultaneous generalized eigenspaces)

M(i,j) = {v EM:(Xo—q¢ VW= (ta—&*w=0forall 1 <a< n} (2.1)

for (i,7) € I"™ x J", where N > 0 and £ is the given primitive dth root of unity in F' that we
considered at the very beginning of Section 1. Observe that some M (%, j) may be reduced to zero;
in fact, only a finite number of them are non-zero.
Remark 2.2. The element e, acts on M(%,5) as 0 if jo # jat+1 and as 1 if jo = jat1.
We can now consider the family of projections {e(k)}rexn associated with the decomposition
M = ®rexnM(k): the element e(k) is the projection onto M (k) along @/, M(k'), in particular
e(k)?> =0 and if k # k' then e(k)e(k’) = 0. Moreover, only a finite number of e(k) are non-zero.
As the e(k) are polynomials in X1,...,Xn,t1,...t, (in fact e(k) is the product of commuting
projections onto the corresponding generalized eigenspaces of X, and t,), they belong to ?dAn(q)
Remark 2.3. The above polynomials do not depend on the finite-dimensional \?Qn(q)—module M.

We are now able to define our central idempotents. We set, for o Ex n:

ke K~

(since K< is a Gy-orbit, the element e(c) is indeed central). Though we will not use this fact, we
can notice that according to [PA, Corollary 3.2] and [ ], the subalgebras Y2 (q) := e(2) Y%, (q)

which are not reduced to zero are the blocks of the Yokonuma-Hecke algebra ?(ﬁn(q); see also [ ,
§6.3]. For d = 1, we recover the element e, of | , (1.3)].
We will sometimes need the following elements:

e(a)(i) = Y elaed, )= » el

jeJx .j'eJ“ N
er (2.2)
e()(g) ==Y _ ela)elii) = D eli,g).
iele iel®
(3,3)EK™
For d = 1, we recover with e(«)(?) the element e(i) of | , §4.1]; we denote it by e(¢). Finally,

note that:
e(a)(2) - e(a)(5) = e(@)(7) - e(a)(?) = e(i, J).
From now, unless mentioned otherwise, we always work in \A(Q(q), every relation should be mul-
tiplied by e(a) and we write e(¢) (respectively e(g)) for e(a)(2) (resp. e(a)(7)).
We give now a few useful lemmas.

Lemma 2.4. If1 <a<n and j € J is such that jo # jat+1 then we have:

gee(d) = qe(j),
gaXat1e(j) = Xagae(J),
Xa+19ae(F) = gaXae(g)-

Proof. We deduce it the from relations (1.5), (1.14) and (1.15) and from eqe(3) = 0 (since jo # jat1,
see Remark 2.2). a

For the next lemma, we should compare with | , (15)].



Lemma 2.5. For1<a<mn and j € J* we have goe(j) = €(Sa - J)ga-

Proof. Let M := Y2(q). Given the relation (1.4), we see that g, maps M(5) to M(s, - j). Fix now
je€J¥and let 3 € J* and v € M(5’). If 3/ = j then we get:

gae(J)v = e(sa - §)gav (= gav),

and if j' # j, since gov € M (s, - j') we have:

gae(J)v = e(sa - §)gav (= 0).

Hence, e(sa - j)ga and gae(j) coincide on each M(j') for j° € J thus coincide on M = @®;; M(5')
and we conclude since M = YaA(q) is a unitary algebra. O

Corollary 2.6. Let 1 <a<n and j € J%; if ja = jat+1 then go and e(j) commute.

Remark 2.7 (About Brundan and Kleshchev’s proof - I). Let 1 < a < n; if j € J* verifies jo = jat1,
the following relations are verified between gqe(j) and the Xpe(j) for 1 < b < n in the unitary

algebra e(j)?Q(Q)e(j)Z

9o =q+(q—1)ga,
qXa+1 = gaXaGa,
gaXp = Xpga Vb # a,a+ 1,
gaXat1 = Xaga + (¢ — 1) Xaq1,
Xa+19a = gaXa + (¢ — 1) Xay1.

These are exactly the relations (1.5), (1.12)—(1.15) for ﬁﬁ?(q) (that is, for d = 1). Hence, when these
only elements, together with the e™(4) for any ¢ € I, and these only relations, together with those
involving the ef!(7), are used to prove any relation (*) in | , §4] (in ﬁg(q)), we claim that the
same proof in \A(g(q) holds for (), involving g.e(j) instead of g&!, the elements Xbﬂe(j) instead of
X?il and e(4,7) instead of e (4). If j verifies in addition j,+1 = jat2, we can add to the previous
list the element g,+1e(j), which stands for gL' ,.

Lemma 2.8. Forl <a<nand (i,j) € K such that jo # jat+1 we have goe(i)e(j) = e(sa-1)gae(F),
that is, gae(i,7) = €(Sa - (¢,7))9a-

Proof. Given Lemma 2.4, we show as in Lemma 2.5 that gq.e(2)e(j) = e(sa-1)gae(F); we get the final
result applying Lemma 2.5. O

2.1.2 Image of y,

We are now able to define the elements y, for 1 < a < n. We saw in Lemma 1.9 that these elements
(in HA(T")) are nilpotent, hence we define the following elements of Y2 (g) for 1 < a < n:

voi= Y (1=q " Xa)e(i) € YA (q).

el

We can notice that Zi(qi“ — Xa)e(2) is the nilpotent part of the Jordan—Chevalley decomposition of
X,; in particular, y, is nilpotent. As a consequence, we will be able to make calculations in the ring
F[[y1,...,yn]] of power series in the commuting variables y1,...,y». We will sometimes also need
the following element:

Ya(8) = ¢ (1 = ya),
which verifies:
Ya(i)e(d) = Xae(1). (2.3)
We end this paragraph with a lemma.
Lemma 2.9. For j € J% such that jo # ja+1 we have:

gaya+16(j) = yagae(j)7
Ya+19a€(F) = gaYae(J).



Proof. Indeed, gayat+1e(j) = (g0 — g "+ g,X,y1)e(i,5) and applying Lemmas 2.4 and 2.8 we
get:

gutar1e(d) = D (1= g~ Xa)e(sa - i)gac(3)

el

= > (1= ¢ " Xa)e(i)gae(s)

el

GaYat+1€(J) = Yagae(d).

2.1.3 Image of 9,

We first define some invertible elements Q4 (2,7) € F[[ya,Ya+1]]* for 1 < a < n and (3,5) € K* by:

1 =g+ qYat1 — Ya if iq = Gat1,
(Ya(8) — qYat+1(8))/(Ya (i) — Yat1(8))  if Ga / Gas1,
PN (¥ () = q¥a+1(3))/(Ya (i) — yatr1(3)®  ifia = dat1, if ja = Jat1,
QG(Z7J) T i g . .
q* if iq < Gat1,
qia/(ya (2) = Ya+1(7)) if ta S Gat1,
fa,j ifja #ja-ﬁ-ly

where fo.; € {1, ¢} is given for jo # jat1 by:

. q if ja < ja+17
fa,j = P .
1 if jo > Jat1,

with < being a total ordering on J = Z/dZ ~ {1, ...,d}. For d =1 or for jo = ja+1, the power series

Qa(1,7) coincides with the definition given at | , (4.36)].
Remark 2.10. The elements Q4 (%, ) depend only on (iq,%a+1) and (ja, jat+1). Moreover, as in | ]
the explicit expression of Qa(2,7) for jo = jat1 does not really matter; only its properties are

essential, for instance, those in Lemma 2.13.

Remark 2.11. The scalar f, ; is only an artefact: if ¢ admits a square root ¢"/? in F, we can simply
set fo,; = 1z,

Finally, we give an easy lemma about these f, ;.
Lemma 2.12. If jo # jat+1 then fojfa,sq-5 = q-

We introduce a notation for a power series Q € F|[y1,...,yn]]: if 0 € &, is a permutation, we

denote by Q7 the power series Q7 (Y1, ... ,yn) = Q(Us—1(1), - - - »Yo—1(n)); DOte that (Q7)” = Q7* (we
get a right action).

We will use later the following properties verified by Qa (%, j) (see [ , (4.35)]), where Q7 (i,7) ==
Qi,5)7.
Lemma 2.13. We have:
Qa1 (4,3) = Qa" " (sa415a - (4,5)),
o""(4,3) = Q%1 (Sasat1 - (3,9))-
Proof. We check only the first equality, the second being straightforward considering (i’,3j’) =

SaSat1 - (4,7). For i € I, let us write y.(i) = ¢'(1 — ya); in particular, we have yo(ia) = ya(%).
Noticing that sq+15« = (a,a + 2,a + 1), we get for jot1 = jat2:

1= ¢+ qYas1 — Ya oty = iata,

(Ya(iat1) = qYat1(iat2))/(Ya(iat+1) = Yat1(Gat2))  if dat1 7/ dat2,

Qa(sa+15a - (4,5)) = { Waliat1) — qUat1(ia+2))/Ya(iat1) = Yat1(iat2))®  if dat1 — Gate,
qia+1 if 4g41 < Pa+2,
¢/ (Ya(iat1) = Yat1(iat2)) i fat1 = davta,

and we conclude using Yo (ta+1)°*t" = ya(tat1) and Yat1(ta+2)’*t! = Yatr2(tat2). I jat1 # Jat2, wWe

.. if jo+1 < J .
have Qa(Sat154 - (2,7)) = fa,(a,a42,a41)-5 = 9 1 Zaﬂ ‘7,a+2’ and this is exactly fo+1,5- O
1 1f Ja+1 > Ja+2,
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We now introduce the following element of \?g(q)

Po=gat (1-0) Y (1-XaXilhi) el@d)+ Y elig),

(4,4)EK™ (4,4) €K™
laFia41 ta=la+1
Ja=Jja+1 Ja=Ja+1

where (1 — XaX;:l)fle(k) denotes the inverse of (1 — Xo X, )e(k) in e(k)\?g(q)e(kz). Note that
this element is indeed invertible, since for k = (2, ) with 44 # a1 its only eigenvalue 1 — g*@~*a+1

is non-zero, thanks to the definition of I. In particular, we have:
Pae(j) = gae(d)  if ja # Ja+1.

For d = 1 we get the “intertwining element” defined in | , §4.2], and we write it ®L.

Remark 2.14. Though we will not need this until Section 3, we define now the power series Py (4,j) €
Fl[Ya;Yat1]] for 1 <a < n and (3,5) € K by:

{1 if ig = tat1, i ,
.. . RO T T . U Ja = Ja+t1,
Pa(i,5) = q L0 = (1 = ga(@)yasa ()77 if da # s,
0 if ja 7é ja+14
For d =1 or for jo = ja+1 we recover the definition given at | , (4.27)]. Moreover, we have the

following equality:

®a= Y (ga+ Pa(k))e(k). (2.4)

ke K~

Indeed, the only non-obvious fact to check is P, (%, j)e(z,5) = (1—¢)(1 — XaX;:l)fle(i,j) ifiq # dat1
and jo = ja+1, but this is clear by (2.3). We will also use the following equality (the same one as in
Lemma 2.13):

P (0,5) = PE (sas150 - (5,9)). (2.5)

Lemma 2.15. We have the following properties:

Pae(f) = e(sa - J)Pa,
Pae(i,j) = e(sa - (4,7))Pa,
D, Xy, = X Py Vb # a,a+ 1,
Soyp = ypPa Vb # a,a + 1,
D,Qu(k) = Qu(k)Pq V|b—al > 1, (
DDy = Dyda Vb —a| > 1. (

© 0 NS>

N N~ —~ —~ —
(=]
NN NI SN2

—_

Proof. We will use results from | , Lemma 4.1] (which is this lemma for d = 1).

(2.6) Using Lemma 2.5, it is clear if jo # jo+1 since then ®qe(j) = goe(d) = €(Sa - J)ga = €(Sa - J)Pa.
Using Corollary 2.6 it is clear if j, = ja+1 since e(j) commutes with every term in the definition
of ®,.

(2.7) If jo = ja+1, we claim that the relation comes applying (2.6) and Remark 2.7 on the equality
Ol (3) = e (s, - 4) DL, If jou # jar1 it follows directly from Lemma 2.8.

(2.8) Straightforward using (1.13) and since e(%,J) are polynomials in Xi,...,X,.
) Using (2.2), (2.7) and (2.8) we get:
Bayy = Y (1 =g " Xp)e(sa - (i, 5))®a
4,3

=30 - g Xy )e(sa - D) Pa =y,

1
since (Sq - 1)p = ip.

(2.10) Since Qu(k) € Flys,yp+1]] and b # a,a+ 1 and b+ 1 # a,a + 1 it follows from (2.9).

11



(2.11) Let us write @), := &, — go. Using (1.13) and Lemma 2.8 we get:

Pugo=g5 | 1 =) Y (1= XaX; ) elss- (5,9))

iaFla+1
Ja=Ja+1

+ Y els- (1,4)) | = 9@,
ta=%a+1

Ja=Ja+1

and exchanging a and b we get g,®, = ®}g,. Noticing that ®,®; = &, P/, (we don’t use here
|b—al > 1) and using (1.6), we get ®.Pp = (ga + P4) (g + P1) = gags + Phgp + 9o P, + O, Py, =
gv9a + gpPo + Phga + L2, = (g6 + Pp)(ga + ;) = Py Pa.

