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Élie Bretin Roland Denis Jacques-Olivier Lachaud Édouard Oudet
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Abstract

We propose a framework to represent a partition that evolves under mean curvature flows and
volume constraints. Its principle follows a phase-field representation for each region of the partition,
as well as classical Allen-Cahn equations for its evolution. We focus on the evolution and on the
optimization of problems involving high resolution data with many regions in the partition.

In this context, standard phase-field approaches require a lot of memory (one image per region)
and computation timings increase at least as fast as the number of regions. We propose a more
efficient storage strategy with a dedicated multi-image representation that retains only significant
phase field values at each discretization point. We show that this strategy alone is unfortunately
inefficient with classical phase field models. This is due to non local terms and low convergence rate.
We therefore introduce and analyze an improved phase field model that localizes each phase field
around its associated region, and which fully benefits of our storage strategy.

To demonstrate the efficiency of the new multiphase field framework, we apply it to the famous
3D honeycomb problem and the conjecture of Weaire-Phelan’s tiling.

1 Introduction

This paper is concerned by the numerical approximation of an evolving Q-partition Ω(t) following a
normal velocity law given by a conserved multi-mean curvature flow. Recall that a Q-partition Ω =
{Ω1,Ω2, . . . ,ΩN} satisfies for i 6= j,

∪Ni=1Ωi = Q, and |Ω◦i ∩ Ω◦j | = 0, ∀(i, j) ∈ {1, 2, . . . , N}2.

The evolution of the partition Ω can be obtained as the L2-gradient flow (with additional volume con-
straint) of a multiphase perimeter

P(Ω) =

N∑
i,j=1

ˆ
Γi,j

1dσ =

N∑
i=1

ˆ
∂Ωi

1dσ,

where Γi,j = ∂Ωi ∩ ∂Ωj . In particular, the classical physical theory [33, 40] states that this evolution
must follow at least two rules :

(1) At every point x ∈ Γi,j which is not a junction point between three of more interfaces, the normal
velocity Vi,j of the interface Γi,j is proportional to its mean curvature Hi,j :

Vi,j(x) = σi,jHi,j(x) a.e. x ∈ Γi,j ,
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where σi,j correspond to the surface tension coefficients. We assume in this study that all σi,j are
equal to one.

(2) The Herring’s angle condition holds at every triple junction, e.g. if x is a junction point between
phases i, j and k then

σi,jni,j + σj,knj,k + σk,ink,i = 0,

where ni,j denotes the unit normal at x to Γi,j , pointing from Ωi to Ωj .

Additionally, we assume that the volume of each phase Ωi is conserved during the evolution, i.e.

d

dt
Vol(Ωi) =

d

dt

ˆ
Ωi

1dx = 0, for all i ∈ {1, 2, . . . , N}.

There is a vast literature on numerical methods for the approximation of mean curvature flows. The
methods can be roughly classified into the following four categories (some of them are exhaustively
reviewed and compared in [22]): parametric methods [23, 6], level set methods [43, 41, 42, 25, 19], con-
volution/thresholding BMO type algorithms [10, 34, 46, 24] and phase field approximations [38, 17].

The main goal of this work is to propose an efficient and accurate numerical phase field model [38, 17]
of conserved multi-mean curvature flow in the case of a great number of phases N . More precisely, we
will see that classical approaches lead to some instability issues which can be explained by using standard
formal asymptotic expansion [14, 45, 8, 36, 29]. In particular, we will see that the classical phase field
method has a precision of order 1 only. We will improve the accuracy of this numerical model by proposing
a new version of order 2.

1.1 Classical phase field models

We first introduce the special case N = 2. Let us consider an evolution set Ω(t) with a normal velocity
law given by

Vn = H.

As previously, H denotes the mean curvature of the interface and this evolution can also be obtained as
the L2-gradient flow of the perimeter

P (Ω) =

ˆ
∂Ω

1dσ.

The concept of the phase field method consists to approximate the perimeter by the Cahn Hilliard’s
energy [15], defined for all function u ∈ H1(Q,R), by

Pε(u) =

ˆ
Q

(
ε
|∇u|2

2
+

1

ε
W (u)

)
dx, (1)

where ε is a small approximation parameter and W is a double well potential assumed to be W (s) =
1
2s

2(1− s)2 in this work. Notice that Modica and Mortola [38] proved that Pε converges to cWP in the

sense of the Γ-convergence for the L1 topology, where the constant cW =
´ 1

0

√
2W (s)ds and where

P (u) =

{
|Du| if u ∈ BV (Q, {0, 1}),
+∞ otherwise.
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Here, |Du|(Ω) denotes the total variation of a function u ∈ BV (Ω) (see [4]) and is defined by

|Du|(Ω) =

ˆ
Ω

|Du| = sup

{ˆ
Ω

udiv gdx; g ∈ C1
0 (Ω,Rn), |g| ≤ 1

}
.

In particular, when Ω is a set with finite perimeter [4, 37], the characteristic function 1Ω of Ω satisfies
P (1Ω) = P (Ω). More precisely, Modica and Mortola show that 1Ω can be approximated by the sequence

uε(x) = q
(

dist(x,Ω)
ε

)
which satisfies

lim
ε→0

Pε(u
ε) = cWP (Ω).

Here, dist(x,Ω) is the signed distance function to Ω and q is the profile function associated to the potential
W which is defined by

q = argmin
p

{ˆ
R

√
W (p(s))|p′(s)|ds; p(−∞) = 1, p(0) = 1/2, p(+∞) = 0

}
,

where p ranges over all Lipschitz continuous functions p : R→ R. It is a well-known fact that

q′(s) = −
√

2W (q(s)) and q′′(s) = W ′(q(s)), for all s ∈ R,

which implies that q(s) = (1 − tanh(s))/2 in the case of the standard double well potential W (s) =
1
2s

2(1− s)2.

The classical Allen Cahn equation [2], obtained as the L2-gradient flow of Pε, reads

ut = ∆u− 1

ε2
W ′(u).

Note that existence, uniqueness, and a comparison principle have been established for this equation (see
for example chapters 14 and 15 in [3]).
A smooth mean curvature flow Ω(t) can then be approximated by

Ωε(t) =

{
x ∈ Rd;uε(x, t) ≥ 1

2

}
where uε is the solution of the Allen Cahn equation with the following initial condition

uε(x, 0) = q

(
dist(x,Ω(0))

ε

)
.

Notice that standard formal asymptotic expansion [14, 45] of uε near the interfaces shows that uε is
quadratically closed to the optimal profile, i.e

uε(x, t) = q

(
dist(x,Ωε)

ε

)
+O(ε2),

with associated normal velocity V ε satisfying

V ε = H +O(ε2).

More rigorously, the convergence of ∂Ωε(t) to ∂Ω(t) has been proved for smooth motions by [17, 21, 9]
with an optimal convergence rate about O(ε2| log ε|2).
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The case of multiphase system N > 2 is very similar. The multi-perimeter P can be approximated
by the multi Cahn-Hilliard energy defined for all u = (u1, u2, . . . , uN ) by

Pε(u) =

{
1
2

∑N
i=1

´
Q

(
ε |∇ui|2

2 + 1
εW (ui)

)
dx, if

∑N
i=1 ui = 1,

+∞ otherwise.

Notice that if uε is a sequence satisfying lim inf Pε(u
ε) < ∞, then Modica-Mortola’s result proves

that uε → u = (1Ω1
, 1Ω2

, . . . , 1ΩN
), and the constraint

∑N
i=1 ui = 1 ensures that Ω = {Ω1,Ω2, . . . ,ΩN}

is a partition of Q.

The Γ-convergence of Pε to cWP is also established in [44]. More general Γ-convergence results in
the case of non uniform surface tension σi,j is obtained in [5, 13]. Note also that phase field models that
handle the case of anisotropic surface tension are introduced and analyzed in [30, 29].

