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Optimizing Molecular Cloning Of Multiple Plasmids *

In biology, the construction of plasmids is a routine technique, yet under-optimal, expensive and time-consuming. In this paper, we model the Plasmid Cloning Problem (PCP) in constraint programing, in order to optimize the construction of plasmids. Our technique uses a new propagator for the AtMostNVector constraint. This constraint allows the design of strategies for constructing multiple plasmids at the same time. Our approach recommends the smallest number of different cloning steps, while selecting the most efficient steps. It provides optimal strategies for real instances in gene therapy for retinal blinding diseases.

Introduction

Construction of plasmids is one of the most commonly used techniques in molecular biology. Invented 40 years ago, this technique led to impressive applications in medicine and biotechnologies, such as the production of large amounts of insulin and antibiotics in bacteria, as well as the manipulation of genes in host organisms. In most cases, plasmids are constructed by cutting and assembling DNA fragments from different sources [Brown, 2010]. However, the physical assembly of DNA parts is a time-consuming process for the experimenter, as it requires a multitude of steps. Minimizing the number of different steps that are necessary to build multiple plasmids at the same time can significantly reduce laboratory work time and financial costs.

In this paper, we introduce a Constraint Programming (CP) approach to the Plasmid Cloning Problem (PCP). The objective of the PCP is to recommend the smallest number of different cloning steps, while selecting the most efficient steps. For this purpose, we design a constraint model and we introduce a new propagator for the AtMostNVector constraint [START_REF] Chabert | A constraint on the number of distinct vectors with application to localization[END_REF]. We show that no dominance properties exist between our technique and state-of-the-art propagators. This complementarity is confirmed empirically. We demonstrate the relevance of using an Artificial Intelligence framework for modeling the PCP by successfully solving real instances in gene therapy for retinal blinding diseases.

The remainder of this paper is organized in the following manner. Section 2 describes the PCP. Section 3 introduces a CP model for the PCP and a new propagator for AtMost-NVector, theoretically and empirically evaluated. Section 4 presents experiments on real PCP instances.

The Plasmid Cloning Problem

Construction of plasmids refers to the isolation of an oriented DNA sequence containing a gene of interest, insert, and its insertion into a circular molecule, plasmid, which can be used to generate multiple copies of the DNA when introduced into host cells (Fig. 1, next page). Each insert i is typically enclosed into two different plasmids, z test and z cont (control), to yield two final plasmids z test[i] and z cont [i].

Inserting the insert into a plasmid is generally performed using a cut and paste approach (Fig. 1A). First, the insert and the plasmid are cut with commercially available restriction enzymes (e.g., [Biolabs, 2015c]) at specific restriction sites in order to generate compatible ends. Then, digested DNA fragments are mixed together to allow their compatible ends to anneal to each other. A DNA ligase is added to the solution to covalently join the two fragments.

The most crucial part of the experiment is to determine how the insert is introduced into the plasmids, i.e., which pairs of restriction enzymes will be used to cut the insert and the plasmids to facilitate the cloning. The PCP considers the construction of multiple plasmids at the same time. We cannot select enzymes recognizing restriction sites that are already present within the insert or present more than once in the plasmid. Using an enzyme recognizing any of these sites would provoke fragmentation of DNAs. The list and positions of restriction sites present within each DNA sequence can be generated by several analysis DNA software tools, e.g., [START_REF] Ape | ApE. ApE, a plasmid editor[END_REF]. Let z be either z test or z cont, and z[i] the resulting final plasmid. Let the integer identifiers x[i].before and x [i].after be the restriction sites located at ends of insert i to allow its cloning into z. Five constraints apply:

(A) Enzymes used to cut the insert i and the plasmid z need to create identical or equivalent ends, as only physically compatible ends can be covalently ligated (Fig. 1A). Therefore, the restriction sites provided by suppliers, e.g., [Biolabs, 2015a]. Moreover, in some cases, ligation of two compatible ends can destroy both original restriction sites in the hybrid DNA sequence. These sites are excluded from the list to allow the experimenter to easily remove or exchange the insert from the final plasmid, should this be required.