O

We are now ready to define our elements 1, for 1 < a < n:

Vo= Y ®aQulk)te(k) € Y2 (q).

ke K&

As usual, we write ¢ for 1), when d = 1, and this element X corresponds with the 1), of [ ,
§4.3]. Note finally that for j € J* we have:

Vae(j) = fo j9a€(d)  if jo # jas1.

2.2 Check of the defining relations

We now check the defining relations (1.17)—(1.25), (1.35)—(1.36) and (1.39) for the elements we have
just defined. The idea is the following: when an element e(%, j) lies in a relation to check, if jo = ja+1
then we get immediately the result by Remark 2.7 rewriting the same proof as [ , Theorem 4.2],
and if jo # ja+1 then it will be easy (at least, easier than in [ ]) to prove the relation. Recall
that we always work in ?g(q) (in particular every relation should be multiplied by e(«)) and we
write e(2) and e(j) without any («).

(1.39) We do exactly the same proof as in ﬁg(q) Let (¢,7) € K and set M = ?g(q), recall that
the action of X1 on M is given by the action of e(a)X1. By (1.11) we have [],_, (X1 — @) =0,
hence:

I1 [(X1 - qi)Aie(i)} —o0. (2.12)
el
As an endomorphism of M (), the element (X; — qi)Ai is invertible if 7 # 41 since its only eigenvalue
(¢ — qi)Ai is non-zero (note that A; may be equal to 0). This means that there exist elements
(X1 — qi)fAie(i) such that (X; — qi)Aie(i) (X1 — qi)fAie(i) = e(i). Hence, multiplying by all these
inverses, the equation (2.12) becomes:

(X1 —¢") " e(d) = 0.

i i Aq . .
Finally, since y;\” => (1—¢ "1 X1) "e(d) we obtain:

irere

vitelig) = (1—q X)) e(i,§) = 0.
(1.17) Straightforward from the definition of the e(k) for k € K.
(1.18) Idem.

(1.19) Straightforward since y, and e(k) both lie in the commutative subalgebra generated by
ti,...,tn and Xq,..., Xn.

(1.20) Straightforward by (2.7) and since Q. (k') and e(k’) commute with e(k).
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(1.21) True since { X, }q is commutative.
(1.22) True by (2.9).
(1.23) Let |a — b > 1. We have, using (1.20), (2.10) and (2.11):

Yty = Y ®aQal(k)  e(R)y
= PaQa(k) (s - k)
— Z DaQu(k) " ®Qu(sp - k) "e(sy - k)
=) ®Qu(sy - k) ' ®aQalk) e(sy - k).
x

Hence, noticing that (sce Remark 2.10) Qa (k) = Qu(ss - k) and Qu(sp - k) = Qy(sass - k) we get:
Yathy = > ®oQu(sp - k) ae(sy - k)
k
= Z D,Qp (s - k) "e(sasp - k)iba
Yathp = il;:l/fw

(1.24) First, if k = (4, 5) verifies jo = jat1 then by Remark 2.7 we get from:

Sl My = J @0 TN i =i,
ot Yabie (2) if i # dat1,
the following equality:

w Y +1e(i J) = (yawa + 1)6(1:,_7') if 44 = ia+1 and ja = ja+17
) yawae(iyj) if 74 75 ia+1 and ja — ja+1.

Hence it remains to deal with the case jo # ja+1 (and no condition on ¢). Using Lemma 2.9 we get:
VYayat1e(i, §) = PaQa(i 5) Yatre(i 5)
= fu i9aYas+e(i, 5)
= faiYagae(i, 5)
= 4aPaQal(i 5) " e(i, )
Yaya+1€(,J) = Yatael(s, J).
Finally, we have proved:

(yarba + Ve(k) if ku = kat,

'l/}aya+1e(k) = {ya¢a6(k) if ko # kay1,

which is exactly (1.24).
(1.25) Similar.
Remark 2.16. Thanks to relations (1.22), (1.24) and (1.25), given f € F[[y1,...,yn]] and k € K“

such that ko # ka1 we have fipse(k) = o f°*e(k). In particular, this holds if jo # jat+1 with
k=(23).

13



(1.35) Once again, the result is straightforward if jo = jo+1 using Remark 2.7. Let us then
SUppOse ja 7 jat1; hence, necessarily we have kq - kqt+1 s0 we have to prove wZe(k) = e(k). We
have:

Vae(k) = ae(sa - k)a
= Qa5 k) e(sa - k)ha
= a_,sla.jgaq)aQa(k)_le(k)
Vae(k) = (fasaifag)” gae(k).

Applying Lemmas 2.4 and 2.12 we find 2e(k) = e(k) (recall e(k) = e(i)e(j) = e(4)e(i)) thus we are
done.

(1.36) If jo = jat1 = jat2, we get the result using Remark 2.7. Let us then suppose that we are
not in that case: we have to prove ¥o+1%q®Wat1(k) = Yathat1ae(k). We will intensively use (1.20);
note also that:

(ga +(1-q(1- XaXa_-rll)_l) e(t,4) ifia # fat1 and jo = jat1,
Dae(i,j) = (9a + 1)e(4,7) if ia = iat+1 and jo = ja+1,
gae(s, J) otherwise (jo # jat1),
and:
® coaN—1 /e . TR
ety = { 26 TR e Z
fa’jgae(l,.]) lf Ja 75]0,#»1-
It is convenient to introduce some notation. The couple (%, j) shall only be modified by the action
of sq Or Sa+1, hence we only write ((ia,%a+1, ta+2), (Ja, Jat+1,Ja+2)) for (2, 7). Moreover, for clarity we
forget comas and only write the indexation, substituting 0 to a; thus, ((ia, ta+1,%a+2), (Jas Ja+1s Ja+2))

becomes ((012), (012)). Finally, as &, acts diagonally on I x J we can write (012) instead of
((012),(012)). Because an example beats lines of explanation, here is one: 0e(102) stands for

Yae(sq - k).
Case jo = j1 # j2- Let us first compute ¥19011e(012) and 1ow110e(012). We have:

¢1¢0¢1€(012) = lp1w0€(021)w1
= 1e(201)hoth1
V1o e(012) = &1Q1(201) " e(201) ot .
Since Q1(201)™" € F[[y1,y2]] and recalling Remark 2.16 we get:
P1or1e(012) = 1e(201)hoQ50 (201) Hehy = B1e(201)horp1 Q50 (201) .

By Lemma 2.13 we have Q5°°'(201) = Q1(201)*°%! = (Q1(201)%°)%1 = (Qo(s150 - (201))%1)%1 =
Q0(012). Hence:
Y1hotb1e(012) = ®1e(201)horp1 Qo(012) .
As:
Yo11hoe(012) = 1horh1 Poe(012)Qo(012)

to have (1.36) it suffices to prove:
@16(201)1[)01[)1 = 1/}01[)1(1’06(012). (2.13)

Let us distinguish two subcases.
o Ifip # i1 then:

@1e(201)v0r = (91 + (1= )(1 = X1X5") ") voe(021)0s.

Recalling (1.13) and Lemma 2.4 we get:
®1e(201) %01 = fo (ga1) (9190 + (1= q)go(1 - Xon_l)ﬂ) Y1e(012)

_ _ 1,1
= fo,(1021)f1,(1012) (919091 + (1= q)gog1(1 — Xo X, 1) ) e(012).
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Using the braid relation (1.7) this becomes, recalling (2.7):
_ _ _1y—1
®1e(201) %01 = fo (021 f1 (012) (909190 +(1—q)gogr (1 — XoX1 ") ) e(012)

_ _ _1y—1
= fo,(1021)f1,(1012)9091 (90 + (1 —q)(1 — XoX; 1) ) e(012)
= f(;(1021)f;(1012)9091‘1)06(012)
®1e(201)2porpr = f(;(1021)f;(IOIQ)gOgle(102)<I>O7
and then, noticing that fl,(012) = fl,(102) and fO,(021) = fO,(120)7 we obtain:
©1e(201) %0t = fo 120 /1 (012)9091€(102) B0
= fo_,(1120)906(120)1/)1‘1)0
@16(201)1[)01/}1 = 1[)01/}1(1’06(012),
thus (2.13) is proved.

o If i9p = i1 then:
®1e(201) = (g1 + 1)e(201),
Dpe(012) = (go + 1)e(012),
thus with the same calculation as above (even easier) we get:
®1e(201)¢0v1 = f5 021y f1.(012) (919091 + gog1)e(012)
= fo.(120)f1.(102) (909190 + 90g1)€(012) = Poth1 Poe(012),
so we got (2.13).

Until the end of the proof we use the same arguments as here, arguments which we will thus not
recall.

Case jg # j1 = jo. Similar.

Case jg = jo # j1. Once again we begin with the computation of 1101 e(012) and Yo)110e(012).
We have:
Yrihotpre(012) = 11 ®oQo(021) ™ e(021)¢h1 = 1 ®oe(021)¢1 Q5" (021) 7,
and:

Yoth11hoe(012) = 1ho®1Q1(102) ™ e(102)1ho = 1ho®1e(102)10 Q50 (102) ",
Since Q51 (021)™! = Q3°(102)*, it suffices to prove:

1/)1@06(021)’¢1 = w0¢16(102)1/)0 (214)

Once again we distinguish two subcases.
e If ig # iz then:

1[)1@06(021)1/}1 = 1/}16(201)‘1>0¢1
_ _1.—1
= it (90 + (1= Q1= XX ) wre(o12)
_ g1 -1 2 11
= f1,201) f1,012) (919091 +(1—q)gi(1—XoX; ) ) e(012)
_ _ _1.—1
P1®oe(021)y1 = f1,(1201)f1,(1012) (919091 + (1= q)q(l — XoX; 1) ) e(012).
Similarly, we find:
1/)0@16(102)wo = w0€(120)q>11/)0
_ _1.—1
= fo,(1120)90 (91 +(1-q)(1 - X1X; 1) ) Yoe(012)
-1 -1 2 —1y—1
= fo,(120)f0,(012) (909190 +(1-q)go(1 — XoX3 ") ) e(012)
_ _ _1y—1
YoP1e(102)1o = fo,(1120)f0,(1012) (909190 +(1-q)g(1— XoX5") ) e(012),

thus we conclude since fi (201) = fo,(012) and fi (012) = fo,(120) (We see it on this particular case
or we can use Lemma 2.13).
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o If igp =iz we get as above, with o = f;(IQOI)f;(1012) = fo_,(lmo) f(;(IOIQ):

P1®oe(021)Y1 = a(g1gogr + g7)e(012)
= a(g19091 + q)e(012) = a(gogigo + q)e(012)
= algogigo + 95)e(012) = o®1e(102)10e(012).

Case #{ja,ja+1,Ja+2} = 3. We have jo # jat1 and ja # jat2 and ja41 7 jat2 thus we get
immediately:

Y1orp1e(012) = f;(lgm)f(;(lom)f;(1012)9190916(012)
= f(I(luo)f;(1102)f(;(1012)9091906(012) = Yo190e(012),

since f1,(201) = fo,(012), fo,(021) = f1,(102) and fi (012) = fo,(120)-

3 Yokonuma—Hecke generators of HA(T)

Let A be a weight as in Section 2. The aim of this section is to prove the following theorem.

Theorem 3.1. For any o =k n, we can construct an explicit algebra homomorphism:
o: ?Qn(q) — HQ(F)

Note that we do not consider yet ?‘a\(q) In particular, it suffices to define the images of the
generators (1.1) and check if they verify the defining relations of the cyclotomic Yokonuma—Hecke
algebra. As in Section 2, we use the same notation for a generator and its image.

3.1 Definition of the images of the generators

It is easier this time to define these images. First, since the elements yi,...,yn are nilpotent
(Lemma 1.9), we can consider power series in these variables. Hence, the quantities P, (k), Qa (k)
and y, (i) that we defined in §2.1 are also well-defined as elements of H2(I"). We define finally as in
(2.2) the elements (%) and e(j) of HA(T') for 4 € I® and j € J°.

We recall that £ is a primitive dth root of unity in F. Our “Yokonuma-Hecke generators” of
HA(T) are given below.

Ja = Z (VaQa(k) — Pa(k)) e(k) forl<a<mn
keK
te == Z oe(j) forl1<a<n
jeJe
X, = Z Ya(2)e(?) for1<a<n
iele

As usual, we write gi! and XX for the corresponding elements when d = 1: we recover the
elements of | , §4.4].

Remark 3.2 (About Brundan and Kleshchev’s proof - II). This remark is similar to Remark 2.7. If
J € J* verifies jo = ja+1 and if a relation in [ , §4] involves only ¥X, €™ (3) for ¢ € I* and yi' for
1 < b < n, while its proof does not require any cyclotomic relation (1.39), then by the same proof,
the same relation is satisfied between ¥qe(j), e(4, ) and ype(j) in the unitary algebra e(5)H2(I)e(5).
If 5 verifies in addition jo4+1 = ja+2, we will be able to add relations with Q/)}l{+1, which we substitute
by Ya+1e(F).

3.2 Check of the defining relations

As in §2.2, we will use Remark 3.2 when j, = ja4+1 to get the result from the same corresponding
proof of [ , Theorem 4.3], and when j, # jat+1 we will need a few calculations.