The L2-gradient flow of Pε translates into the following Allen Cahn system

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t), ∀i = 1, . . . , N ,

where the Lagrange multiplier λ is defined by the partition constraints
∑N
j=1 uj = 1 and is explicitly

computed by the formula

λ =
1

N

N∑
i=1

1

ε
W ′(ui).

More precisely, sharp interface limit derived for instance in [29], shows that, at least formally, the solution
uε expands near the interface Γi,j as

uεi = q
(

dist(x,Ωε
i )

ε

)
+O(ε2),

uεj = 1− q
(

dist(x,Ωε
i )

ε

)
+O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . , N} \ {i, j},

with associated normal velocity law V εi,j satisfying

V εi,j = Hi,j +O(ε2).

Then we obtained that this phase model if formally of order two with respect to ε.

The case with additional volume constraints is similar. Having in mind the approximation Vol(Ωi) '´
Q
uidx, the volume constraint on phase Ωi can be approximated on phase field function ui by

d

dt

(ˆ
Q

uidx

)
= 0.

Then, the constrained- L2-gradient flow of Pε reads as

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t) + µi(t)

√
2W (ui), for all i ∈ {1, 2, . . . , N}, (2)

where µi
√

2W (ui) is the Lagrange multiplier associated to the volume constraint d
dt

´
Q
uidx = 0.
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Remark 1.1. Although it is more natural to use a Lagrange multiplier on the form µi instead of
µi
√

2W (ui), our motivation follows the case of conserved mean curvature flow where it is proved [12, 1]

that using a Lagrange multiplier on the form
√

2W (u)µ(t) instead of µ(t) leads to a conservation of the
volume with an error of order O(ε2) instead of O(ε).

Moreover, in the case of periodic or Neumann boundary conditions on ∂Q, all these Lagrange multi-
pliers become explicit and can be identified as

µi =
1´

Ω

√
2W (ui)dx

[
1

ε2

ˆ
Q

W ′(ui)dx− Λ

]
,

and

λ =
1

N

N∑
i=1

1

ε2

[
W ′(ui)−

´
Q
W ′(ui)dx´

Q

√
2W (ui)dx

√
2W (ui)

]
+

1

N

N∑
i=1

√
2W (ui)´

Ω

√
2W (ui)dx

Λ.

Here Λ =
´
Q
λdx is a free parameter that is the consequence of the non independence of the constraints

that regions do not mix and that regions have fixed volume. In practice, we do not observe any influence
on the choice of Λ with respect to the stability and the efficiency in our numerical experiments. We then
take Λ = 0.

1.2 Computational complexity and limitation of standard phase field models

Recall that we have in mind applications which involve hundreds of phases on a three-dimensional spatial
domain discretized with 10243 points. In that case, storing one phase field function ui (in double-precision
floating-point format) in all the computation box requires 8 GiB of memory. Simulating the evolution of
partition with more than a few phases becomes nearly impossible on an average computation server. We
then need to use an adapted storage strategy. As pointed previously by many works (see e.g. [32], [49]
and [48]), the phase-field function ui is expected of the form

ui(x) ' q
(

dist(x,Ωi)

ε

)
' 1Ωi

(x), (3)

and vanishes far away from its support set Ωi. It appears then reasonable to save memory and compu-
tational time outside of this localized area.

Unfortunately, the previous classical phase field model leads to an insufficiently accurate approximation
(3), which does not vanish enough far away from the interfaces. Therefore, a storage strategy based on
storing non-null parts is not effective with this model. As an illustration, we plot on figure 1 a numerical
experiment obtained on a two-dimensional domain with nine phases. We can then observe that the
phase u1 can be negative and that a non negligible part of its mass is located on every interface and
every multiple junction. More precisely, the magnitude of this badly localized part is about 10−3. It
corresponds to the same order as ε, that is equals to 1/256 in this numerical experiment. In particular,
it suggests a phase field model of order 1 only. Other phases show the same behavior.
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Figure 1: Example of numerical experiment using the classical phase field model with 9 phases and
ε = 1/256; At a given time t, up left: the function

∑
i iui where each color matches to a phase ; up

right: the first phase u1; down left: the logarithm of the absolute value of u1, i.e log(|u1|), where a
contribution of magnitude O(ε) is localized one every interface Γi,j ; down Right: the negative part of
u1, i.e min(u1, 0), which appears of magnitude O(ε).

In order to find the origin of this bad localization of the mass, we derive in section 2 an asymptotic
expansion of the solution uε. In particular, we observe that near an interface Γi,j , uε is in fact expected
of the form 

uεi = q
(

dist(x,Ωε
i )

ε

)
+O(ε),

uεj = 1− q
(

dist(x,Ωε
i )

ε

)
+O(ε),

uεk = O(ε), for k ∈ {1, 2, . . . , N} \ {i, j}.

A direct consequence of this result is that a quantity of size O(ε) of the mass of ui may be localized
outside of the set Ωi, which raises some instability issues when the number of the phase becomes large.

1.3 A new and more accurate phase field model

We shall now improve the accuracy of the previous phase field model. The idea is to modify the form
of the Lagrange multiplier λ in order to co-localize its effect with the interface of the current phase-field
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function. Following the same idea as [12], we propose to replace λ by λ
√

2W (ui), which leads to this
new slightly modified phase field model:

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t)

√
2W (ui) + µi(t)

√
2W (ui), (4)

where λ and µi are defined accordingly to the following constraints :

d

dt

ˆ
Q

uidx = 0,

N∑
j=1

uj = 1.

As previously, straightforward computations show that λ and µi can be obtained as

µi =

1
ε2

´
Q
W ′(ui)dx´

Q

√
2W (ui)dx

− λi´
Q

√
2W (ui)dx

(5)

and

λ =

∑N
j=1

[
1
ε2W

′(uj)− µj
√

2W (uj)
]

∑N
j=1

√
2W (uj)

. (6)

Here λi =
´
Q
λ(x, t)

√
2W (ui)dx and the vector λ = (λ1, λ2, . . . , λN ) can be computed as the solution

of the linear system
(Id−A)λ = b,

where

Ai,j =

[ˆ
Q

√
2W (ui)

√
2W (uj)/

´
Q

√
2W (uj)dx∑N

k=1

√
2W (uk)

dx

]
and

bi =

ˆ
Q


1
ε2

∑N
k=1

[
W ′(uk)−

´
Q
W ′(uk)dx´

Q

√
2W (uk)dx

√
2W (uk)

]
∑N
k=1

√
2W (uk)

√
2W (ui)

 dx.

Notice that a numerical experiment similar to figure 1 is plotted in figure 2 using this new slight variant
of the classical phase field model. We now clearly observe that the mass of each phase ui is well localized
in the set Ωi. Moreover, the magnitude of the negative part is now about 10−6 which corresponds to the
size of ε2. Thus, this model presents better properties of localization which is of crucial interest from a
practical point of view as it is detailed in the next sections. To estimate the order of precision of this
phase field model, we also derive an asymptotic expansion of its solution. In particular, we will see, at
least formally, that uε is now expected near interface Γi,j to be of the form

uεi = q
(

dist(x,Ωε
i )

ε

)
+O(ε2),

uεj = 1− q
(

dist(x,Ωε
i )

ε

)
+O(ε2),

uεk = O(ε2), for k ∈ {1, 2, . . . , N} \ {i, j}.

In particular, this experiment confirms the previous observations: this new model induces a quantity of
size O(ε2) only of the mass of ui that may lie outside of the set Ωi. With this new model, the memory
storage strategy allows us to perform numerical phase field experiment with more than hundred phases
in 3D and with a resolution grid of size 10243 on an average calculation server as it is illustrated below.
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Figure 2: Example of numerical experiment using our new proposed variant of the multiphase field
model (4) with 9 phases and ε = 1/256; At a given time t : Up left: the function

∑
i i ui where each

color localizes each phase ; Up right: the first phase u1. Down left: the logarithm of the absolute
value of u1, i.e log(abs(u1)). Down Right : the negative part of u1 i.e min(u1, 0) which appears now of
magnitude O(ε2)

1.4 Outline of the paper

The section 2 is devoted to the formal asymptotic expansion of the two phase field models introduced
above. Section 3 presents the numerical scheme while Section 4 details its implementation (compressed
storage technique, algorithm details, interfaces extraction and refinement). Finally, the section 5 presents
numerical experiments, where some examples in 2D and 3D involving more than a thousand of phases
are computed. The classical 2D and 3D honeycomb problem is addressed numerically as a testbed for
our multiphase model.