(B) The insert must be enclosed into the plasmid in the right orientation to allow its expressivity. As restriction sites present in the plasmid z are totally ordered by their position, the two enzymes used to cut the insert i, In particular, it is highly desirable that at least one of the restriction enzyme generates a sticky-end DNA fragment because the ligation is easier when there are overhangs.

Our second objective is to determine optimized pairs of restriction enzymes to perform the selected cloning steps. Preference is given to low costs. Properties of each enzyme are provided by the supplies, e.g., [Biolabs, 2015b].

Related work. To our knowledge, no existing software can solve the PCP. We emphasize that emerging techniques and software have been designed for optimizing the construction of genetic composites from a set of predefined DNA parts [START_REF] Appleton | [END_REF]Casini et al., 2015;Densmore et al., 2010]. Although the research area is common with our application, constraints fundamentally differ from the PCP.

In related studies, the authors assemble multiple DNA fragments together, but restriction sites are predefined and fixed.

Constraint Model

In Constraint Programming (CP), constraints state relations between variables. A set of constraints forms a model of a constraint problem. Each variable has a finite domain of possible values. In this paper we consider exclusively integer domains. An assignment of values to variables is an instantiation if and only if each value belongs to the domain of its variable. Constraints are associated with propagators. Through embedded filtering algorithms, a propagator removes domain values that cannot be part of a solution to a constraint. Domain reduction can be more or less effective. A propagator is GAC (Generalized Arc Consistent) if and only if it removes all the values that cannot satisfy the constraint. In this paper, we use the AtMostNVector constraint [START_REF] Chabert | A constraint on the number of distinct vectors with application to localization[END_REF].

Definition 1 (AtMostNVector). Let V be a collection of k vectors of variables, V = [X (0) , X (1) , . . . , X (k-1) ].
Let obj be an integer variable. Each X (a) contains p variables,

X (a) = {x (a) 0 , x (a) 1 , . . . , x (a) 
p-1 }. Two vectors X (a) and

X (b) are distinct if and only if ∃ j ∈ {0, 1, . . . , p -1} such that x (a) j = x (b)
j . We use the notation nb = (V ) for the number of distinct vectors within an instantiation of all variables in V.

AtMostNVector(V, obj ) ⇔ nb = (V ) ≤ obj .
As many CP problems are NP-Hard, a search procedure is required. The search process can be systematic, e.g., a Branch and Bound scheme, or not, e.g., Large Neighborhood Search.

Constraint model for the PCP

CP is a good candidate for the PCP because efficient propagators exist for table constraints [Lecoutre et al., 2015;Perez and Régin, 2014;Mairy et al., 2014]. They can be combined with more specific constraints, such as AtMost-NVector. A table constraint is defined by the set of combinations of values that satisfy it (or, respectively, violate it), called tuples. In our model, due to intricate rules on enzyme pairs, all constraints except objective constraints are tables. The issue is to find the good tradeoff between arity (number of variables in each table) and propagators running time. Domain reduction is better with a high arity but the number of tuples may become huge and the filtering algorithms excessively time consuming. We present the best found model, in terms of solving capabilities. We provide solutions with sites that were initially present in their plasmid. A component c is a triplet of variables c.before, c.after , c.cost . We distinguish three "layers" of components. For each insert i we state: We now summarize the generation of allowed tuples in tables, according to the PCP constraints A,B,C,D and E detailed in Section 2, and describe the optimization scheme. Cost constraints. Concerning X C, if no intermediate plasmid is used both for test and control (E), tuples (v, w, 0) are generated for each (v, w) 