(1.2) Straightforward since e(j)e(j') = 6 j.e(j) and £ = 1.
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(1.3) Straightforward since e(j)e(3’) = e(3")e(J)-

(1.4) According to (1.17), it suffices to prove tygee(,J) = gals, v e(3,J) for every (z,5) € K*. For
(i,7) € K%, we have, using (1.20):
tbgae(i7j) = tb(¢aQa(i7j) - Pa(7’7.7))e(7’7.7)
=ty [e(sll : (17.7))1/)61@@(17.7) - 6(Z7J)Pa(l7])]
= 000 Quli, G)e(i, §) — € Pa(i, 5)e(i, )
togae(i, §) = PaQa(i, 5)E 7 e(i, ) — Pu(é, )€ e (i, ),
and: , . .
Gats,v)€(i,§) = ga&’*=Pe(i,J) = YaQa(i, §)&" e(i, §) — Pald, 5)&"*= M e(i, ).
As (54 - F)b = Jsuv) (by definition of the action of &, on J"), it suffices to prove the following:

Pa(i, §)€" = Pa(i, )& ®.

e It is clear if b ¢ {a,a + 1} since b = 54(b).
o If b€ {a,a+ 1}, it is clear if jo, = jat1 and obvious if j, # jat+1 since then Py(i,j5) = 0.

(1.5). Let (3,5) € K and let us prove goe(%,5) = (¢+ (¢—1)gaea)e(3, §); summing over all (4, 5) €
K will conclude. If j, = jot1 then it is immediate applying Remark 3.2 on ()2 = ¢ + (¢ — 1)gi!
and left-multiplying by e(2), recalling eqe(j) = e(j) and Corollary 2.6. If now jo # ja+1, since
eqe(4) = 0 it suffices to prove g2e(s,5) = qe(, ). But, recalling Qq(4,5) = fu; and Pu(i,5) = 0:

9gae(i,4) = ga($aQa(i,5) — Pa(i, 5))e(i, 5)

= fa,jGaae(i, )

= fa,jgae(sa : (%.7))%1

= fai(¥aQa(Sa - (4,5)) = Pa(sa - (4,5)))%ac(i, 5)
92€(4,3) = fajfasa-sbae(i, ),

hence we conclude using Lemma 2.12 and (1.35), since jo # ja+1 implies (ia, ja) 7 (tat1, Jat1)-

(1.6). Let usprove gagve(k) = grgae(k) for every k € K. By (1.22) the element 1), commutes with
the elements P, (k) and Qq(k) of F[[ya,Ya+1]]. Moreover, Qo (ss- k) = Qa(k) and Py (ss - k) = Pa(k),
hence:

gagve(k) = ga(vpQu(k) — Py(k))e(k)
= gae(sy - k) Qu(k) — gae(k)Ps(k)
= (YaQa(k) — Pu(k)) s Qu(k)e(k) — (aQa(k) — Pa(k)) Py(k)e(k)
= YapQa(k)Qs(k)e(k) — YpQp (k) Pa(k)e(k) — YaQa(k)Ps(k)e(k)
+ Pa(k)Py(k)e(k),

NN

and we conclude since that expression is symmetric in a and b (recalling (1.23)).

(1.7). Again it suffices to prove ga+1gagat1€(3,J) = gaga+1gae(i,j) for all (i,5) € K. If j, =
Ja+1 = ja+2 we get the result using Remark 3.2. Let us then suppose that we are not in that case.
We will intensively use (1.20); recall the following fact:

(d)aQa(iyj) 7Pa(7’7.7))6(7’7]) if ja :ja+17

gae(lhj) = {fa,j¢ae(i7j) if ja 7é ja+1.

Finally, as during the proof of (1.36) in §2.2, we write for example goe(102) instead of gae(sq - k).
Thus, given our hypothesis on jo, j1 and j2 we have:

1p11p0w16(012) = ’lbol/)ﬂ/)o@(OlQ). (31)
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Case jo = j1 # j2. Let us first compute gigogie(012) and gogigoe(012). We set a =
f1,0012) fo,(021); We have:
919091€(012) = f1 (012)9190€(021)7)
= f1,(012)fo,(021)gle(201)¢0¢1
= a)1Q1(201)1horb1e(012) — aP1(201)1ho1p1e(012)
919091€(012) = a11o11e(012)Q7°% (201) — arhorb1€(012) P°°* (201).
We have already seen that Q7°°!(201) = Qo(012) and similarly we have P;°°*(201) = Py(012) (see
(2.5)). Hence we obtain, using (3.1) and noticing f1,(012) = fo,(120) and fo 021y = f1,(102):
919091€(012) = avhoth11oe(012)Qo(012) — arporh1e(012) Py(012)
= aho1e(102)1ho Qo (012) — f1,(012)fo,(021)¢06(021)¢lp0(012)
= f1,(102) fo,(120)¥0e(120)1p11p0Q0(012) — f1 (012)go1€(012)FPo(012)
= f1,(102)90%1€(102)100Q0(012) — gog1 Po(012)e(012)
~ gogn (40Q0(012) — Po(012))e(012)
919091€(012) = gog1goe(012),

so we are done.
Case jg # j1 = jo. Similar.

Case jy = jo # j1. Given these assumptions we have:
Yge(012) = ¢7e(012) = e(012). (3.2)
Hence, using (3.2), with a = f1 (012) f1,(201):
919091e(012) = f1 012y 91 (40Q0(021) — Py(021))e(021)3)1
= f1,(012)916(201)¢0Q0(021)¢1 — f1,0012)91€(021) Py (021))1
= a19otb1e(012)Q51 (021) — anpie(012) PE* (021)
= aghotp1hoe(012)Q5° (102) — aryie(012) P (102)
= aoe(120)1h1 Q1 (102)tho — aboe(102) Py (102)1)o.
Noticing f1,(012) = fo,(120) = fo,(102) and f1 (201) = fo,(012) We get finally:
919091€(012) = fo,(012)90(¥1Q1(102) — P1(102))e(102)t0
= fo,(012)9091%0e(012)
919091€(012) = gog1goe(012).

Case #{jo, j1,j2} = 3. We get immediately:
919091€(012) = f1 (201) fo,(021) J1,(012)¥1%0%1€(012)
= fo,(120) f1,(102) fo,(012) Yo¥1100e(012) = gog1goe(012),
since f1 (201) = fo,(012) and fo,(021) = f1,(102) and f1 012) = fo,(120)-
(1.8). Since for a € {1,...,n — 1} it is clear that Xqy1Xe = XqXa+1, it remains to prove that
g Xa+1 = gaXaga; we will conclude taking a = 1. As we proved (1.5), it suffices to prove (1.14). Let
(i,7) € K% and let us prove:
¥ .. 1y NI
gaXa+1€(i7j) = { agae(’b.7.7.) + (q ) a+1€(27‘7) 1 j.a ‘7.a+17
Xagae(s,J) if jo # Jat1-
Again, we deduce the case jo = jat+1 from Remark 3.2. If j, # jo+1 we have, using (1.20) and
(1.24):
gaXat1e(i,5) = ¢ gae(d,5)(1 — Yat1)
= ¢"* faj%a(l = Yar1)e(d, §)
= qza+1fa,j(1 — Ya)e(Sa - (7/7.7))'¢a
= fa,an%e(i,j)
gaXa+le(i7j) = Xagae(i,j)-
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(1.9). We prove in fact (1.13), that is, g Xy = Xpga for b # a,a + 1. As y, commutes with 1, by
(1.22) we have, for any k € K (where yq (k) = ya (i) with k = ( 3)):

gaXve(k) = gae(k)ys (k)

= yo(k)(YaQa(k) — Pa(k))e(k)

= yo(k)e(sa - k)PaQa(k) — yv(k)e(k)Pa(k)
gaXve(k) = Xpgae(k),

since yy(k)e(sq - k) = ¢ (1 — yp)e(sa - k) = ¢ (1 — yp)e(sa - k) = Xpe(sa - k).
(1.10). We prove in fact X,t, = t, X, for every a, b; that is straightforward from (1.19).

(1.11). We have, using (1.17)—(1.19):

[Tx - )" = 11 [Z (" (1=w)—q") 6(@')1

—le 1—y1>—q)Ai6(i)]
H(leq ZH{ (1—w1) 7q)“e(i)}'

Noticing that for each 4 € I* the term for ¢ = 41 vanishes by (1.39), we get the result.

4 Isomorphism theorem

We give now the main result of our paper; let A be a weight as in Sections 2 and 3.

4.1 Statement

Theorem 4.1. There is a presentation of the algebra ?‘a\(q) given by the generators (1.16) and the
relations (1.18)—(1.25), (1.35)—(1.36) and (1.39), that is, we have an algebra isomorphism:

A ~OSA
Ho (T) — Ya(a)-
As finitely many \?A( ) are non-zero, we deduce from this isomorphism that only finitely many

HA(T") are non-zero. Hence, as Yd Q) = @a‘_Kn?A( ), defining the cyclotomic quiver Hecke algebra
of degree n by (recall (1.31)):
= @ HQ(F)7 (4'1)

alEgn
we get the unitary algebra isomorphism with the cyclotomic Yokonuma—Hecke algebra:
H (D) =~ Vi, (a)- (4.2)

Recalling that the cyclotomic quiver Hecke algebra is naturally graded (Proposition 1.7), we get
the following corollary.

Corollary 4.2. The cyclotomic Yokonuma—Hecke algebra inherits the grading of the cyclotomic
quiver Hecke algebra.

Moreover, as we obtain a presentation of ?dAn(q) which does not depend on g, we also get another
one (see Corollary 5.16 for a slight improvement).

Corollary 4.3. Let ¢’ € F\ {0,1}. If char, (F) = charq(F) then the algebras ?dAn(q) and ?3n(q')
are isomorphic.

Let us now prove Theorem 4.1. First, as we have a (non-unitary) algebra homomorphism \A(g(q) —
Yﬁn(q), by Theorem 3.1 we get an algebra homomorphism Y2 (q) — H2(T'), that we still call 0. We
will prove that o : Y2(q) — H2(I") and p : HA(I") — Y2(g) (from Theorem 2.1) verify cop = idya )
and poo = idg, Ag): Since these are algebra homomorphismes, it suffices to prove that they are identity
on generators. To clarify the proof, let us add a ¥ on the quiver Hecke generators of ?g(q) and a
" on the Yokonuma-Hecke generators of H2(I') (there isn’t any confusion possible with the former
notation referring to the case d = 1 since we won’t use it any more).
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4.2 Proof of g0 p=idya(

We have to check that o(p(e(k))) = e(k) for all k € K¢, that o0(p(ya)) = ya for all 1 < a < n and
that o(p(¢a)) = e for all 1 < a < n.

Let us start by finding the image of e(k) by o o p. By definition of p we have p(e(k)) = e (k),
so we have to prove (e (k)) = e(k). Let M = H2(I'); the algebra homomorphism o gives M a
structure of i(\"a\(q)—module7 finite-dimensional thanks to Theorem 1.6. If M (k) denotes the weight
space as in (2.1), by Remark 2.3 we know that the projection onto M (k) along @, M (k') is given
by o(e¥(k)). We prove that e(k) is this projection too.

Let (¢,5) € K. For 1 < a <n, we have 0(X,) = Ei/(qi; - qi;ya)e(i') so:

o(Xa) =g =Y [(qi“ —q") - qi“ya} e(@).
vel™

Since y, is nilpotent, thanks to (1.17)—(1.18) we have:
fveM:(o(X)—g )N v=0}= | 3 e@) | M,

hence, for N > 0 we have:
M(i) = {veM: (0(Xa) —q"*) v =0Va} = e(i) M.
In a similar way we have M(j) = e(§)M where M(j) == {v € M : (6(ta) — £*)v = 0 Va}, thus:
M(k) = e(k)M.

Hence, as @M (k) = M we conclude that e(k) is the desired projection and finally e(k) =
(e’ (k).
The end of the proof is without any difficulty. We have:

o(p(ya)) = o(ya) = > _[1—q “o(Xa)lo(e" (3))

= > [ —q " Xeli)

— S - Y w@ed) | el
= S0 - g g i)eld)

=D =g " (1 - ya)le(s)

o(p(ya)) = Ya-
Thus, we have o(QY (k)) = Q. (k) and o (P, (k)) = P.(k), hence, recalling (2.4):

o(p(a)) = o) = Y o(®a)o(Qu (k) 'o(e¥ (k)

ke K~
= <Z [7(ga) + o (P (K))] e(k’)) Qa (k) te(k)
keK™ \k/eK™
= D (@ + Pa(k)Qalk) e (k)
ke K&
=2 q D (WaQa(K) Pa(k,))e(k:')] +Pa(k)> Qa(k) 'e(k)
kEK® K eKo
= 3 [(WaQalk) — Pa(k)) + Pa(k)]Qa(k) "e(k)

o (p(¥a)) = ta-
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4.3 Proof of poo = id@\(q)

This is even easier: we have to check p(0(ga)) = ga for 1 < a < n and p(c(X.)) = Xa and
p(o(ta)) =tq for 1 < a < n. We have:

plo(ga) = D [a QY (k) — P (K))e” (k)

= ) [@aQY (k) QY (k) — P (K)]e¥ (k)
= ) (@0 — P (K)]e¥ (k)
ke K«

p(o(ga)) = Ga-
Recalling (2.3):
p(o(Xa) = Yyl (i)e¥ (i) = > Xae¥ (i) = Xa.

el el
Finally:
plota)) = Y &9e¥(G) = tae¥ () =ta.
jeJ« jej«

The proof of Theorem 4.1 is now over.

5 Degenerate case

In this section, we extend the previous results to the case ¢ = 1. In particular, we need to define
a new “degenerate” cyclotomic Yokonuma—Hecke algebra. Many calculations are not written, since
they are entirely similar to the non-degenerate case. Note the following thing: since the cyclotomic
quiver Hecke algebra has no ¢ in its presentation, we do not need to define some new cyclotomic
quiver Hecke algebra.