2 Formal asymptotic expansion of the two phase field model

This section concerns the asymptotic expansion of the solution of the two phase field models :
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• The classical one

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t) + µi(t)

√
2W (ui).

• The modified approach

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t)

√
2W (ui) + µi(t)

√
2W (ui).

We follow the method of matched asymptotic expansions proposed in [14, 45, 8, 36] around the interface
Γi,j .

Outer expansion: we assume that the so-called outer expansion of uεi , i.e. the expansion far from the
front Γi,j , is of the form

uεi (x, t) = u0
i (x, t) + εu1

i (x, t) +O(ε2), for all i ∈ {1, 2, . . . , N}.

In particular, analogously to [36], it is not difficult to see that

u0
i (x, t) =

{
1 if x ∈ Ωi(t)

0 otherwise
, u0

j (x, t) =

{
0 if x ∈ Ωi(t)

1 otherwise

and
u1
i = u1

j = u0
k = u1

k = 0, for all k ∈ {1, 2, . . . , N} \ {i, j}.

Inner expansion: in a small neighborhood of Γi,j , we define the stretched normal distance to the front,

z =
di(x, t)

ε
,

were di(x, t) denotes the signed distance to Ωi(t) = {x ∈ Q, uεi (x, t) ≥ 1
2} such that di(x, t) < 0 in Ωi(t).

We then focus on inner expansions of uεi (x, t), λ
ε(x, t) i.e. expansions close to the front, of the form

uεi (x, t) = Uεi (z, x, t) = U0
i (z, x, t) + εU1

i (z, x, t) +O(ε2), for all i ∈ {1, 2, . . . , N}.

Additionally, we consider inner expansion of λε

λε(x, t) = Λε(z, x, t) = ε−2Λ−2(z, x, t) + ε−1Λ−1(z, x, t) + 0(1).

Moreover, we make the Ansatz that

µεi (t) = ε−1M−1
i (t) +M0

i + εM1
i +O(ε2).

Let us also define a unit normal mi to Γi,j and the normal velocity V εi,j to the front as

V εi,j = −∂tdi(x, t) = V 0
i,j + εV 1

i,j +O(ε2), mi = ∇di(x, t), x ∈ Γi,j ,

where ∇ refers to spatial derivation only (the same holds for further derivation operators used in the
sequel). Following [45, 36] we assume that Uεi (z, x, t) does not change when x varies in the normal
direction of Γi,j with z held fixed, or equivalently ∇xUεi ·m = 0. This is equivalent to requiring that the
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blow-up with respect to the parameter ε is coherent with the flow. Following [45, 36], it is easily seen
that 

∇uεi = ∇xUεi + ε−1mi∂zU
ε
i ,

∆uεi = ∆xU
ε
i + ε−1∆di ∂zU

ε
i + ε−2∂2

zzU
ε
i ,

∂tu
ε
i = ∂tU

ε
i − ε−1V εi,j∂zU

ε
i .

Also recall that in a sufficiently small neighborhood of Γi,j , according to Lemma 14.17 in [31], we have

∆di(x, t) =

n−1∑
k=1

κk(π(x))

1 + κk(π(x))di(x, t)
=

n−1∑
k=1

κk(π(x))

1 + κk(π(x))εz

where π(x) is the projection of x on Γi,j , and κk are the principal curvatures on Γi,j . In particular this
implies that

∆di(x, t) = Hi,j − εz‖Ai,j‖2 +O(ε2),

where Hi,j and ‖Ai,j‖2 denote, respectively, the mean curvature and the squared 2-norm of the second
fundamental form on Γi,j at π(x).

Matching conditions: the matching conditions which connect outer and inner expansion (see [36] for
more details) imply in particular that

lim
z→+∞

U0
i (z, x, t) = 0, lim

z→−∞
U0
i (z, x, t) = 1, lim

z→±∞
U1
i (z, x, t) = 0,

lim
z→+∞

U0
j (z, x, t) = 1, lim

z→−∞
U0
j (z, x, t) = 0, lim

z→±∞
U1
j (z, x, t) = 0,

and
lim

z→±∞
U0
k (z, x, t) = lim

z→±∞
U1
k (z, x, t) = 0, for all k ∈ {1, 2, . . . , N} \ {i, j}.

2.1 Classical model and inner expansion

We first consider the phase field model

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t) + µi

√
2W (ui).

The first order in ε−2 reads for all k ∈ {1, 2, . . . , N} as

∂2
zzU

0
k −W ′(U0

k ) + Λ−2 = 0.

Notice that by adding the boundary conditions obtained from the matching conditions, and using
U0
i (0, x, t) = 1/2, we have

U0
i (z, x, t) = q(z), U0

j (z, x, t) = q(−z), U0
k (z, x, t) = 0 and Λ−2 = 0.

Moreover, the second order in ε−1 shows that for all k ∈ {1, 2, . . . , N},

Vi,j∂zU
0
k =

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hi,j∂zU

0
k

]
+M−1

k

√
2W (U0

k ) + Λ−1.

In particular, the cases k = i and k = j read respectively

V 0
i,jq
′(z) =

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ q′(z)Hi,j −M−1

i q′(z) + Λ−1,

10



and
−V 0

i,jq
′(z) =

(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− q′(z)Hi,j −M−1

j q′(z) + Λ−1.

It follows that

2V 0
i,jq
′(z) =

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
−
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
+ 2q′(z)Hi,j − (M−1

i − M−1
j )q′(z).

Multiplying the last equation by q′ and integrating over R leads to

V 0
i,j = Hi,j −

1

2
(M−1

i −M−1
j ).

Indeed, remark that ˆ
R

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
q′(z)dz = 0,

as ˆ
R

(
W ′′(q(z))U1

i

)
q′(z)dz =

ˆ
R

(W ′(q(z))
′
U1
i dz = −

ˆ
R
W ′(q(z))∂z(U

1
i )dz,

= −
ˆ
R
q′′(z)∂z(U

1
i )dz =

ˆ
R
q′(z)∂2

zz(U
1
i )dz,

and where we use the matching conditions : limz→±∞ U1
j (z, x, t) = 0.

Moreover, the Lagrange multiplier Λ−1 satisfies

ˆ
R

Λ−1(z, x, t)q′(z)dz = cW
M−1
j +M−1

i

2
,

where cW =
´
R(q′(s))2ds =

´ 1

0

√
2W (s)ds.

This shows that there exists a profile η such as Λ−1 equals to

Λ−1(z, x, t) =
1

2
(M−1

j +M−1
i ) η(z).

We then obtain that each U1
k can be defined as the solution of the system

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
= 1

2 (M−1
j +M−1

i ) (q′(z)− η(z)) ,(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
= 1

2 (M−1
j +M−1

i ) (q′(z)− η(z)) ,(
∂2
zzU

1
k −W ′(U1

k )
)

= 1
2 (M−1

j +M−1
i )η(z), if k ∈ {1, 2, . . . , N} \ {i, j}.

with additional Dirichlet boundary conditions at z → ±∞. Notice also that we have the additional
constraint

∑N
k=1 U

1
k = 0, which shows that U1

k cannot vanished for all k as soon as M−1
j +M−1

i 6= 0.
In particular, on the neighborhood of the interface Γi,j , the solution u of the phase field model is expected
of the form 

uεi (x, t) = q
(

dist(x,Ωi)
ε

)
+O(ε),

uεj(x, t) = 1− q
(

dist(x,Ωi)
ε

)
+O(ε),

uεk(x, t) = +O(ε), for all k ∈ {1, 2, . . . , N} \ {i, j},
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if M−1
j +M−1

i 6= 0, and
uεi (x, t) = q

(
dist(x,Ωi)

ε

)
+O(ε2),

uεj(x, t) = 1− q
(

dist(x,Ωi)
ε

)
+O(ε2),

uεk(x, t) = +O(ε2), for all k ∈ {1, 2, . . . , N} \ {i, j},

if M−1
j + M−1

i = 0. Finally, the classical phase field model admits an order of convergence about O(ε)
only.