• One component x[i]. If
in D(x[i].before) × D(x[i].after ).
Otherwise, cost c of each pair is stem from data and the tuple (v, w, c) is added accordingly. Yp test C is similar to X C. Tables Yc test C and Z test C are similar to X C but simpler, as exclusively tuples of the form (v, w, c) are added. Transition constraint XY test. If no intermediate is required, we add all tuples (v,w,-1,t,u) to the table, according to the variable domains. Otherwise, depending on the intermediate plasmid identifier id , we generate valid tuples (v,w,id ,t,u) restricted so as: t and u must be enzymes of the intermediate plasmid id ; v and w must not be compatible or equal (C); t and u must not be compatible or equal (C); v and t must be compatible or equal (A); w and u must be compatible or equal (A); t and u must be distant from d (B). Transition constraint YY test. If no intermediate is required, we add all valid possible tuples (-1,t,u,t,u) subject to the following rules: t and u must not be compatible (C); t and u must belong to the insert domain (E). Otherwise, we add tuples (id ,t,u,r,s). t,u,r and s must be enzymes of the intermediate candidate id ; t and u must not be compatible or equal (C); r and s must not be compatible or equal (C); Moreover, two cases should be considered. (1) position of t < position of u. The direction is correct and position of r should be ≤ position of t, while position of s should be ≥ position of u (B and D). ( 2 We minimize obj nvector , fix this variable to the best found value and then minimize the sum of all cost variables, obj sumcost. Then, increase obj nvector by one and minimize again obj sumcost. Other points in the Pareto can be obtained by relaxing more obj nvector , if needed. Best obj nvector value can be found using a bottom-up scheme: try to find a solution with one distinct vector, if there is no solution then try with two distinct vectors, and so on. The solution is optimal providing that proofs of lack of solutions with lower objective values have been made.

Propagating AtMostNVector

AtMostNVector was introduced in the context of simultaneous localization and map building (SLAM) [START_REF] Chabert | A constraint on the number of distinct vectors with application to localization[END_REF] and can be used in many contexts, including biology [Grac ¸a et al., 2009;Backeman, 2013]. Proving that the minimum value in the domain of obj variable can be part of a solution of AtMostNVector is NP-Hard [START_REF] Chabert | A constraint on the number of distinct vectors with application to localization[END_REF]. Therefore, enforcing GAC on AtMostNVector is NP-Hard, as well as Bounds-consistency 1 [Backeman, 2013]. With respect to AtMostNValue, the particular case of AtMost-NVector with vectors of one variable, filtering algorithms lighter than GAC have been introduced, using Linear Programming and Lagrangian Relaxation [START_REF] Bessière | Filtering algorithms for the NValue constraint[END_REF][START_REF] Cambazard | New filtering for atmostnvalue and its weighted variant: A lagrangian approach[END_REF] and Favaron et al.'s approximation of a maximum independent set on the compatibility graph [Favaron et al., 1993;[START_REF] Bessière | Filtering algorithms for the NValue constraint[END_REF]]. In the compatibility graph G of a set of vectors V of size k, each node represents a vector from V and there is an edge between two nodes if and only if the corresponding vectors can be equal, given the current domains. An independent set is a set of nodes where no two nodes in the set are connected by an edge. A maximum independent set is an independent set of maximum cardinality. Finding this set is NP-Hard. The cardinality can be approximated, given m the number of edges in

G: obj ≥ 2k-2m 2m/k
2m/k +1 . Backeman has shown that the filtering techniques based on this lower-bound of obj for the con-1 i.e., considering that domains are represented by their minimum and maximum value and have no holes. straint AtMostNValue [START_REF] Bessière | Filtering algorithms for the NValue constraint[END_REF]] can be adapted to the case of AtMostNVector [Backeman, 2013].

Cardinality-Based Propagator. We suggest a new technique for improving G-based propagators. Researchers in biology should not have to determine the appropriate parameters or combination of algorithms, e.g., the sub-gradient algorithm in a Lagrangian relaxation based technique. We must consider a black-box approach. Whereas existing propagators are based on pairwise comparisons of vectors, through the edges of G [Backeman, 2013], we consider the set of variables at a given vector position. For each j ∈ {0, 1, . . . , p -1}, we consider the variables {x

(0) j , x (1) j , . . . , x (k-1) j }.
Every variable in this set belongs to a different vector.