Let A = (Ap)rex € N be a weight; we assume that £(A) = > rex Ax verifies £(A) > 0.
Moreover, as in Section 2 we suppose that for any i € I and j,j’ € J, we have:

Ai’j = Az’,j/ = A;.

In particular, we will write A as well for the weight (As)ier.

5.1 Degenerate cyclotomic Yokonuma—Hecke algebras

We introduce here the degenerate cyclotomic Yokonuma-Hecke algebra: this algebra can be seen as
the rational degeneration of the cyclotomic Yokonuma-Hecke algebra Y2, (q).

The degenerate cyclotomic Yokonuma—Hecke algebra of type A, denoted by \A(fi\’n(l)7 is the unitary
associative F-algebra generated by the elements

Jafo = fofa Vla —b| > 1,
fot1fafat1 = fafat1fa,

where e, = é Zje] tit;{l, together with the following relations:

Si, oo fom1,t1, ot 1, T (5.1)
subject to the following relations:
td =1, (5.2)
taty = tyta, (5.3)
tofo = fals,(v) (5.4)
fi=1 (5.5)
(5.6)
(5.7)

TaZb = ThZTa, (5.8)
faTat+1 = Tafa + €a, (5.9)
faxy = Tpfa Vb#a,a+ 1, (5.10)
Zalt = tpTa, (5.11)
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and finally the cyclotomic one:
[[@ - =o. (5.12)
iel
We obtained this presentation by setting X, = 14 (¢ — 1)zq in i\(f}’n(q)7 simplifying by (1 — q)
as much as we can and then setting ¢ = 1 (according to the transformation made by Drinfeld [Dr]

to define degenerate Hecke algebras). As in the non-degenerate case, the element e, verifies e2 = e,
and commutes with f,. Finally, note some consequences of (5.5) and (5.9):

La+1 = faxafa + faetu (513)
xa+1fa = fama + €q. (514)
When d = 1, we recover the degenerate cyclotomic Hecke algebra ﬁ‘,}(l) of | ]; it is the
degenerate cyclotomic Yokonuma—Hecke algebra Yﬁn(l). In particular, the element e, becomes 1,
and f, (respectively z;) is the element s, (resp. zs) of | , §3].
We will use the following lemma (see | , Lemma 2.15] for the non-degenerate case).

Lemma 5.1. For u,v € N we have the following equalities:

famaxa-o—l = m'axa-o—lfay (5.15)
v—1
faZTat1 = Tafa + €a Z el ", (5.16)
m=0
u—1
fars = xg11fa — €a Z e ", (5.17)
m=0
v—u—1
ToZat1fa + €a Z et T ifu <o,
farizo i = o (5.18)

u—v—1

v_u u—1l4+m _ v—m .
maxa+1fa — €q Z Tq Tot1 if u > wv.
m=0

Proof. We deduce (5.15) from different previous relations. The relations (5.16) and (5.17) can be
proved by an easy induction. The equality (5.18) follows finally from these previous equalities. [

As the elements gq for 1 < a < n verify the same braid relations as the s, € &5, for each w € &,
there is a well-defined element g = ga, - ga,. € Y(ﬁn(l) which does not depend on the reduced
expression W = Sq; *** Sa

Proposition 5.2. The algebra ?fi\n(l) is a finite-dimensional F-vector space and a family of gen-
erators is given by the elements foxy'---xpt]t - tyr for w € Gn,uq. € {0,...,4(A) — 1} and
Vg € J.

Proof. We use a similar method to | , ]. As the unit element belongs to the above family,
it suffices to prove that the F-vector space V spanned by these elements is stable under (right-
Jmultiplication by the generators of ?fi\n(l)

Let us consider o := fi,z}! - -zt - - t;" as in the proposition. By (5.2) and (5.3) the element
atq remains in V. Moreover, writing (by (5.4) and (5.10)):

_ ul Ug—1 u Uag+1 Uaq+2 Unp 4V1 Un
afe = fwryt - za®] (xaaxa+1 fa) T ih I L A

and using (5.18) we conclude that af, € V, noticing that the element

at ey (eanbea )l ey
belongs to V for every 0 < uy,uy, 1 < £(A). Finally, according to (5.13), to prove that az, remains
in V it suffices now to prove that a1 € V, but this is clear by (5.8), (5.11) and (5.12). a

Let now M be a finite-dimensional ?(ﬁn(l)—module; it is a finite-dimensional F-vector space
thanks to Proposition 5.2. By (5.12), the eigenvalues of 21 on M belong to I. We prove in Lemma 5.4
that all the z, have in fact their eigenvalues in I: this is the degenerate analogue of | , Lemma
5.2], which we used in §2.1.
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Lemma 5.3. We have:

TaPa = PaTat1,
¢a = (Tat1 — Ta — €a)(Ta — Tat1 — €a),
where ¢q is the “intertwining operator” defined by:
b0 = fa(Ta — Tat1) + €a-
Proof. These are straightforward calculations. We have, using (5.9):

xad)a = (faxa+1 - ea)(xa - xa+1) + Za€a
= fa(xa - xa+1)xa+1 + Ta+1€q

xa(ba = ¢axa+l7

and:

¢3 = fa(xa - xa+1)fa(xa - xa+1) + 2fa(xa - xa+1)€a + eq
= fa(faxa-kl — €aq — faxa - ea)(xa - xa+1) + 2fa(xa - xa+l)6a + €aq
= (xa+1 - xa)(xa - xa+1) + €q

¢3 = ($a+1 — Tq — ea)(xa — Ta+1 — ea)-

Lemma 5.4. The eigenvalues of xo belong to I for every 1 < a < n.

Proof. We proceed by induction on a. The proposition is true for a = 1; we suppose that it is
true for some 1 < a < n. Let A be an eigenvalue of z.4+1 (in a algebraic closure of F). As the
family {Zq, Ta+1,€q} is commutative, we can find a common eigenvector v in the eigenspace of zq+1
associated with A\: we have z,v = v and eqv = Jv for some i € I (by induction hypothesis) and
§ €{0,1} (since €2 = e,). We distinguish now whether ¢,v vanishes or not:

e if p,v # 0, we get by Lemma 5.3:

Ta(PaV) = Pa(Tat1v) = Apav,

hence A is an eigenvalue for z, and by induction hypothesis we get A € I;

e if pov =0, by the same lemma we have:
pv=N—i—0)(i—A—0)v=0,

hence A\=i=+0 € I.

5.2 Quiver Hecke generators of \A(;’l‘n(l)

We proceed as in Section 2: we define some central idempotents, then some “quiver Hecke generators”
on which we check the defining relations of H2(T'). The proofs are entirely similar to the non-
degenerate case (even easier; note that once again the “hard work” has been made in | 1), hence
we won’t write them down. However, we will still define the different involved elements.

5.2.1 Image of e(i,7)

Let M be a finite-dimensional \A((ﬁn(l)—module. We know that the t, are diagonalizable with eigen-
values in J. Hence, recalling Lemma 5.4, we can write (recall that the family {Xa,ta}1<a<n is
commutative):
M= B MG,
(4,5)€I™ x ™
with: .
M(i,j) = {ve M : (x4 —ia)Nv = (ta — E7%)0 =0 for all 1 gagn}7
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with NV > 0; since M is a finite-dimensional F-vector space, only finitely many M (4, j) are non-zero.
Considering once again the family of projections {e(k)}recxn associated with M = @recxn M (k), we
define for o =k n:

ke K«

and we set ?2(1) = e(a)?ﬁn(l). We can now define, for ¢ € I and j € J:

e(a)(d) =Y e(a)e(i, ),

jeJo

(5.19)
e(a)(g) =Y ela)eli, ).
ielo
In particular, with e(a)(2) for d = 1 we recover the element e(%) of | , §3.1].

From now on, unless mentioned otherwise we always work in Yg(l); every relation should be
multiplied by e(«) and we write e(z) and e(j) without any («).

Lemma 5.5. If1 <a<nandj € J is such that jo # jat+1 then we have:

fa$a+16(j) = xafae(j)7

Tat1fae(f) = fazae(])-
Lemma 5.6. For1 <a <n and j € J* we have foe(j) = e(Sa - J)fa- In particular, if jo = jat+1
then fo and e(j) commute. Moreover, if jo # ja+1 then foe(i,7) = e(sa - (2,7)) fa-
Remark 5.7 (About Brundan and Kleshchev’s proof - III). Let 1 < a < n; if j € J< verifies jo = ja+1,
when a proof in | , §3.3] needs only the elements f., s, e(¢) and the corresponding relations
in HA(1), we claim that the same proof holds in e()Y2(1)e(j). We extend this claim to the case
ja = ja+1 == ja+24
5.2.2 Image of y,

We define the following elements of ?2(1) for1 <a<n:

Vo= Y (wa —ia)e(i) € YA(1).

iele
When d = 1 we recover the elements defined in [ , §3.3]. These elements are nilpotent: we
will be able to make calculations in the ring F[[y1, ..., yn]]-

Lemma 5.8. For j € J% such that jo # ja+1 we have:

JaYa+1e(3) = yafae(d),
Yat+1fae(F) = fayae(d).

5.2.3 Image of v,
We first define some elements pq(¢,5) € F[[Ya, Yat1]] for 1 <a < n and (3,5) € K% by:

1 if ia :ia+17 if i .
- . . _ o . I Ja = Ja+1
Pa(i,4) = (ia — Gat1 + Ya — Yatr1) +  if ia # Gat1, e
0 if jo # Ja+1,

and then some invertible elements ¢o(%,J) € F[[Ya,Ya+1]]* for 1 < a <n and (¢,7) € K by:

1+ Ya+1 — Ya if 14 = ia+17
1_pa(i7j) if’ia%ia+17

c o )y (1=pa(8,9)) /Wasr —va)  ifda = dasr, if o = Jat,
6a(t:3) = | if o = das1,
(1 =pa(%,73))/Wat1 —Ya)  ifia S dart,

1 if jo # Ja+1-
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Remark 5.9. As in [ ], the explicit expression of gq(%,j) does not really matter; we only need
some properties verified by these power series.

Lemma 5.10. We have:

pzil(ihj) = p2a+1 (Sa+18a ) (7’7]))7
qzi1(i:j) = q2a+1 (sa+13a . (7'7.]))

We now introduce the following element of \?2(1)

Poi=Tat D (ta—zar)le(id)+ Y eld),

(4,3)€EK™ (4,4)EK™
iaFla+1 ta=la+1
Ja=Jja+1 Ja=Ja+1

where (2, — Tat1) " te(k) denotes the inverse of (2, — Tat1)e(k) in e(k)?‘a\(l)e(k). In particular, we
have:

wae(j) = fae(d) if ja # Ja+1,
Pa=_ (fatpalk))e(k).

Moreover, for d = 1 the element ¢, is the “intertwining element” defined in [ , §3.2].

Lemma 5.11. We have the following properties:

vae(J) = e(Sa - J)¢a, (5.20)
¢ae(t, J) = e(sa - (4,7))¢a, (5.21)
Palh = TvPa Vb # a,a+ 1, (5.22)
PaYp = Yopa  VbFa,a+1, (5.23)
vaqe(k) = @p(k)pa  V|b—a| >1, (5.24)
PaPb = PbPa Vb —al > 1. (5.25)

Our element 1), is defined for 1 < a < n by:

Vo= Y ata(k) (k) € YE(1).

ke K«

When d = 1 this element 1, corresponds to the 1, of [ , §3.3]. Note finally that for j € J* we
have:

Yae(d) = fae(j) if ja # Ja+1-

5.2.4 Check of the defining relations

Theorem 5.12. The elements yi,...,Yn,P1,...,¥n—1 and e(k) for k € K< verify the defining
relations (1.39)—(1.36) of HA(T).

The painstaking verification is exactly the same as in §2.2: we apply Remark 5.7 on the proof
of | , Theorem 3.2] for the cases jo = ja+1, and when jo # jo+1 then entirely similar (even the
same) relations as in §2.2 are verified. Note two small differences with the proof in §2.2:

e we shall write (z, — ) instead of (1 —¢)(1 — Xo X, );

e the elements f, ;j are equal to 1.

5.3 Degenerate Yokonuma—Hecke generators of HA(T)

We proceed as in Section 3. Once again, the proofs are entirely similar to the non-degenerate case,
hence we do not write them down.

First of all, since the elements y1,...,yn € HA (T") are nilpotent we can consider power series in
these variables. Hence, the quantities p,(k), ¢a (k) that we defined in §5.2.3 are also well-defined as
elements of H2(I"). We define finally as in (5.19) the elements e(i) and e(j) of HA(T") for 4 € I* and
jeJ.
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We recall that £ is a primitive dth root of unity in F'. Our “degenerate Yokonuma—Hecke genera-
tors” of HA(I") are given below.

fo = Z (Vaqa (k) — pa(k)) e(k) forl<a<mn
keKo
to == ij”e(j) forl1<a<n
jeJ«
To = Z(ya + ia)e(2) forl1<a<n
icle
When d = 1, the element f, (respectively x,) is the element sq (resp. zq) of | , §3.4].
Remark 5.13 (About Brundan and Kleshchev’s proof - IV). Let 1 < a < n; if j € J* verifies jo = ja+1,
when a proof in [ , §3.4] needs only the elements ¥qe(j),yse(j),e(s,7) and the corresponding

relations in H4(T'.), we claim that the same proof holds in e(§)H2(I")e(j). We extend this claim to
the case jo = ja+1 = Jat2-

Finally, similarly to §5.2.4 we have the following theorem. Once again the check of the various
relations is exactly the same as in §3.2.
Theorem 5.14. The elements f1,..., fa—1,t1,...,tn,T1,...,%n satisfy the defining relations (5.2)—
(5.12) of Y2, (1).