2.2 Modified model and inner expansion

We now consider the phase field model

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t)

√
2W (ui) + µi(t)

√
2W (ui).

As previously, the first order in ε−2 reads for all k ∈ {1, 2, . . . , N} as

∂2
zzU

0
k −W ′(U0

k ) + Λ−2 = 0,

which leads to (with additional boundary conditions)

U0
i (z, x, t) = q(z), U0

j (z, x, t) = q(−z), U0
k (z, x, t) = 0 and Λ−2 = 0.

Moreover, the second order in ε−1 shows that for all k ∈ {1, 2, . . . , N},

Vi,j∂zU
0
k =

[
∂2
zzU

1
k −W ′′(U0

k )U1
k +Hi,j∂zU

0
k

]
+M−1

k

√
2W (U0

k ) + Λ−1
√

2W (U0
k ).

In particular, using

V 0
i,jq
′(z) =

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
+ q′(z)Hi,j −M−1

i q′(z)− Λ−1q′(z)

and
−V 0

i,jq
′(z) =

(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
− q′(z)Hi,j −M−1

j q′(z)− Λ−1q′(z)

implies the following equation:

2V 0
i,jq
′(z) =

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
−
(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
+ 2q′(z)Hi,j − (M−1

i − M−1
j )q′(z).

Multiplying the last equation by q′ and integrating over R shows that

V 0
i,j = Hi,j −

1

2
(M−1

i −M−1
j ).

The Lagrange multiplier Λ−1 satisfies
ˆ
R

Λ−1(z, x, t)q′(z)dz = cW (M−1
j +M−1

i )/2,

and is still expected on the form

Λ−1(z, x, t) =
1

2
(M−1

j +M−1
i ) η(z).

12



The functions U1
k are then defined as solutions of the system

(
∂2
zzU

1
i −W ′′(q(z))U1

i

)
= 1

2 (M−1
j +M−1

i ) (q′(z)− η(z)) ,(
∂2
zzU

1
j −W ′′(q(z))U1

j

)
= 1

2 (M−1
j +M−1

i ) (q′(z)− η(z)) ,(
∂2
zzU

1
k −W ′(U1

k )
)

= 0, if k ∈ {1, 2, . . . , N} \ {i, j}.

We can now see that
U1
k = 0 for all k ∈ {1, 2, . . . , N} \ {i, j},

and this equality holds even if M−1
j +M−1

i 6= 0. Moreover, as
∑N
k=1 U

1
k = 0, we can also deduce that

η(z) = q′(z), U1
i = 0 and U1

j = 0.

Finally, the Lagrange multiplier is identified to

Λ−1 =
1

2
(M−1

j +M−1
i ) q′(z)

and, on the neighborhood of the interface Γi,j , the solution uε of the new proposed phase field model is
now expected on the form

uεi (x, t) = q
(

dist(x,Ωi)
ε

)
+O(ε2),

uεj(x, t) = 1− q
(

dist(x,Ωi)
ε

)
+O(ε2),

uεk(x, t) = O(ε2), for all k ∈ {1, 2, . . . , N} \ {i, j}.

In conclusion, the new proposed phase field model is formally proved to have an order of convergence in
O(ε2).

3 Numerical modeling and storage

This section is devoted to the numerical scheme used to compute the solution of the modified phase field
model :

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t)

√
2W (ui) + µi(t)

√
2W (ui), for all i ∈ {1, 2, . . . , N}.

We consider its solution for times t ∈ [0, T ], in a computation box Q with periodic boundary condition
and with the associated initial condition u(x, 0) = u0. We also assume that u0 satisfies the partition

constraint
∑N
i=1 u

0
i = 1 and we introduce the mass of ui defined by mi(t) =

´
Q
ui(x, t)dx. Recall that λ

and µi are free Lagrange multipliers that impose the constraints:

N∑
i=1

ui(x, t) = 1, and mi(t) = mi(0) = m0
i .

Various numerical methods have been used to solve phase field model, for instance, the finite difference
method [18, 35, 7] and the finite element method [28, 27, 52]. In this work, having in mind the periodic
boundary condition, we focus on a semi-implicit splitting Fourier spectral method [16, 13] in order to
get high accuracy approximation in space. More precisely, our numerical approach consists in using a

13



splitting scheme between the L2-gradient flow of the Cahn Hilliard system and the projection of the
current solution to the partition and volume constraints. Notice that this exact discrete projection
is slightly different from using a direct discretization of the explicit Lagrange multipliers (6) and (5).
Indeed, the naive discretization of the Lagrange multipliers conduces to cumulative errors, because of the
truncation errors induced by our compact and sparse storage strategy.

More precisely, we introduce an approximation sequence un of u at time nδt defined recursively as
follows :

Step 1: L2-gradient flow of the Cahn Hilliard energy without constraint:
Let un+1/2 be an approximation of v(δt) where v = (v1, v2, . . . , vN ) is the solution of{

∂tv(x, t) = ∆v(x, t)− 1
ε2W

′(v(x, t)), ∀(x, t) ∈ Q× [0, δt],

v(x, 0) = un(x), ∀x ∈ Q with periodic boundary conditions.

Here (W ′(v(x, t)))i = W ′(vi(x, t)).

Step 2: Projection on the partition and volume constraints:
Define un+1 by

un+1
i = u

n+1/2
i + λn+1

√
2W (u

n+1/2
i ) + µn+1

i

√
2W (u

n+1/2
i ), for all i ∈ {1, 2, . . . , N}.

Here λn+1 and µn+1
i are defined by satisfying the discrete constraints

N∑
i=1

un+1
i = 1 and

ˆ
Q

un+1
i = m0

i .

3.1 Step one with an semi-implicit Fourier spectral scheme

We use a semi-implicit scheme to compute the solution un+1/2. More precisely, we consider the equation(
Id− δt

(
∆− α/ε2Id

))
un+1/2 = un − δt

ε2
(W ′(un)− αun) ,

where α is a positive stabilization parameter.
Notice that the Cahn Hilliard energy decreases unconditionally [26, 47] as soon as the explicit part

s 7→ W ′(s) − αs is the derivative of a concave function. This is true for a sufficiently large coefficient α
and for the case of W (s) = 1

2s
2(1− s)2, and the limit is reached at α = 2.

Notice also that without the stabilization parameter (i.e. α = 0), the semi-implicit scheme is also
stable under the classical condition δt ≤ C

ε2 , where C =
∑
s∈[0,1] |W ′′(s)|. Finally, recall that the equa-

tion is computed in Q with periodic boundary conditions. Consequently, the inverse of the operator(
Id− δt

(
∆− α/ε2Id

))
is easily computed in Fourier space [16] using the Fast Fourier Transform.

3.2 Step two using an exact discrete constraints

We now explain how we can find a solution λn+1 and µn+1
i so that

N∑
i=1

un+1
i = 1 and

ˆ
Q

un+1
i = m0

i .
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and where

un+1
i = u

n+1/2
i + λn+1

√
2W (u

n+1/2
i ) + µn+1

i

√
2W (u

n+1/2
i ), for all i ∈ {1, 2, . . . , N}.

Let us first introduce λ
n+1

i =
´
Q

√
2W (u

n+1/2
i )λn+1dx, and remark that integrating the last equation

over Q leads to

µn+1
i =

[
m0
i −
´
Q
u
n+1/2
i dx

]
− λn+1

i

´
Q

√
2W (u

n+1/2
i )dx

and

λn+1 =

[
1−

∑
k u

n+1/2
k

]
−
∑
k µ

n+1
k

√
2W (u

n+1/2
k )∑

k

√
2W (u

n+1/2
k )

.

Moreover, the coefficients λ
n+1

i satisfy

λ
n+1

i =

ˆ
Q

λn+1

√
2W (u

n+1/2
i )dx,

=

ˆ
Q

√
2W (u

n+1/2
i )

[
1−

∑
k u

n+1/2
k

]
∑
k

√
2W (u

n+1/2
k )

dx−
ˆ
Q

∑
k µ

n+1
k

√
2W (u

n+1/2
k )

√
2W (u

n+1/2
i )∑

k

√
2W (u

n+1/2
k )

dx,

=
∑
k

ˆ
Q

√
2W (u

n+1/2
k )

√
2W (u

n+1/2
i )/

´
Q

√
2W (uk)∑

j

√
2W (u

n+1/2
j )

dx

λn+1

k

+

ˆ
Q


[1−

∑
k

u
n+1/2
k

]
−
∑
k

(
m0
k −
´
Q
u
n+1/2
k dx

)√
2W (u

n+1/2
k )

´
Q

√
2W (u

n+1/2
k )dx


√

2W (u
n+1/2
i )∑N

k=1

√
2W (u

n+1/2
k )

 dx.

In particular, it implies that λ = (λ1, λ2, . . . , λN ) is solution of the linear system

(Id−A)λ = b,

where

Ai,k =

ˆ
Q

√
2W (u

n+1/2
i )

√
2W (u

n+1/2
k )/

´
Q

√
2W (u

n+1/2
k )dx∑N

j=1

√
2W (u

n+1/2
j )

dx


and

bi =

ˆ
Q


[1−

∑
k

u
n+1/2
k

]
−
∑
k

(
m0
k −
´
Q
u
n+1/2
k dx

)√
2W (u

n+1/2
k )

´
Q

√
2W (u

n+1/2
k )dx


√

2W (u
n+1/2
i )∑N

k=1

√
2W (u

n+1/2
k )

 dx.

Notice that
∑
iAk,i = 1 and the matrix (Id − A) is not invertible. Otherwise, it is not difficult to see

that
∑
bi = 0 as

∑
m0
i = |Q|. This means that the linear system (Id − A)λ = b admits an infinity of

solutions, and, in practice, we choose the solution which satisfy the following constraint
∑
i λi = 0.
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3.3 Spatial discretization and discrete Fourier transform

We recall that the P Fourier approximation of a 3D function u in a box Q = [0, L1]× [0, L2]× [0, L3] is
given by

uP (x) =

P/2∑
p1,p2,p3=−P/2+1

cpe
2iπξp·x

where p = (p1, p2, p3) and ξp = (p1/L1, p2/L2, p3/L3). Here cp represents the P 3 first discrete Fourier
coefficients of u. Moreover, the inverse discrete Fourier transform of cp leads to uPp = IFFT[cp] where

uPp is the value of u at the points xp = (p1h1, p2h2, p3h3) where hα = Lα/P for α ∈ {1, 2, 3}.
Conversely, cp can be computed by applying the discrete Fourier transform to uPp :

cp = FFT[uPp ].

We present some useful discretization operators using Fourier discretization :

Homogeneous differential operator: the operator
(
Id− δt

(
∆− α/ε2Id

))−1
can be computed in

Fourier space by using

(
Id− δt

(
∆− α/ε2Id

))−1
uP (x) =

P/2∑
p1,p2,p3=−P/2+1

cp
1 + δt (4π2‖ξp‖2 + α/ε2)

e2iπξp·x.

In practice, it follows that

(
Id− δt

(
∆− α/ε2Id

))−1
uP (xp) = IFFT

[
FFT[UNn ]

1 + δt (4π2‖ξp‖2 + α/ε2)

]
.

Computation of integrals: remark also that

ˆ
Q

uP dx = L1L2L3c0 = h1h2h3

∑
p

uPp .

More generally, for all continuous function F : R→ R, we use the following approximation

ˆ
Q

F (uP )dx ' h1h2h3

∑
p

F (uPn ).

Notice that due to periodicity, this simple quadrature formula is expected to have an order of convergence
higher than any integer power of the grid step.

Optimization of the size of the box Q: using a given discrete function uPp , we also propose to
optimize the size of the box Q which minimizes the Cahn Hilliard energy

Jε(u
P
p ) =

ˆ
Q

ε
|∇uPn |2

2
+

1

ε
W ′(uPp )dx
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under the volume constraint L1L2L3 = 1. As
´
Q
W ′(uPp )dx depends only on the product L1L2L3, this

optimization can done by minimizing the functional

J̃(L1, L2, L3) =
∑
p

|∂1u
P
p |2 + |∂2u

P
p |2 + |∂3u

P
p |2,

where
∂lu

P
p = IFFT[2iπ

pl
Ll

FFT[uPp ]], for l ∈ {1, 2, 3}.

Then, we have

J̃(L1, L2, L3) =
A1

L2
1

+
A2

L2
2

+
A3

L2
3

,

where Al =
∑

p | IFFT[2iπpl FFT[uPp ]]|2 does not depend on the length L1,L2 and L3. Finally, it follows
that optimal values can be explicitly computed by the fomula:

L1 =

√
A1

(A1A2A3)1/6
, L2 =

√
A2

(A1A2A3)1/6
and L3 =

√
A3

(A1A2A3)1/6
.

Notice that in the new box, uPp corresponds now to the value of UP at the point xp = (p1L1/P, p2L2/P, p3L3/P ).

3.4 Zero approximation and efficient storage of phase field functions

Let τ ≥ 0 be a positive tolerance, and let us introduce the approximation function ξτ as:

ξτ (v) =

{
0 if v < τ,

v otherwise.
(7)

We propose to use this approximation function to cut-off uεi to 0 when his value is considered insignificant,
that is when it is below τ . More precisely, we propose to apply this approximation function on each of
the two solving steps described in section 3, that is:

Step 1: L2-gradient flow of the Cahn Hilliard energy without constraint:
Let ũn+1/2 be an approximation of v(δt) where v = (v1, v2, . . . , vN ) is the solution of{

∂tv(x, t) = ∆v(x, t)− 1
ε2W

′(v(x, t)), ∀(x, t) ∈ Q× [0, δt],

v(x, 0) = un(x), ∀x ∈ Q with periodic boundary conditions.

Here (W ′(v(x, t)))i = W ′(vi(x, t)).

Let un+1/2 be the zero-approximation of ũn+1/2, such that:

u
n+1/2
i (x) = ξτ

(
ũ
n+1/2
i (x)

)
, for all x ∈ Q.

Step 2: Projection on the partition and volume constraints:
Define ũn+1 by

ũn+1
i = u

n+1/2
i + λn+1

√
2W (u

n+1/2
i ) + µn+1

i

√
2W (u

n+1/2
i ), for all i ∈ {1, 2, . . . , N}.
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Here λn+1 and µn+1
i are defined by satisfying the discrete constraints

N∑
i=1

ũn+1
i = 1 and

ˆ
Q

ũn+1
i = m0

i .

Let un+1 be the zero-approximation of ũn+1, such that:

un+1
i (x) = ξτ

(
ũn+1
i (x)

)
, for all x ∈ Q.

Now that we have reduced the amount of significant values, we focus on an adapted storage. Since,
for a given discrete space point x, only a subset of the phase field functions is significant (i.e. non-zero),
we have then to store an index list I(x) of significant phase-field functions:

I(x) := {i ∈ 1, . . . , N ; ui(x) 6= 0},

and the associated values Ui(x) for i ∈ I(x) such that

ui(x) =

{
Ui(x) if i ∈ I(x),

0 otherwise.