5.4 Isomorphism theorem

We give now the degenerate version of Theorem 4.1.

Theorem 5.15. There is a presentation of the degenerate cyclotomic Yokonuma—Hecke algebra
Y2(1) given by the generators (1.16) and the relations (1.17)~(1.25), (1.35)~(1.36) and (1.39), that
is, we have an algebra isomorphism: R

HA (D) 5 Y2, (1).

The proof of this theorem is entirely similar to the one of Theorem 4.1. In particular, by Theo-
rem 5.12 we can define an algebra homomorphism p : HA(T') — Y2 (1) and by Theorem 5.14 we can
define another algebra homomorphism o : \A(é\n(l) — HA(T). From the inclusion \?2(1) C ?fi\n(l)
we deduce an algebra homomorphism o : \?2(1) — H2(I"). We prove then that p and o are inverse
homomorphisms, taking the images of the different defining generators.

Together with Theorem 4.1 we get the following corollaries (cf. | , Corollary 1.3]).

Corollary 5.16. If g and ¢’ are two elements of F* with charg(F) = chary (F) then ?f}n(q) and
§Qn(q') are isomorphic algebras.

Corollary 5.17. If F' has characteristic charq(F') then the cyclotomic Yokonuma—Hecke algebra

?$n(q) is isomorphic to its rational degeneration YdA’n(l). This applies in particular when F has
characteristic 0 and q is generic.

6 Another approach to the result

In [Lu, , ], the authors have proved the following algebra isomorphism:

Yi.(q) ~ @D Mat,, i (g), (6.1)

AE=gn

with F = C,e = oo, H}(q) = ﬁi\l (@® - ® ﬁﬁd (¢), where we write =4 instead of =5 and where
my are some integers (see (6.2)). We will see how we can relate this isomorphism to our previous
work. To that extent, we prove in Theorem 6.26 a general result on quiver Hecke algebras in the
case where the quiver is given by a disjoint union of full subquivers. The isomorphism is built from
the following map (see (6.25)):

‘Ifyyt W (wﬂt,wd)ﬂ_rﬂE{/’t,

for w € e(t)H,(Q)e(t), where Fy  are elementary matrices. In particular:

e in §6.1.2 we introduce the elements 7, the minimal-length representatives of the right cosets
of &, under the action of the Young subgroup & where A |4 n: this will lead to some
calculations which will only be needed to explicit our homomorphism Wy ;

e in §6.2 we will study the elements ., and we will go on with the previous calculations.
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6.1 Setting

Let K be a finite set; we recall that d,n € N* and J =Z/dZ ~ {1,...,d}. We consider a partition
of K into d parts K = UjesK;. We recall that the left action of w € &, on tuples is given by
W21, %n) = (Tyy-1(1)5 - - - Top—1(n))- We may use some elementary theory about Coxeter groups:
we refer for instance to | ] or [ ]. In particular, in that context we will denote by £ the usual
length function &, — N. Finally, let us mention that in this section, we will write t for the elements
of J".

6.1.1 Labellings and shapes

Let A = (Aj)1<j<d [=a n be a d-composition of n: recall that it means A\; > 0 and Ay +--- + Ag = n.
We define the integers A1, ..., Aqg, given by Aj := A1 +---+ \; for j € J. In particular, Ay = A; and
Ad = n; we also set Ao := 0. From now on, the letter \ always stands for a d-composition of n.

Definition 6.1. Let k € K™ and t € J".
e We say that k is a labelling of t when the following rule is satisfied:
Ya € {1,“4,71}7]&1 S ICLC”
that is:
Vae{l,...,n},Vj € J ke € K; < t. =13
We write K' for the elements K™ which are labellings of t.
e We say that t has shape A =4 n and we write [t] = X if for all j € J there are exactly \;
components of t equal to j, that is:

VieJ#{ae{l,. .. ,n}ita=j} =X\

We write J* for the elements J" with shape .

The sets J* are exactly the orbits of J™ under the action of &, in particular [w-t] = [{] for every
w € &, and t € J". Moreover, the cardinality of J* is:

n!
- — 2
L W W (6.2)

We write t* € J* for the trivial element of shape A, given by:
Vae{l,...,n},Vj€Jth =j < Aj_1 <a<Aj, (6.3)
that is:
& =(1,...,1,...,d,...,d),

where each j € J appears \; times. Note that K~ IC?1 X - X ICsd.

6.1.2 Young subgroups

Most results of this section are well-known; however, since in the literature they are stated either for
a left or a right action (see Remark 6.9), for the convenience of the reader we state all of them with
a left action. We remind the reader that some calculations made here will only be used in §6.4.3,
namely with Lemmas 6.12 and 6.13.

Let A =4 n; the following group:

6)\ 126)\1 X---XG)\d,
can be seen as a subgroup of &, (the “Young subgroup”), where we consider that &y, ~ &({A;-1 +
1,...,A;}). Recall that:
e the group &, (resp. &,,) is generated by s1,...,8n—1 (reSp. Sx;_;41,---,8x;-1);
e the subgroup &, is generated by all the s, for a € {1,...,n}\ {A1,..., Aa}.

In particular:

Vj # j’,V(wj,wj/) € 6/\]. X ijmijj’ = W W;j in G,. (64)
Remark 6.2. If w = sq, - - Sa,. € G is a reduced expression, up to a reindexation we know by (6.4)
that there is a sequence 0 =: 79 < 71 < -+ < rq—1 < 14 = r such that for each j € J, the word
Sap, 41" Sar, is reduced and lies in &;. The converse is also true: if for each j € J we have a

reduced word saq,.. 41 San; S 6,\j then their concatenation sy - -- s, € ©, is reduced.
.
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The following proposition is straightforward.
Proposition 6.3. The stabiliser of t* under the action of &, is ezactly &.
We now study the right cosets in &, for the (left) action of &j.
Lemma 6.4. Two words w,w’ € &, are in the same right coset if and only if w™! - * =w'~1 -}

The proof is straightforward from Proposition 6.3. An element C' € G,\&,, is thus determined
by the constant value t = w -t e J for w € C: we write C for the coset C (as each t € J" has
a unique shape, we do not need to precise the underlying composition in the indexation). Noticing

that mx = |6,|/|Gx|, we conclude that the cosets are parametrised by the whole set J*, that is,
6)\\671, = {Ct}tej)\.
We know by | , Proposition 2.1.1] that each coset C¢ has a unique minimal length element:

we write ¢ € C¢ for this unique element. In particular, since Lemma 6.4 gives:
Vw € Gp,w € Cy = w-t=1t", (6.5)

we get the following proposition.

Proposition 6.5. The element m¢ is the unique minimal length element of &, such that:
Tt =t (6.6)

Remark 6.6. The decomposition into right cosets is obtained in the following way. Given w € &,
we know that w belongs to the coset C; with t:= w™ ' - t*. The element w ! := maw ™" stabilises ’cA7
thus lies in & and we have w = wy.

Proposition 6.7. The elements 7y are given by:
Va e {l,...,n},m(a) = Ae—1 + #{b < a:t, =t.}.

An example is given in Figure 2. To prove Proposition 6.7, we will use the vocabulary of “tableaux”

{1,...,6} 1 2 3 4 5 6
t 3 1 3 2 3 1
o 1 1< 2 "3 3 3
{1,...,6} 1 2 3 4 5 6

Figure 2: The permutation ¢ for A == (2,1,3) F3 6 and t:= (3,1,3,2,3,1).

(see for example [Ma, §3.1]). As a quick reminder, a A-tableau T is a bijection {(j,m) € N?: 1< j <
dand 1 <m < \;} — {1,...,n}; the tableau T is row-standard if in each rows, its entries increase
from left to right. Here are two examples of A-tableaux, with A := (2,1, 3) =3 6:

2]6] 3]2]
4 9 5 9
113]5] 6]1]4]

the first only being row-standard.

To any t € J*, we associate the A-tableau 7; given by the following rule: for j € J and m €
{1,..., )}, we label the node (j,m) by the index a of the mth occurrence of j in t, that is, by the
integer a € {1,...,n} determined by:

to=jand #{b<a:t, =t} =m. (6.7)

In particular, the tableau 7¢ is row-standard; conversely, each row-standard A-tableau is a 7¢ for a
unique t € J*. With the notation of Figure 2, here are two examples of row-standard A-tableaux:

2]6] 1]2]
77.: 4 ; 7:>\: 3 .
1[3]5] 4]5]6]
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We consider the natural left action of the symmetric group &, on the set of A-tableaux: if w € &,
and 7 is a A-tableau, the tableau w- 7T is obtained by applying w in each box of 7. If now 7 and 7~
are two A-tableaux, we write 7 ~ 7T if for all j € .J, the labels of the jth row of 7 are a permutation
of the labels of the jth row of 7.

Lemma 6.8. Forw € &, and t € J* we have:
w-Ti~ T <= w-t=1t".

Proof. If j € J and m € {1,...,\;}, we denote by a[j, m] the label of the box (j,m) of T¢; by (6.7)
we have t,[;m) = 7. We get:

w-Te~Tn <= VjeJVme{l,....,\jhw(alj,m]) € {\j—1 +1,...,A;}
= VieJVme{L,..., N} aym) =J
= VjeJVme{l,.... N} thapjm) = talm]
< Va € {1,4“,71}7’(;\0(&) =1,
= Vae{l,...,n}to =t, 1y
w-Ti~ T = P =w-t,
as desired. |

Proof of Proposition 6.7. Let t € J*. There is a unique element d(t) € &, such that T; = d(t) - Tix,
that is, d(t)™' - T{ = T;x. By the equation of the coset Ci given at (6.5) and Lemma 6.8, we get
that d(t)~! € C;. Applying [Ma, Proposition 3.3], we know that d(t)~! is the unique minimal length
element of Ci. As a consequence, we have d(t)f1 = m¢ and thus:

7 To = Tor. (6.8)

Let j € Jand m € {1,...,\;}, and let a (respectively a) be the label of the box (j, m) in T¢ (resp.
Tx). In particular, by (6.7) we have @ = Aj_1 + m. Moreover, by (6.8) we have m(a) = a: we
conclude that the announced formula is satisfied, since, by a last use of (6.7), we have j = t, and

m=#{b<a:t, =1t} a
Remark 6.9. In [Ma], the author considers the elements of &,, as acting on {1,...,n} from the right,
by iw := w(i) where i € {1,...,n} and w € &,, is a permutation. This is the right action of GyP: in

such a setting, we read products of permutations from left to right.

Lemma 6.10. Let t € J* and let m = Say - * Sa,. be a reduced expression. Then:
vm e {l,...,r}, Sap - (Wm - t) # wm - ¢,
where Wm = Sa,, 1 *** Sa, (With wm =1 ifm=r).

Proof. Let us suppose Sa,, - (Wm - t) = wm - t and define T = Say "t Say,_18ami1 " Sar- Using
the assumption and the equality 7¢ - t = t’\, we see that the element 7 verifies T¢ - t = t* too. As
the element 7¢ is strictly shorter that m¢ (since Sq, - - Sq,. is reduced), this is in contradiction with
Proposition 6.5. o

Remark 6.11. Using t = 71';1 -t* in Lemma 6.10, we get the following similar result for 7rf1A If
7r;1 = Sq, - Sa, IS a reduced expression, then:

Vme{l,....r},wh t # Sa,, - (Wi - ),

where wy, = Sa,, | " Sa,-

The next two lemmas are not essential to the proof of the main theorem of this section, Theo-

rem 6.26; however, they will allow us to relate our construction to the one of | , PA]. Let t € J"
and a € {1,...,n—1}. We give in the next lemma the decomposition of Remark 6.6 for the element
TeSq; this is in fact a particular case of Deodhar’s lemma (see, for instance, | , Lemma 2.1.2]).

Lemma 6.12. Lett€ J" anda € {1,...,n—1}. The element msq belongs to the coset Cs,.¢, more
precisely we have:

Sm(a)ﬂ'g ’iffa = ta+1,
TtSa — )
Tsq-t ’Lffa 75 ta+1.
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Proof. First, from (6.5) we have misq - (sq - t) = t* (where X =4 n is the shape of t) thus ms, lies in
the coset Cs, .¢.

We suppose that t, = t,41. We have ms,m* = (mi(a), m(a + 1)), and we conclude since
m(a+ 1) = m(a) + 1 by Proposition 6.7.

We now suppose that t, # t,+1. Using the same Proposition 6.7, we know that the permutation
w =7y 'ms,.« € &y is supported in {a,a 4 1}; thus either w = s, or w = id. Since t # s, - t we have
T # Ts,.t, hence w # id. Hence, we get w = sq, that is, mesq = s, ¢ O

We now generalise the result of Lemma 6.12 in the case t, = tq11.

Lemma 6.13. Let t € J" and a € {1,...,n — 1} with to = tat1. Let sp, -+~ sp, be a reduced

expression of m¢ and set W = Sbyyy """ Sb Ifb e {1,...,n — 1} verifies s = wmsawfn1 for some
m € {0,...,r}, then:

e

TtSa = Sby * *° sansbsberl <+t Sp,

is a reduced expression. Moreover, every reduced expression of miSq 1S as above.