Thus, storing for each discrete point x only the corresponding index list I(x) and associated phase
field values {Ui(x) ; i ∈ I(x)} leads to a significant reduction of the memory needed to store the N
phase-field functions.

The next section describes some implementation details of this strategy and section 5 illustrates their
behavior on a test case.

4 Implementation

While some tests and the validation of the new model have been made using a Matlab implementation,
the main code used on large discretization domain with many phases, along with an efficient storage
strategy, has been written in modern C++.

We describe below some of the implementation choices we have made for the simulation part and for
the data extraction and analysis.

Efficient storage of the phase-field functions. From a computational point of view, storing in a row
the index and values for each discrete point leads to low performances. This is due to the unpredictable
memory address corresponding to each discrete point and to the need of regular memory re-allocation
when the size of I(x) changes.

Observing that, on average, the size of I(x) is very low (less that 3 on a typical problem of three-
dimensional space tiling, depending on the ratio between the total number of phases and the mesh
resolution), we propose to use a fixed size initial storage for each discrete space point, which can be
dynamically extended (similarly to a singly-linked list) if more phase field functions must be stored.

Consequently, we can use a contiguous block of memory for the initial value storage for all discretiza-
tion points with easy predictable memory addresses. This leads to a better use of the processor caching
system but also allows the C++ compiler to exploit at best vector processor instructions. Our own
experiments have shown that extra storage is only rarely needed and the induced performance penalty
at these few places and moments is more than counterbalanced by the global performance gain.
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A first implementation of this strategy stores I(x) as a bit field where the i-th bit bi is set if and only if
i ∈ I(x). The Ui(x) are then stored in the same order as the elements i of I(x) (contiguously if possible,
sometimes linked by a pointer if I(x) contains more than 4 elements). The bit field is finaly used to test
if a given phase is actually stored and to recover its storage rank. A C++ implementation of this storage
strategy is the LabelledMap class of the open-source library DGtal1.

Another implementation that avoids to have a large bit field (e.g. when N is greather than 64 or
128), is simply to store an unordered list of (i, Ui(x)) for each i ∈ I(x). The choice between these two
implementations depends on the available memory, the maximum and average number of phases of the
studied problem, and the read/write cost.

Discrete Fourier transform. The discrete Fourier transform is done using the FFTW library applied
on a full copy of each phase-field, extracted from the sparse storage. The storage is then updated with
the result of the first step on the current phase, before considering the next phase, thus leading to one
temporary memory allocation for a full phase field function.

Projection step. During the second step, the λ̄i, Ai,k and bi coefficients are calculated so that no extra
memory allocation is needed, even if some calculations are duplicated and may be cached otherwise.

Convergence criteria. When needed (e.g. for the experiments on Kelvin’s problem), deciding when
the evolution is considered at convergence is based on the evolution of the cost used by F. Morgan in [39]
for a partition of Rn into countable measurable sets of unit volume.

As noted in [44], for a finite partition Ω := (Ωi)i=1,...,N of the computation box Q with periodic
boundary condition, the Morgan’s cost can be easily computed as

F (Ω) =
1
2

∑N
i=1 P (Ωi)

N
1
n

, (8)

where the perimeter P (Ωi) of each phase is approximated by the Cahn Hilliard’s energy (1) scaled by

the constant cW :=
´ 1

0

√
2W (s)ds.

Exported data. When exporting results, in the same way as during the computation, we avoid to
store all the phase field function’s values. To do so, we choose to export only two useful value fields :

• the label l(x) := arg maxi(ui(x)) of the leading phase at the discrete point x,

• a coarse distance function d(x) to the partition’s frontier
⋃
i ∂Ωi, reconstructed from the (ui) as

d(x) := 2ε arctanh(ua − ub) where ua = ul(x)(x) and ub = maxi 6=l(x)(ui(x)).

Surface extraction. To obtain a finer surface representation and a better Morgan’s cost evaluation of
the obtained tilings, we use the very efficient local optimization sofware Evolver (see [11]) developed by
K. Brakke. To exploit it, we need to extract a mesh of the partition’s frontiers and to recover the phase
connectivity. This non-trivial process is done through the following steps:

• The subset {d(x) ≤ δ} of the computation grid is extracted so that it is everywhere thick and
it contains the partition’s frontiers, typically by choosing δ a few times greater than the space
discretization step.

1http://www.dgtal.org/
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• This subset is transformed into a cubical complex (i.e. a set of cubes corresponding to the subset
above, as well as all their lower dimensional cells); this complex is then collapsed homotopically
into a thin 2-dimensional complex, that is a union of digital surfaces.2

• Digital surfaces are then converted into meshes connected with each other and their connectivity is
recovered by tracking the internal surface of each cell of the partition.

These algorithms (cubical complex construction, collapsing process and surface tracking) are parts of the
DGtal library.

Accurate evaluation of the Morgan’s cost. The extracted mesh and connectivity informations are
finally given to the Evolver software, which will then optimize the surface mesh. After many optimization
steps, Evolver extracts a more reliable estimation of the Morgan’s cost of our partition.

Dimension agnostic. Following the DGtal framework, the same code works for any space dimension
and practical tests have been made in 2D, 3D and 4D.

5 Numerical experiments

5.1 Comparison of the two phase field models

The first experiment concerns a numerical comparison of the two phase field models: the classical one

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t) + µi(t)

√
2W (ui),

and the slightly modified version

∂tui(x, t) = ∆ui(x, t)−
1

ε2
W ′(ui) + λ(x, t)

√
2W (ui) + µi(t)

√
2W (ui).

In each case, we consider an approximation of a conserved multiphase mean curvature flow associated to
the same initial partition Ω(0), a Q partition with N = 9 phases. Moreover, all numerical experiments
have been performed using the following numerical parameters : L = [1, 1, 1], P = 28, ε = 1/P and
δt = 1/ε2.

We plot on figure (3) the evolution of the phase field function u at different time t. The first row
and the second row correspond respectively to the classical and the new phase field model. In particular,
we can clearly see that the evolution of the partition seems to be very similar using the two different
approaches even if the phase field vector functions u are not identically the same.

To be more precise, we plot in figure (4) the functions
∑
i iui, u1, log(|u1|) and min(u1, 0) at the

end of the computation. Notice that the first row and the second row still correspond respectively to
the classical and the new phase field models. Similarly to our introductory example, we observe that in
the case of the classical phase field model, the phase u1 has a contribution of magnitude O(ε) on each
interface Γi,j . Concerning the new phase field model, we now observe only a negative part of magnitude
10−6 (which is about 10−3 for the classical phase field model) which corresponds to the size of ε2.

2The homotopic collapse is made through elementary collapse operations, which were introduced by Whitehead [51]. It
consists in finding couples of cells (c, d), such that c has dimension one less than d, c lies in the boundary of d but not in
the boundary of any other cell, d lies not in the boundary of any cell, and in removing them in sequences.
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Figure 3: Approximation of a conserved multiphase mean curvature flow: a numerical comparison using
the classical phase field model (first row) and our slightly modified variant (second row). The initial
partition contains 9 phases. Each picture represents the function

∑
i iui at different times t.
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Figure 4: Approximation of a conserved multiphase mean curvature flow: a numerical comparison using
the classical phase field model (first row) and our slightly modified variant (second row). The pictures
represent respectively the functions

∑
i iui, u1, log(|u1|), min(u1, 0) at the end of the computation.

5.2 Numerical analysis of memory storing using the new phase field model

The second experiment is obtained using the new phase field model and where the initial partition Ω(0)
is build as a random distribution of the N = 16 phases. Our motivation is to illustrate the quantity of
memory required to obtain the numerical solutions u during the computation. As previously, we use the
following numerical parameters L = [1, 1, 1], P = 28, ε = 1.5/P and δt = 1/ε2. Here, we additionally
apply the zero approximation strategy (with τ = 10−2), presented in the previous subsection, to reduce
the amount of required memory. We recall that the idea is to use a sparse representation of data ui such
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as only non-zero data are stored.

The figure (5) represents the phase field partition u at iterations 1, 10, 50 and 1000. The first row
corresponds to the function

∑
i iui and we plot on the second row the number of non-zero phases ui at

each pixels. In particular, starting from the moment where the set Ωi are sufficiently large with respect
to the size of ε, we can see that the number of non-zero phases ui is about

• 3 on each triple point junctions,

• 2 on diffuse interface Γi,j ,

• 1 on the interior of set Ωi.

More precisely, we plot on figure (6) the evolution of the number of non-zero phases per discrete point
along the computation. It shows that on average, only 1.5 phases remains on each pixel. A full storage
of the phase-field functions would here use 8 MiB of memory. Storing only non-zero phases leads to a
memory usage at iterations 1, 10, 50 and 1000 of about, respectively:

• 8.5 MiB, 3.1 MiB, 2.2 MiB and 1.6 MiB for the first implementation based on a bit field, with a first
block of 2 values and extra blocks of 2 values,

• 8.9 MiB, 2.8 MiB, 1.9 MiB and 1.3 MiB for the second implementation that stores the (i, ui) couples,
with a first block of 2 values and extra blocks of 2 values.

Figure 5: Numerical approximation of a conserved mean curvature flow initialised with a random initial
partition. At iterations 1, 10, 50 and 1000: first row: arg maxi(ui) with the {d(x) = 0.05} contour
lines (in black) of the reconstructed distance function to each domain Ωi; second row: the number of
non-zero phases ui on each pixel, superposed with the same contour lines as previously. Note that the
color scale is different on each image of the second row.
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Figure 6: Numerical approximation of a conserved mean curvature flow starting from a random initial
partition. Evolution of the number (minimum, maximum and mean values) of non-zero phases per point
: from iteration 1 to 50 on the left, from iteration 50 to 1000 on the right.

5.3 The Kelvin’s problem

Recall that one of our first motivation in this work concerns the Kelvin’s problem. The Kelvin’s problem
is about filling the space with cells of equal volume such that the total surface area is minimal. In the
three-dimensional case, there is no proof of what is this minimal structure. The famous Kelvin structure
(second picture on figure (7)) is not the best partition for this problem since Weaire and Phelan found a
better candidate (see [50] and first picture on figure (7)). Notice that the Weaire and Phelan structure is
composed of eight cells that compose a filling of the periodic space [0, 1]3. As in [44], we try to find this
structure using our volumetric formulation and to understand if there exists or not better structures.

Our strategy consists then in launching a battery of tests (1655 of them are resumed on figure 8) with
different numbers N of phases. To overcome the convergence issues that arise from previous cases, we
start from a random initial density on a low-resolution grid (of 643) to avoid an excessive memory usage
and a high ε to have a fast convergence rate. When the system is considered to be at equilibrium, we
alternate decreases of ε and increases of the resolution up to 5123 when needed. To improve our chances
to find a better structure, we also apply an optimization of the size of the box Q during the computation
as detailed previously.

Finally, the interface between each phase is extracted as a mesh (see section 4) and handed to the
Evolver software both for a final optimization step and for evaluating more reliably the Morgan’s cost of
the partition.

The figure (8) gives a summary of our different results. Each point of this picture represents the result
of one numerical experiment and for which, the abscissa and ordinate correspond respectively to the
number N of phases used and the Morgan’s cost of the final structure. Recall that the Morgan’s cost
gives a natural criteria of the optimality of a structure which is approximately equal to 2.64417 for Weaire
and Phelan structure, and 2.653160 for the Kelvin structure. Unfortunately, in spite of all our numerical
experiments, we did not succeed to find a better structure than the one of Weaire and Phelan. However
we observed that:
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• the Weaire and Phelan structure has been found with N = 8, N = 14 and N = 64 phases (see left
of Figure 9),

• the Kelvin structure has often been found, as for instance with N = 128 phases (see right of
Figure 9),

• intermediate structures between Kelvin and Weaire and Phelan structures have been found (see
subfigures of Figure 10),

• uncommon structures with a small but non-optimal Morgan’s cost have been found as for instance
the ones in Figure 11.

For interested reader, all our results are available on the following web page http://math.univ-lyon1.

fr/~denis/honeycomb/.

Figure 7: Examples of Weaire and Phelan structure (left) and Kelvin structure (right) obtained with
our numerical phase field method with respectively N = 8 and N = 12, starting from a random initial
state. The box size optimizer leads to a non-square calculation domain for the Kelvin structure with a
stack direction that is not aligned with the box orientation.

5.4 Gout drop experiments with a great number of phases in 2D and in 3D

Finally, we present in figures 12, 13 and 14 three numerical experiments in 2D and in 3D. The novelty is
to grow up the number of phases N along the iterations and then to treat a great number of phases.

First, figure 12 shows a 2D experiment where a new phase is inserted each time the evolution is
considered at equilibrium. Inserting a new phase is done by adding random amounts of mass at the
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Figure 8: Summary of 1655 numerical experiments run to find optimal structures. Each cross corresponds
to one numerical optimization : the number of phases N in abscissa, and the Morgan’s cost of the final
structure in ordinate. Each cross is surrounded by a blue dot whose opacity is linked to the number of
experiments with a similar Morgan’s cost.

exterior boundary of the cluster, proportionately to
√
|u(1− u)| where u is the phase field associated to

the cluster’s exterior.
We do not expect to obtain the best configuration for each N because of the iterative process (each

image is the evolution result of the previous image) and because of the described adding process. However,
for N = 1, 2, 3, 4, 5, 7 and 10, we recover proved or conjectured best configurations depicted in [20].

Figure 13 shows another 2D experiment with growing number of phases from N = 1 to N = 512
(of equal volume 1

512 ), with 512 discrete points along each dimension. However, in this simulation, new
phases are added at a regular rhythm, after a fixed number of iterations, thus leading to non-equilibrium
states when the adding process occurs.

The last figure 14 is a 3D experiment with growing number of phases from N = 1 to N = 64 with
equal volume of 1

64 . Like the first experiment, each phase is added when the evolution is considered at
equilibrium.
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Figure 9: Examples of Weaire and Phelan structure (left) and Kelvin structure (right) obtained with our
numerical phase field method and with a great number of phases, N = 64 and N = 128, starting from a
random initial state. The box size optimization leads here to a near square domain, up to the third digit.

Figure 10: Examples of optimal structures with a Morgan cost better than Kelvin one obtained with
N = 60 (left) and N = 44 (right) phases.
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Figure 11: Examples of uncommon structures obtained with N = 38 (left) and N = 24 (right) phases.

Figure 12: Example of a numerical experiment in 2D where a new phase of fixed volume is added each
time the evolution is at equilibrium. Each picture represents the equilibrium state before adding the next
phase.
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Figure 13: Example of a numerical experiment in 2D (512 discrete points along each dimension) where
the number of phases is growing up along the iterations at a regular rhythm, up to N = 512 phases of
volume 1

512 . Each picture represents the partition at a given time t.
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Figure 14: Example of a numerical experiment in 3D (128 discrete points along each dimension) where
the number of phases is growing up along the iterations, up to N = 64 phases of volume 1

64 . New phases
are added each time the evolution is considered to be at equilibrium. Each picture represents the partition
at a given time t.
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6 Conclusion

We have presented in this work a large scale numerical strategy to compute solutions of multiphase field
model in the context of a great number of phases. In view of memory storage issues, we have noticed that
the solutions to the classical phase field model are not sufficiently well localized to apply the required
sparse storage strategy. We have then introduced a new phase field model which presents some better
localization properties than the classical one. More precisely, a formal asymptotic analysis is also derived
which shows the consistency in O(ε2) of our model (instead of O(ε) for the classical one). Using this new
model, we have then explained how to store the data such as the quantity of memory does not depend
on the number of phases N . Finally, we applied successfully our strategy and presented some numerical
experiments with more than N = 100 phases in 3D and N = 1000 in 2D, which highlight the advantages
of our approach.
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[6] J. W. Barrett, H. Garcke, and R. Nürnberg. On the parametric finite element approximation of
evolving hypersurfaces in R3. J. Comput. Phys., 227:4281–4307, April 2008.