Proof. We first make an observation. As t, = te4+1, we deduce from (6.5) that the element 7isq
remains in Cy. Hence, by minimality of m¢ we have:

E(msa) > E(T{'(). (69)

Let now sy, - - sp, be a reduced expression of 7y and let b € {1,...,n — 1} and m € {0,...r} such
that s, = wmsaw;ﬂ We have:

TtSa = Sby ** " Sby, WmSa = Sby * " * Sby, SBWm = Sby ** " Sbyy, SbSbyy 1 Sy

and this expression is reduced since ¢(msq) = £(m) + 1. Conversely, let Sty S be a reduced
expression of msq. Since £((misa)sa) < £(miSa), we can apply | , §5.8 Theorem|: we know that
there is some m € {0,...r} such that Sy Sy sy is a reduced expression of m¢, where the hat
denotes the omission. We have:

Sb()”'sblr:sb()”'sblm"'sblrsth

thus:
Sy = wmsawfnl,
where wy, = sy Ly Se We now set b := b}, and:
b b,_, ifpe{l,...,m},
! by, ifpe{m+1,...r}
Moreover:

e the expression sp, - - - Sp

.

= Sy o 8y oo sy = me s reduced;

e we have Wi = Spr Sy = Sbypy  Sbys

+1
— — -1,
e we have sp = Sy = WmSaWn, ;

thus the reduced expression s, = Syt Sty = Sby " Sbpy SbSby i T S, 1S of the desired form. @O

r

Remark 6.14. Let sp, --- sy, = m¢ be a reduced expression and set wy, = Sbyg1 " Sb.. FOor m €
{0,...,7}, there exists b’ € {1,...,n — 1} such that sy = wmsewy," if and only if wm(a+ 1) =
wm(a) £ 1. Moreover, as Lemma 6.10 ensures that wm(a + 1) > wm(a), we have wm(a + 1)

wm(a) £1 <= wm(a+1) = wm(a) + 1.
We end this subsection by introducing a notation. If t € J* and k € IC‘A, we define:

E'=n ' keKkY (6.10)

in particular, we may denote by k' the elements of IC'.
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6.1.3 A “disjoint quiver” Hecke algebra

We consider the setting of §1.2.1. Note that since K is finite, we can consider the quiver Hecke
algebra H,(Q); recall that its generators are given at (1.29), which are subject to the relations
(1.18)—(1.27) and (1.30). We already said that the elements 1), do not verify the same braid relations
as the elements s, € G,: in particular, if s, - - - sp,. is another reduced expression for w, we may
have ¥y, - - - Y, # 1w. However, according to Remark 6.2 we can assume that we chose the reduced
expressions such that:

Vw:(wl,...,wd)GGA,pr:wwl---wwd, (6.11)

and in the sequel we do suppose that we did so. To that extent, we can first choose some reduced
expressions for the elements of the subgroups &,; for j € J and then by product we obtain the
reduced expressions of the element of &5. Concerning the elements of &,, \ &, we can choose their
reduced expressions arbitrary.

We now suppose that the matrix @) verifies:
Vi # ' V(k,K) €K x Kjr,Qupr = 1. (6.12)
When the matrix @ is associated with a quiver I' (recall §1.2.2), the condition (6.12) is satisfied when
I is the disjoint union of d proper subquivers I'!, ..., T'%. It means that:
e if v is a vertex in I" then there is a unique 1 < j < d such that v is a vertex of I'V;
e if (v,w) is an edge in I" then there is a (unique) 1 < j < d such that:
— the vertices v and w are vertices of IV,
— the edge (v, w) is an edge of IV,

Such a disjoint union in d proper subquivers was encountered at (1.38). Moreover, regarding the
Cartan matrix of I" we have:

v] 7& j/7v(k7k/) € ICJ X ICj’7Ck,k’ = 01 (613)

that is, up to a permutation of the indexing set, the matrix is block diagonal. Finally, for j € J we
define: ,
Yk, K € Kj, Q) = Qrirs (6.14)

in particular for each j € J and for each n’ € N we have an associated quiver Hecke algebra H,,/ (Q7).

6.1.4 Useful idempotents

We define in this section some idempotents of H,(Q) which are essential for our proof. Thanks to
the defining relations (1.18)—(1.20) and (1.30), for each A\ =4 n the following element:

e(N) = Z Z e(k), (6.15)
teJN kekt

is a central idempotent in H,(Q), that is, e(A\) = e(\)? commutes with every element of H,(Q).
Moreover:

e if X' =4 n is different from A then e(\)e(\) = 0;
e we have Zkbdn e(A) =1;
hence we have the following decomposition into subalgebras:
Ha(Q) = @D eMHA(Q). (6.16)

Al=gn

For t € J*, we also define the following idempotent:

ket

We can note that e(A) = > ;x e(t). Moreover, we have e(t)e(t) = 0if t' € J™\ {t}. We now give
some lemmas which involve these elements e(t).
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Lemma 6.15. Let t € J". We have the following relations:

YaYat1e(t) = yatpae(t) if ta # tat1,
Yayae(t) = yar1pae(t) if ta # tat1,

6(0 =e(t) if ta # tat1,
Yatr1VPathatre(t) = ¢a¢a+lwae(t) if ta # tata.

Proof. Let us first prove the first one. Let k € K'; we have k, € Ki, and kqt+1 € Ky, , with
ta # tat1 thus ko # kat1. Hence, we get the result using the defining relation (1.24) by summing
over all k € K'. The proofs of the second and the last equalities are similar.

Let us now prove nge(t) = e(t) if ty # tat1. Let k € K'Y we have ko € Ky, and kq41 € K, with
ta # tat1 thus Q, k.., = 1 (see (6.12)). Hence, the defining relation (1.26) gives ¢2e(k) = e(k),
and we again conclude by summing over all k € K". O

6.2 About the 9,

Here we prove some identities which are satisfied by the elements we have just introduced; some of
them will be essential to the proof of Theorem 6.26, while others will only be used in §6.4.3, namely
with Lemmas 6.20 to 6.22. We first study some properties about the elements ¥, for t € J". We
begin by the most important one, which is mentioned in the proof of | , Lemma 3.17].

Lemma 6.16. Let t € J". If Sq; -+ Sqa,. and Sp, -+ - Sp,. are two reduced expressions of mw, then:

r r

Yay -+ Yape(t) = P, oo e(t).

In other words the element r.e(t) € Hn(Q) does not depend on the choice of a reduced expression
for my.

Proof. By Matsumoto’s theorem, it suffices to check that every braid relation in sq, - - - Sq, also
occurs in q, - - Ya,.e(t). By (1.23), it is true for length 2-braids so it remains to check the case of
the braids of length 3.

Suppose that we have a braid of length 3 in sq, - - - sq,., at rank m: we have am = am42 = amy1£1.
We set a := min(@m, @m+1). With wy == 84, -+ Sa,,,_; and wy == Sa,,,5 " - Sa,, We have:

wi(SaSa+18a)Wr = Wi(Sat+1SaSat1)Wr,
and we have to prove, with 9| = 94y - - - %a,,_, and Y, = Ya,,_ 5 Va,:
Vi(Yatat1tha)re(t) = Y1(Yat1vathat1)vre(t).
Using (1.20), this becomes, where s = w, -
Y1(Yatbar1ta)e(s)Yr = Y1(Yat1tatbari)e(s) . (6.17)

By Lemma 6.10, we have Sa,, .1 * (Sapm 2 5) 7 Samys - 5. Thus, we have either s, - (Sa41-5) # Sat1-5
Or Sa+1-(Sa-8) # Sa-5; both cases give s, # Sqa+2. Hence, applying Lemma 6.15 we know that (6.17)
holds. O

Remark 6.17. In particular, if k € K' then ¢ e(k) € H,(Q) does not depend on the choice of a
reduced expression for 7y (note that ¥ e(k) = ¥r e(t)e(k)).
Similarly to Lemma 6.16, using Remark 6.11 we prove that for t € J* the element:

e, -1 =, 1e(t’) € Ha(Q), (6.18)

does not depend on the chosen reduced expression for 7y *. We now give some analogues of the
results of Lemma 6.15.

Proposition 6.18. Let t € J*. We have:
Prm19mee(t) = e(t),
Ur @, re(t) = e(t).

Remark 6.19. Both factors ¢_-1 and 9, do not depend on the choices of reduced expressions: for
t
instance, using (1.20) we have ¢_—19re(t) = 1_—1e(t*)1hr, thus we can apply Lemma 6.16 and
t t
(6.18).
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Proof. We only prove the first equality, the proof of the second one being entirely similar. Let
Sa; * " Sa, be a reduced expression for m¢. We prove by induction that for every m € {1,...,r + 1}
we have:

Vro1Pmee(t) = Ya, - YamPar - Pa,e(t). (6.19)

First, the case a = 1 comes with the definition of _-1e(t*) and tx.e(t). Now, if (6.19) is true for
t

some m € {1,...,r} we have, using (1.20):
Vo1 Um (8) = Yoy Vg1 Ve, €(Wm - Doy Y, (6.20)

where Wy = Sap,; - Sa,.. By Lemma 6.10, we know that (wm - t)a,, # (Wm - t)a,,+1. Hence, by
Lemma 6.15 we have 12 e(wm - t) = e(wm - t) thus (6.20) becomes:

wﬂ:l¢ﬁfe(t) = d)ar ce wam+1€(wm . t)¢“7n+1 t wam
which becomes, with a last use of (1.20):
wW:1 Yree(t) = Ya, Va1 Vamyr * Pare(t).

Thus (6.19) holds for every m € {1,...,r + 1}, in particular for m = r + 1 we get the statement of
the Proposition. O

Once again, what follows is not essential to the proof of the main result Theorem 6.26; how-
ever, it will allow us to relate our construction to the one of | , PA]. With a similar proof as
Proposition 6.18, we obtain the following lemma.

Lemma 6.20. Leta € {1,...,n} and t € J*. We have:
Yathr e(t) = wmyﬁrl(a)e(t)v
yawﬂ:le(tA) = zpﬂrlym(a)e(tA).

We now want to see what is happening with Lemma 6.12 for the associated elements ),,.

Lemma 6.21. Lett€ J" and a € {1,...,n — 1} such that to # tay1. We have:
6(")1#7(11/)@&4 = e(t)¢a-

Proof. By Lemma 6.12 we have ¢(ms,.¢) = £(m¢) £ 1. We now simply distinguish cases.

e We first assume that £(ms,.+) = £(m¢) + 1. Hence, applying Lemma 6.16 for the elements tx,_ .,
and 1, we have e(’c’\)zp,rsmt

e(tA)z/)mwa. Finally, using Proposition 6.18 we have:

e(O)y—1¥m,, = Y 1()r Y0 = ¥ —1¥me()ha = e(t)da.

—1 .
Sq-t?

e We now suppose that £(7s, 1) = £(m¢)—1; hence, £(n ') = E(ﬂ's_al,t)+1. Recall that 7' = so7

using the extension (6.18) of Lemma 6.16, we get e(t)y)_-1 = e(t))qth, —1 and finally:
t Sq-t
6(,‘)1&”:11/)#5&« = Yae(sa - t)lpw;l‘tlpﬂw«t = ae(sq - 1) = e(t)ta.

O

Lemma 6.22. Lett€ J" anda € {1,...,n—1} such that to = tat1. The element 1 s, e(t) € Hn(Q)
does not depend on the choice of a reduced expression for misq. In particular:

¢m Qpae(t) - me (a) ¢m 6(t) .

Proof. As in the proof of Lemma 6.16, it suffices to prove that every 3-braid relation which occurs in a
reduced expression of s, is also verified in the corresponding element of H, (Q)e(t). By Lemma 6.13,
we know that any reduced expression of m¢s, can be written sy, - - - Sp,., where there is m € {0,...7}
such that:

e the word sy, - - 8p,, - - - Sb,. is a reduced expression of m;

e we have sp,, = wmsawfnl with w,, = Sbyyy """ Sb

e
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We suppose that a 3-braid appears in sy, - - - 5, at index [, that is, we have b; = bj42 = bi4+1 £ 1; we
set b := min(by, biy1). We want to prove that, with 1y = 4y, - - - 1by,_, and ¥r = thy, 5 - - - s,

1 (por190)Pre(t) = Y1 (Ppr19ptp+1)re(t).

To that extent, as in the proof of Lemma 6.16, thanks to Lemma 6.15 it suffices to prove that
Sp # Sp+2 Where 5 := s, , -+ 5p,. - L.

T

e If m <[+ 1 then applying Lemma 6.10 we have sy, - (Sb,,, - 5) 7 S, - 5 thus s, # 5p42.

e The case m = [+ 1 is impossible: as b; = bj42, if m = [+ 1 we would have b;,—1 = bm+1 and
this is nonsense since the expression s, _, s4,,,, is reduced (as a subexpression of the reduced
expression Sp, -+ 8b,, * ** Sb, = T)-

o If m =14 2 then by Lemma 6.10 we get sy, - (sbl+1 - 5) # S, - 6 thus sp # sp40.
e Finally, if m > [ 4 2 then we can notice that:

cosp. -t

r

5:5bl+3"'§b

m

(since sp,, * (Wm +t) = Wi, - (Sq - t) = Wy - t; recall that s, = WmSaWw;,,! and tq, = to+1). Hence,
we deduce once again the result from Lemma 6.10.