[7] P. Bates, S. Brown, and J. Han. Numerical analysis for a nonlocal allen-cahn equation. Int. J.
Numer. Anal. Model., 6:33–49, 2009.

[8] G. Bellettini and M. Paolini. Quasi-optimal error estimates for the mean curvature flow with a
forcing term. Differential Integral Equations, 8(4):735–752, 1995.

[9] G. Bellettini and M. Paolini. Quasi-optimal error estimates for the mean curvature flow with a
forcing term. Differential Integral Equations, 8(4):735–752, 1995.

[10] J. Bence, B. Merriman, and S. Osher. Diffusion generated motion by mean curvature. Computational
Crystal Growers Workshop,J. Taylor ed. Selected Lectures in Math., Amer. Math. Soc., pages 73–83,
1992.

30



[11] K. A. Brakke. The surface evolver. Experimental mathematics, 1(2):141–165, 1992.

[12] M. Brassel and E. Bretin. A modified phase field approximation for mean curvature flow with
conservation of the volume. Mathematical Methods in the Applied Sciences, 34(10):1157–1180, 2011.

[13] E. Bretin and S. Masnou. A new phase field model for inhomogeneous minimal partitions, and
applications to droplets dynamics,. Interfaces and Free Boundaries, 2016.

[14] G. Caginalp and P. C. Fife. Dynamics of layered interfaces arising from phase boundaries. SIAM J.
Appl. Math., 48(3):506–518, 1988.

[15] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. The
Journal of Chemical Physics, 28(2):258–267, 1958.

[16] L. Chen and J. Shen. Applications of semi-implicit Fourier-spectral method to phase field equations.
Computer Physics Communications, 108:147–158, 1998.

[17] X. Chen. Generation and propagation of interfaces for reaction-diffusion equations. J. Differential
Equations, 96(1):116–141, 1992.

[18] X. Chen, C. Elliott, A. Gardiner, and J. Zhao. Convergence of numerical solutions to the allen-cahn
equation. Appl. Anal., 69:47–56, 1998.

[19] Y. G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solutions of generalized
mean curvature flow equations. Proc. Japan Acad. Ser. A Math. Sci., 65(7):207–210, 1989.

[20] S. Cox, F. Graner, F. Vaz, C. Monnereau-Pittet, and N. Pittet. Minimal perimeter for n identical
bubbles in two dimensions: calculations and simulations. Philosophical Magazine, 83(11):1393–1406,
2003.

[21] P. de Mottoni and M. Schatzman. Geometrical evolution of developed interfaces. Trans. Amer.
Math. Soc., 347:1533–1589, 1995.

[22] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential equations
and mean curvature flow. Acta Numer., 14:139–232, 2005.

[23] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential equations
and mean curvature flow. Acta Numer., 14:139–232, 2005.

[24] S. Esedoglu and F. Otto. Threshold dynamics for networks with arbitrary surface tensions. Com-
munications on pure and applied mathematics, 2014.

[25] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. J. Differential Geom.,
33(3):635–681, 1991.

[26] D. Eyre. Computational and mathematical models of microstructural evolution. Warrendale:The
Material Research Society, 1998.

[27] X. Feng and A. Prohl. Analysis of a fully discrete finite element method for the phase field model
and approximation of its sharp interface limits. Math. Comput, pages 541–567, 2004.

[28] X. Feng and H.-J. Wu. A posteriori error estimates and an adaptive finite element method for the
allen–cahn equation and the mean curvature flow. J. Sci. Comput., 24:121–146, August 2005.

31



[29] H. Garcke, B. Nestler, and B. Stoth. On anisotropic order parameter models for multi-phase systems
and their sharp interface limits. Physica D: Nonlinear Phenomena, 115(1-2):87 – 108, 1998.

[30] H. Garcke, B. Nestler, and B. Stoth. A multi phase field concept: Numerical simulations of moving
phase boundaries and multiple junctions. SIAM J. Appl. Math, 60:295–315, 1999.

[31] D. Gilbarg and N. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer,
1998.

[32] J. Gruber, N. Ma, Y. Wang, A. D. Rollett, and G. S. Rohrer. Sparse data structure and algorithm for
the phase field method. Modelling and Simulation in Materials Science and Engineering, 14(7):1189,
2006.

[33] C. Herring. Surface Tension as a Motivation for Sintering, pages 33–69. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[34] H. Ishii, G. E. Pires, and P. E. Souganidis. Threshold dynamics type approximation schemes for
propagating fronts. J. Math. Soc. Japan, 51(2):267–308, 1999.

[35] Y. Li, H. G. Lee, D. Jeong, and J. Kim. An unconditionally stable hybrid numerical method for
solving the allen–cahn equation. Computers Mathematics with Applications, 60(6):1591–1606, 2010.

[36] P. Loreti and R. March. Propagation of fronts in a nonlinear fourth order equation. European
Journal of Applied Mathematics, 11:203–213, 3 2000.

[37] F. Maggi. Sets of finite perimeter and geometric variational problems: an introduction to geometric
measure theory, 2012.

[38] L. Modica and S. Mortola. Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299,
1977.

[39] F. Morgan. The hexagonal honeycomb conjecture. Transactions of the American Mathematical
Society, 351(5):1753–1763, 1999.

[40] W. W. Mullins. Two-Dimensional Motion of Idealized Grain Boundaries, pages 70–74. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999.

[41] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag New
York, Applied Mathematical Sciences, 2002.

[42] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-
Verlag, New York, 2003.

[43] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based
on hamilton-jacobi formulations. J. Comput. Phys., 79:12–49, 1988.

[44] E. Oudet. Approximation of partitions of least perimeter by Gamma-convergence: around Kelvin’s
conjecture. Experimental Mathematics, 20(3):260–270, 2011.

[45] R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser.
A, 422(1863):261–278, 1989.

[46] S. J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput.
Phys., 144(2):603–625, 1998.

32



[47] J. Shen, C. Wang, X. Wang, and S. M. Wise. Second-order convex splitting schemes for gradient
flows with ehrlich-schwoebel type energy: Application to thin film epitaxy. SIAM J. Numerical
Analysis, 50(1):105–125, 2012.

[48] L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle. Bounding box algorithm for three-
dimensional phase-field simulations of microstructural evolution in polycrystalline materials. Physical
Review E, 76(5):056702, 2007.

[49] S. Vedantam and B. S. V. Patnaik. Efficient numerical algorithm for multiphase field simulations.
Physical Review E, 73(1):016703, 2006.

[50] D. Weaire and R. Phelan. A counter-example to kelvin’s conjecture on minimal surfaces. Philosoph-
ical Magazine Letters, 69(2):107–110, 1994.

[51] J. H. C. Whitehead. Simplicial spaces, nuclei and m-groups. Proceedings of the London mathematical
society, 2(1):243–327, 1939.

[52] J. Zhang and Q. Du. Numerical studies of discrete approximations to the allen-cahn equation in the
sharp interface limit. SIAM J. Sci. Comput., 31:3042–3063, July 2009.

33


	Introduction 
	Classical phase field models
	Computational complexity and limitation of standard phase field models
	A new and more accurate phase field model 
	Outline of the paper

	Formal asymptotic expansion of the two phase field model
	Classical model and inner expansion
	Modified model and inner expansion

	Numerical modeling and storage
	Step one with an semi-implicit Fourier spectral scheme
	Step two using an exact discrete constraints
	Spatial discretization and discrete Fourier transform
	Zero approximation and efficient storage of phase field functions

	Implementation
	Numerical experiments
	Comparison of the two phase field models
	Numerical analysis of memory storing using the new phase field model
	The Kelvin's problem
	Gout drop experiments with a great number of phases in 2D and in 3D

	Conclusion