The last statement of the lemma is now immediate. As t, = tq41, we can use (6.9) hence
Yrysa€(t) = Pr pae(t). Moreover, applying Lemma 6.12 another consequence of (6.9) is £(sy(o)T) =
L(m) + 1, thus we get Yrs,e(t) = Yz (a)¥re(t). Finally, we have trs,e(t) = Yr pae(t) =
me(aﬂ/}ﬂ'te(t)' O
6.3 Decomposition along the subquiver Hecke algebras
We are now ready to prove the main result of this section: we will give in Theorem 6.26 a decompo-
sition of H,(Q) involving the algebras Hy, (Q’) for j € J.

6.3.1 A distinguished subalgebra

In this paragraph, we prove the key of Theorem 6.26. Recall that we have set in (6.14):
Vk, K € Kj, QL = Qi

for any j € J. Let A =4 n be a d-composition of n. We define the following algebra:

HA(Q) = Hx, (Q") ® -~ ® H, (Q").

With ey = e(t), we prove here that we can identify Hy(Q) with the subalgebra exHn(Q)ex
(with unit ey). We reindex the generators ¢1,...,%x,—1 and y1,...,yx; of Hy,(Q”), respectively by
Un; 1415+ Pa;—1 and Yx;_,+1,- .-, Yr;. In particular, we set:

V= Yy ® - ® Y, € HA(Q),
for w = (w1, ...,wq) € Gy and:
k', .. k) =e(k) ®--- @ e(k?) € HA(Q), (6.21)
for k= (k',..., k%) € K} x - x K2
Lemma 6.23. The following family:

{wwy? yire(k),w € Gxyra €N € /c“}, (6.22)

is an A-basis of exHn(Q)ex. Moreover, the algebra exH, (Q)ex is ezactly the (non-unitary) subalgebra
of Hn(Q) generated by:

o the Yaex fora € {1,...,n}\{A1,..., Aa};

e the yqex for 1 <a < n;

o the e(k) for k € K.
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Proof. The first part is a immediate application of Theorem 1.5, (1.19), (1.20) and Proposition 6.3.
It remains to check that exH,(Q)ex is the described subalgebra, subalgebra that we temporarily
denote by H. First, all the listed elements belong to exH,(Q)ex. In particular, for a # A; we have
indeed aex € exHn(Q)ex: we can either use the above basis, or we can simply use (1.20) to get
Par = ¢a€§ = exthaexr. Hence, we have H C e H,(Q)ex. Finally, we conclude since every element
of the basis (6.22) lies in H. |

Lemma 6.24. There is a unitary algebra homomorphism from Hx(Q) to exHn(Q)ex.

Proof. We define the algebra homomorphism from Hj(Q) to exH,(Q)ex by sending:
e the generators ¥ € Hy(Q) for a € {1,...,n}\ {A1,..., Aa} to Yeex € exHn(Q)ex;
e the generators y» € HA(Q) for b € {1,...,n} to yser € exHn(Q)ex;
e the generators e® (k) € HA(Q) for k € K to e(k) € exHn(Q)ex.
It suffices now to check the defining relations of Hx(Q). We will only check (1.24)—(1.27), the

remaining ones being straightforward.

(1.24). Let a ¢ {A1,...,Aa} and k € K. If kg € Kj, as a # A for any j' we have ka1 € K; (cf.
(6.3)). Hence, in Hx(Q) the relation (1.24):

(Yap? +1)e® (k) if ka = ka1,

® ®
a Ja k)=
Vg Yar16” (k) {yaw§€®(k) if ko # kay1,

comes from the corresponding relation in Hj; (@Q7). The same relation:

(Yata + D)e(k) if ka = ka1,

waya-kle(k) = {yawae(k) if kg 7é ka+17

is verified in exH,(Q)ex, as a relation in H,(Q).
(1.25). Similar.

(1.26). Similarly, the indices kq,ka+1 are in a same K;. Hence, the relation (1.26) in HA(Q) comes
from a relation in H>\j (@), and the same relation is verified in exH, (Q)ex.

(1.27). For j € Jand a € {A\j—1+1,...,A; — 2}, the relation (1.27) is a relation from Hy,(Q”), and
this same relation is verified in exHn(Q)ex.

O

Proposition 6.25. The previous algebra homomorphism Hx(Q) — exHn(Q)ex is an isomorphism.
In particular, we can identify Hx(Q) to a (non-unitary) subalgebra of Hn(Q).

Proof. We know by Theorem 1.5 that Hy, (Q’) has for basis:

A

J J

{wwjy:fjff ey e(k) s wy € G, ra €NK € IC;J'} ,
hence, the following family:

{woyit -y (k) w e Gx,ra €N K€K x - x K7

is a basis of Hx(Q). We conclude since by (6.11) the homomorphism of Lemma 6.24 sends this basis
onto the basis of exH,,(Q)ey given in Lemma 6.23. (In particular, note that ¥% € H(Q) for w € &y
is sent to Yuwex € exHn(Q)en.) O

6.3.2 Decomposition theorem

We recall the notation my for A =4 n introduced at (6.2).

Theorem 6.26. We have an A-algebra isomorphism:

H,(Q) ~ @ Mat,,, Hx(Q).

AEgn
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The remaining part of this paragraph is devoted to the proof of Theorem 6.26. Due to (6.16), it
suffices to prove that we have an A-algebra isomorphism:

e(AM)Hn(Q) ~ Mat,, Hy(Q). (6.23)

Let us label the rows and the columns of the elements of Mat,,, Hx(Q) by (t',t) € (J*)?, and let us
write Ey ¢ for the elementary matrix with one 1 at position (t',t) and 0 everywhere else. Recall the
following property verified by the Ey

Vi, ', 5,5 € J*, By By o = 0o Ev 5. (6.24)
We have the following A-module isomorphism, where t,t' € J*:
e()Hn(Q)e(t) ~ HA(Q)Ey 4.

Indeed, let us define:
Oy HA(Q)Ey « — e(t)H,(Q)e(V), (6.25)
Wy e(t)Han(Q)e(t) = Ha(Q)Ev '
by:
Yv € H>\(Q)7 (bt’,t(UEU,L) = 1/)7\_;11}1/)7\.“
Vw € e(t)Hn(Q)e(t), Uy ((w) = (Qpﬁt,w’l/}ﬂ_:l)Et/’t.

The goal sets of (6.25) are respected, according to (1.20), (6.6) and Proposition 6.25. Indeed, for
instance we have, for v € Hx(Q) ~ exHn(Q)ex:

Oy (vEy () = e(t/)z/)ﬂzwd)me(t) € e(t/)Hn(Q)e(t)A

Remark 6.27. Our map Py  is similar to | , (20)].

Furthermore, these two maps ®¢ ; and ¥y , are clearly A-linear and by Proposition 6.18 these
are inverse isomorphisms. We now set:

oy i= @ @i Maty, HA(Q) = e(WHA(Q),

(6.26)
Uyi= @ Wui: e(VHL(Q) > Mat,, HA(Q).

From the properties of ®y ¢ and Wy ¢, the above maps are inverse A-module isomorphisms; it now
suffices to check that ¥y is an A-algebra homomorphism. This property comes from the following
one:

Uy (we ) Vs s(Wer 5) = Uy (W (W 5), (6.27)

where t,t,5,5" € J*, wy € e(t)Ha(Q)e(t) and wy o € e(s)Hn(Q)e(s). The equality (6.27) is
obviously satisfied when t # s’ since both sides are zero, thus we assume t = §'. We have, using
Proposition 6.18 and noticing that wes = e(t)wy,s:

‘I/t/,t(wt/,t)‘ljs',s(ws',s) =Wy (wy )P (wi,s)
= (l/hruwt',tl/fﬂ:l)(d)rrf wt,swﬂ;I)Et',tEt,s
= wwt/wt',t[i/)ﬁrl Yy e(t)]wt,swﬂglEt/,s
= wm, wt’,twt,s¢7r;1 EU,s
‘I/t/,t(wt/,t)‘ljs',s(ws',s) = ‘I/t/,s(wt/,tws/,s)-

Finally, the maps ® and ¥, are inverse A-algebra isomorphisms; we deduce the isomorphism (6.23)
and thus Theorem 6.26.
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Remark 6.28. For k € K, we write here k* := 7k € IC@. Using Proposition 6.18 and Lemmas 6.20,
6.22, we can give the images of the generators of e(A\)H,(Q) for each t € J* and k € K"

Ua(e(k)) = e(k™) Ev,
Va € {1, . ,’I’L}7 \I’A(yae(k)) = yﬂ-t(a)e(k*)Et,t,
Va € {1,...,n — 1}, U, (ae(k)) :1e(k*)Esa.t7£

Tsq-tSa™

_ {e(k*)Esa.t,t if t # tars,
Vr@e(k) By if ta = tat

id if to 75 ta+1
Swt(a) if te = fa+1
like those described in | , (22)] and [PA, (3.2)—(3.4)].

Remark 6.29. We consider the setting of Proposition 1.7. We can prove that the algebra isomorphism
Hn(Q) ~ @ nMatm, HA(Q) is a graded isomorphism (with the canonical gradings on the direct
sum, matrix algebras and tensor products). In particular, we have (recall the notation k' of (6.10)):

degy)_—1e(k) = deg i e(k') =0,
ﬁ/

(note that 7s,.(sqm; * = { , cf. Lemma 6.12). We observe that these images look

as a consequence of Lemma 6.10 and Remark 6.11. Indeed, if for s € J” and a € {1,...,n — 1} we
have s, # 541 then for any k € K° we have ¢y, k,,, =0 (cf. (6.13)).

6.4 Cyclotomic version

Let us consider a weight A = (Ax)rex € N’C; for j € J, we write A7 € N¥i the restriction of A to
KCj. We show here how the isomorphism of Theorem 6.26 is compatible with cyclotomic quotients,
as defined in (1.33).

6.4.1 Factorisation theorem

For X\ =4 n, we define the cyclotomic quotient of Hx(Q) by:

1 d
H(Q) =H3, (@) @ @ HY, (Q),
that is, H{(Q) is the quotient of Hx(Q) by the two-sided ideal generated by the elements:

A,
emyle(k) =0 VkeK' Vae {ho+1,..., a1 +1}. (6.28)

=0

3

Theorem 6.30. The isomorphism of Theorem 6.26 factors through the cyclotomic quotients, in
other words we have:
HY(Q) ~ €D Matw, HR(Q).

Al=gn

Proof. Let A =4 n and let J (resp. Jx) be the two-sided ideal of e(A\)H, (Q) (resp. HA(Q)) generated
by the elements in (1.33) (resp. (6.28)). It suffices to prove that Uy (J) = Mat,, Jx: we will prove
\I//\(j) - MathJA and J D (I’/\(Matm)\:f/\).

e Each element of J can be written as:

At
ky

Z Z Z v Zcmy{ne(kt) w.

v,w€Hy (Q) te JA ktekt m=0

By (1.20), Proposition 6.18 and Lemma 6.20, the previous element becomes:

Aki
DD D v [ D enumelme kY | b
v,wEHL(Q) teJA ktekt m=0
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As ¥, is an algebra homomorphism and Mat,,, Jx is a two-sided ideal, it suffices to prove that
for any k € K" and t€ J* we have, with a = m¢(1):

Ak,
Z em U (ys e(k)) € Matm, (J»).
m=0
The above element is exactly:
Ag,
Z cm¥Ya e(k)Ex
m=0
(recall that mx = id), hence we are done since the element Zi\n’“:ao emygre(k) lies in Jy; in

particular, there is a j € J such that a = X;_1 + 1, cf. Proposition 6.7.

e Each element of Mat,,, Jx» can be written:

Ak,

)OEED DD S oY e B | w.

L eJX v,weHN(Q) et a€{Xo+1,...,Ag—1+1} m=0
As @, is an algebra homomorphism and 7 is a two-sided ideal, it suffices to prove that for any
A
e JNkeK" anda= X1 +1 for j € J we have:

A,

Z em®r(yae(k)Ey () € 7.

m=0

We consider an element s € J* which verifies 51 = j (we can take for instance s := (1,a) - t*);
note that m5(1) = A\j_1 + 1 = a. Using (6.24), we can write the above element:

Mg,
D cm®a(ie(k) By o) Da(Bs.o),
m=0
hence it suffices to prove that
Ag,
0= cn®r(yle(k) Be.y),
m=0
belongs to the ideal J. We get:
Ag,
= cmt, -1y e(k)n,
m=0
Ag,
= Z meﬂ.*”/)ﬂ's y;nfl(a)e(ks)
ﬁ/ S
m=0
Mg,
a=1 10U cmytte(k®),
Q’l)ﬂt/ld) s Z_O Y ( )

where we recall the notation k* € IC° from (6.10). We have ki = kq, thus we get:
Ags

_ _ - mm k57
=t 1tr, Y cmyl'e(K”)

m=0

€J

and we are done.
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6.4.2 An alternative proof

We explain here how we can get Theorem 6.30 from | , §3.2.3]. We make the following assumption:
Qrrr (U, 0) = 1g g (w — v) 7Rk

where the ry s, ci s are some scalars; we refer to | , §3.2.2] for more details about the setting.
In particular, we suppose that A = ZkelC Arwy where the wy are the fundamental weights related
to the ambient Cartan datum. We define the set Ca by (cf. | , §3.1.3)):

Ka={(k,m):kek,me{l,...,A}};

we will also use the sets KCp; = (Kj),; for j € J. For t = (k,m) € Ka, we write k; = k and
wt = wg. Finally, for convenience we introduce some notation:

e we write =4 instead of =k, ;
vil..vg!

p1lepup!? mn

o if ;i (respectively v) is an r-composition (resp. s-composition), we set m,, =
particular with the 1-partition v = (u1 + - - - + pr) we recover my, = my,.

Theorem 6.31 (| , Theorem 3.15]). There is an algebra isomorphism

H (Q) ~ @ Matm,,, (@ o, (Q)> :

(ne)tEAn tEKA

If we look closer to the proof of | ], comparing to the proof of Theorem 6.26 the idea is still to
consider some elements e(t) but with idempotents which “refine” the idempotents e(k) (these idem-
potents are indexed by K, which is much bigger than £™). In particular, the following isomorphism
for any A =4 n, writing (n)); for the restriction of (n¢)icx, to Kas:

Mat,, HY (Q) ~ F) Mat o, | (@ HY! (Q)) (6.29)

(ne)el=an tEXA
s.t. Vj,(ng VeE G N
implies our Theorem 6.30 by summing over all A 4 n. In order to prove (6.29), we can simply apply
Theorem 6.31 to the factors Hf\\j (Q7) of HY(Q). We have, for j € J:

AJ I\ ~ wi J
@)= P Matn ;) & m@) ] (6.30)
(), Fass LR A
Before going further, we give the following lemma. Let us mention that we can find a non-

cyclotomic statement in [Rou, Corollary 3.8]; see also | , Proposition 2.4.6] and [ , Lemma
1.16].

Lemma 6.32. Let j € J. If k € K; then HiF(Q) ~ Hi* (Q7).

Proof. Tt suffices to prove that every e(k) € H,(Q) with k € K" \ K} vanishes in Hy*(Q). To that
extent, we prove by induction on a € {1,...,n} the following statement:

Vk e K", [3be{1,...,alky ¢ K; = e(k) =0 in H*(Q)]. (6.31)

First, we shall verify this proposition for a = 1: let k € K™ such that 3b € {1,...,1},k ¢ K;. We
obviously have k1 ¢ K;, in particular k1 # k thus it follows directly from the cyclotomic condition
(1.33) that e(k) = 0 in H;*(Q). We now assume that (6.31) is verified for some a € {1,...,n — 1}
and we let k € K" such that 3b € {1,...,a+ 1}, ks ¢ K;. We know from the induction hypothesis
that e(k) = 0 in Hy*(Q) if ko & K; or ka1 € K;, hence it remains to deal with the case ko € K;
and ka1 € KCj. Recalling (6.12), this implies that Q, k.., = 1. In particular, the defining relation
(1.26) becomes:

Vle(k) = e(k). (6.32)

Besides, using (1.20) and the induction hypothesis, we have:
Yae(k) = e(sq - k) Yo = 0 in Hy ¥ (Q).
=0

Thus, left-multiplying by %, and using (6.32) we get e(k) = 0 in H5*(Q) which ends the induction.
Finally, for a = n, we get that if k € K™ \ K} then e(k) = 0 in H7*(Q). a
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We now go back to the proof of (6.29). Using Lemma 6.32, the isomorphism (6.30) gives:

Q=R @)=Q) D Mt | @ HI@

. t
jeJ ]EI ) E i tEK pj

We obtain:

B> P QM | Q HIQ

. t t
(nt)tlEAn jeJ tEK )
s.6.V5,(n] )t l= s Ay

= D Matwg ®®

t
(ne)tl=an JEJ teK,

sAtAVj,(nz)t‘:Aj Xj

HA(Q) =~ T Mat,, <® HZ:(Q)) .

(nt)tl=An teka
sAtAVj,(nz)t‘:Aj Xj

Finally, we deduce (6.29) and thus Theorem 6.30 from the equality m,\m?nt) = M(n,)-

6.4.3 An application

Here we explain how our Theorem 6.30 is related to our previous result Theorem 4.1. We suppose
that A = C and that all the KC; for j € J ~ {1,...,d} have the same finite cardinality e > 2.
Identifying the sets K; with I = Z/eZ, we have K ~ K = I x J. We also assume that A' = ... = A%
in particular, we will simply write A for each of these parts. Finally, we consider ¢ € C* a primitive
eth root of unity, and we write: R
BK : H) (¢) = HA(Te)
for the C-algebra isomorphism of | ].
We have an algebra isomorphism, constructed by Poulain d’Andecy [PA]:

JPA : Y2, (q @ Mat,., H2 (q),

AEgn

where ITIf(q) = I/-if\\l Q- ® ﬁfd (¢). This isomorphism is a generalisation of the main result of

[ ] (which is in fact a particular case of a result of Lusztig [[.u]), and is defined on the generators
as follows:
JPA(ta) Z e By, (6.33)
teJn
JPA(Xa) = Y Xy e, (6.34)
teJn
JPA ga - Z gwt(a)Et t+ Z \/_Et Sq-t (635)
teJm” teJm
ta=ta+t1 taFta+1

Remark 6.33. Note two slight differences with [PA]:
e our elements Ey ¢ are written E,, where x is a character of (Z/dZ)" = J™;

e Poulain d’Andecy considers left cosets instead of our right ones, in particular his minimal length
representatives m, verify m, = 7~ !

We recall from (1.38) that I' = IT;c jT'c; in particular, its vertex set is exactly I ~ K = I x J. The
two previous results, together with our Theorem 6.30, gives straightforwardly the following theorem.

Theorem 6.34. We have an algebra isomorphism:
2 0 BK o JPA : Y2, (¢) ~ HA(I),

where:
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e the homomorphism BK : @AMathﬁﬁ}(q) — @\Mat,, HY(T) is naturally induced by BK :
H7 (q) — HR (Te);

e the homomorphism ®5 : @\Mat,, HY (') — HA(T) is the isomorphism of Theorem 6.30, that
is, induced by the homomorphism @, : @ Mat,, HA(I') — H,(T).

An algebra isomorphism \?gn(q) — HA(T) was already constructed in Theorem 4.1; we shall

denote it by BK. An interesting question is to know whether we recover the same isomorphism as
above. In other words, does the diagram of Figure 3 commute?

S JPA =
Y. () ———— D Matw, H (9)

)\|:dn

BK BK

HA(T) v P Mat,,, HY ()

n )\lzdn
Figure 3: A commutative diagram?

As we deal with algebra homomorphisms, it suffices to check that the images of the generators
of Yd »(q) are the same. We will use the following notation: for t € J" we set t* := m¢ - t. (With
X := [f], we have of course t* = t*.) Moreover, we will keep on using the notation t € J ™ of Section 6
for the elements we denoted by 7 € J" from Section 1 to Section 5.

Image of t,. Let 1 <a <n. Recall from §3.1 that:
BK(ta) = Y e(i)€" = > e(t)g" € HA(D). (6.36)
jen teJn
Recalling (6.33), we obtain:
BKoJPA(ts) = > > €“e(k)Biie @) Maty, HR (D).
(€T kert” AEan
Hence, with the usual manipulations, we get:

®hoBKoJPA(t) = > Y £y, —1re(m " k)

tEJ™ e K

=3 > ghelk)

teJ™ ke Kt

@} o BK o JPA(ta) = » _ €"e(t) € HA(D),

teJn

thus it coincides with (6.36).

Image of X,. (It is in fact enough to study the case a = 1). Let 1 < a < n. Recall from §3.1

that:
=D (L —ya)e(@) = Y q" (1 ya)e(k) € HY(D), (6.37)

icln™ keK™

where we write ¢F = ¢ for k = (i,j) € K = I x J. Recalling (6.34), we get:

BK 0 JPA(X,) = Y Xr (0 B € @D Maty, HY(D).

teJn AEgn
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We write, where j :=t, and A := [t]:

j )
Z qkﬂt(a)(l — ym(a))e(kj) c Hf\x] (Fe) c HQ(F),

Yy
kier;?
where k7 € IC;j is indexed by (Aj—1+1,..., ;). Hence, we have:

Xowy = D 6" O (1 = yr ))e(k) € HA(D),

ke K
and thus:
PR oBK o JPA(XL) = D D ¢ @B (1 = yr(a)e(R) B
teEJ™ ge K"
_ Z Z qkm(a)qpﬂ_fl(l — Yr(a))e(k) Y,
teEJ™ ge K"
- Z Z q "“‘”1/) 1(1 = Yry(a))¥mee(K)
teJ" pe K t*
PhoBKOoJPA(X,) = > Y dfeu, —19r (1= ya)e(k),
teJgn k‘EK‘

where we have used Lemma 6.20. Hence, using Proposition 6.18 we finally get:
PR oBKoJPA(X) = > Y " (1—ya)e(k) = Y ¢"(1 - ya)e(k),
teJn ke Kt kEK™
which is (6.37).

Image of g,. Let 1<a <n. Recall from §3.1 that:
BK(ga) = Y ($aQalk) — Pu(k))e(k) € HN(T), (6.38)

ke K™

where Qq(k), Pa(k) € C[[ya, Ya+1]] are some power series. For convenience, we write Qa(k) P.(k) €
C[[Ya; Ya+1]] the underlying power series, which verify Qa( ) (Yas Yat1) = Qa(k) and P, (k) (Ya) Yat1) =
Pa(k) These power series depend only on ks and Ka+1, that is, @a(k)(KY )= Qu (K')(Y,Y’) and
Pu(k)(Y,Y') = Py (K)(Y,Y") if ko = k. and kay1 = K}, 1. Moreover, recall that if k and
labellings of two different t € J", we have Qa(k) = /g and Pa(k) =0 (cf. Remark 2.11).
Recalling (6.35), we get:

BKoJPA(ga) = Y e Buit Y. VaPus,t € @) Maty, HY(D).
teJ” teJm AEgn
ta=ta+1 taFtat1

With j :=t, and X := [t], we have:

Iri(a) = Z (wﬂ't(a)Qﬂ't(a)(kj) - Pﬂ't(ll)(kj))e(kj) € Hﬁ\\j (Fe) Cc HQ(F)

. A
kiek’’
J

Sq - k are

(recall that k7 € IC;’ is indexed by (Aj—1 +1,...,A;)), hence:

Irir = >, (ry@)Qro(a) (k) = Pry(a) (K)e(k) € HA(D).
ke K
‘We obtain:

PR oBKoJPA(g) = Y Y 1 (U@ (k) = Pra) (K)e(k)dm,

teJ™ keKt*
ta=ta+1

S1

DI V@ —re(k)yn,, . (6.39)

teJ™ keKt*
taFtat1

Sa
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We first focus on the first sum Si; let t € J™ such that t, = to4+1 and k € K'". We can notice
that thanks to Proposition 6.7 we have m¢(a + 1) = m¢(a) + 1. Using Lemma 6.20 and the properties

of Q we have (recalling the notation k' introduced at (6.10)):

Qo) (R)e(k)¥r, = Qu,(a) () Yro(a), Yro(a)+1) Yo e(K')
= ¥r Qi (@) (K) (Ya, Yar1)e(k')
= e Qa(K") Ya, Yat1)e (k')
Qri(a) (K)e(k)tpr, = Ym Qa(k)e (k).
The same proof gives Py, (q)(k)e(k)Yx, = tr Pa(k')e(k'). We have thus:
=1 (U (@) Qi (0) (K) = Prya) (K))e(R)tor, =, =1 (Y (a) ¥, Qa (k') — 1o P (")) e(K").
Using (1.19) and Lemma 6.22, we obtain:
Vot (Vi (@) @i (a) (K) = Pryay (R))e(R)or = ¢ —19Pm, (1aQa (k') — Pa(k'))e(k").
Finally, since s, - t = t, we get by Proposition 6.18:
Vot (Vi (@) @i (a) (K) = P (o (K))e(R)pm, = (VaQa(k") = Pa(Kk"))e(k"),

so the first sum becomes:

Z Z Yt (V@) @i (a) (B) = Pry(ay (K))e(R)m,

teJ” keKt*
ta=ta+1

= ) ®aQalk) = Pu(k"))e(k').  (6.40)
teJ” kteKt
ta=ta+1
We now focus on the second sum Sz; let t € J" with t, # te41 and let k € K. By Lemma 6.21
we have directly:

1#”:16(”3)1%5&4 = 6(kt)wwjlwﬂsa»t = e(kt)wch

YooY VAR, = Y Y Vaelk )

teJ” keKt* teJ™ kteKt
taFta+1 taFta+1

Do D Vavee(se kY

teJ” kteKt
taFtat1

Z Z \/awae(ksa't)

teJ™ kSateKsa't
taFtat1

S Vavae(k')

teJ" kteKkt

thus:

taFtat1
Yoo Vabekn, = Y Y (Qa(k)ta — Pa(k!))e(k"). (6.41)
teJ” keKt* teJ™ ktekt
taFtat1 taFta+1

Finally, by (6.39)-(6.41) we get:

®NoBKoJPA(ga) = D Y ($aQalk) = Pa(k)e(k) + > Y (¥aQa(k) = Pa(k))e(k)

teJ"” keKt teJ” keKt
ta=ta+1 taFta+1

D7D (WaQalk) — Palk))e(k)

teJ" ke Kt

@ o BK 0 JPA(ga) = »  (1aQa(k) — Pu(k))e(k),

keK™

which is (6.38).
To conclude, we have checked that the algebra homomorphisms BK and ®A o BK o JPA coincide
on every generator of Yﬁn(q), hence we have the following theorem.
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Theorem 6.35. We have

BK = & 0 BK o JPA,

and the diagram of Figure 3 commutes.
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