Definition 2. Let X be a set of variables and v a value. The cardinality #v of v is the number of domains of variables in X that contain v. } is strictly less than k, then at least two vectors will be distinct. If the sum of the two maximum cardinalities is strictly less than k, then at least three vectors will be distinct, and so on. Among all j ∈ {0, 1, . . . , p -1}, the maximum required distinct vectors is a lower bound for obj . Let minv the minimum value among all domains and maxv the maximum one. Let r = maxv -minv + 1. To compute this lowerbound, Algorithm 1 uses the global variables: card : p × r integers matrix that is used to store cardinalities of values (sorted in scard ); vec: k × p matrix of variables that represents [X (0) , . . . , X (k-1) ]; We assume that the solver raises an exception when a domain is emptied. As a consequence, in Algorithm 1 we cannot have a sum of occurrences of the values in domains strictly less than the number of variables.

If the maximum cardinality among all values in the union of domains of variables {x

Property 1 (Correctness). Let vec be a k × p integer variable matrix. Algorithm 1 returns a lower bound of the number of distinct vectors in the matrix.

Proof. scard[j] is the set of value cardinalities of column j of vec, j ∈ {0, 1, . . . , p-1}, sorted in ascending order. Starting from the last cell in scard[j], while nbco < k, the algorithm (line 6) iterates on maximum cardinalities and counts covered variables in column j of vec, through nbco (line 7). The number of iterations is by construction a lower bound of the number of distinct values in any instantiation of column j of vec. As all columns will finally be assigned, the maximum res is a lower bound of the number of distinct vectors.

Property 2 (Non dominance). There are no dominance relations between the lower-bound of Algorithm 1 and the value of a maximum independent set in the compatibility graph G.

Proof. Let LB IS be the cardinality of a maximum independent set (IS) on G and LB # be the lower bound of Algorithm 1. We can have LB IS > LB # . Let (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 ) be three vectors with the domains

D(x 1 ) = D(x 2 ) = {0}, D(x 3 ) = {1, 5}, D(y 1 ) = {1}, D(y 2 ) = {2} and D(y 3 ) = {2, 6}. LB IS = 3 and LB # = 2. We can have LB IS < LB # : D(x 1 ) = {0, 1}, D(x 2 ) = {1, 2}, D(x 3 ) = {0, 2}, D(y 1 ) = {1, 2}, D(y 2 ) = {2, 3} and D(y 3 ) = {1, 3}. All vectors are pairwise compatible, LB IS = 1. Any value appears twice in ∪ i D(x i ): LB # = 2.
We now introduce the propagator. The principle is to temporarily reduce the domain of vector variables to each single value and update the lower-bound of Algorithm 1 on the fly, in order to determine whether this value should be removed or not, given the current upper-bound of obj domain. Algorithm 2 applies this idea while keeping a reasonable time complexity. Given any variable x, x and x are the minimum and maximum value in its domain D(x). After simulating that a domain is emptied, to compute the lower bound independently from the current variable, the algorithm checks if the assignment of each value v would lead to a number of distinct vectors strictly greater than obj . In this case value v is removed. As removed values do not participate to the initial lower-bound computation, removals do not change the lowerbound. It is sufficient to run the filtering algorithm once at each call of the propagator. Algorithm 2 uses the two global data scard and vec, as well as the objective variable obj .

We point out that Property 2 is valid for any algorithm based on a maximum independent set of G, including the lower bound obtained using the exact (and NP-Hard) computation. Therefore, theoretically, our propagator can be complementary to any approach based on the compatibility graph that might be derived from AtMostNValue propagators [START_REF] Bessière | Filtering algorithms for the NValue constraint[END_REF][START_REF] Cambazard | New filtering for atmostnvalue and its weighted variant: A lagrangian approach[END_REF]. Property 3 (Time complexity). Let Di be the sum of domains sizes of the k × p variables in the vectors matrix. In card [j], the minimum cardinality is 0 and the maximum one is k. A linear sort of card [j] can be performed using an array of size k + 1. As each domain contains at least one value, the sum of domain sizes in scard [j] is greater than or equal to k. The whole matrix scard can be sorted in O(max( Di , p × r)). Algorithm 2 calls Algorithm 1 once and then loops on all variable domains. If lb > obj (or nbco < k) then each value is assessed and the while loop (line 16) can have an order of magnitude of k, giving a worst-case result of O( Di ×k). Other statements are dominated.

Experimental Assessment of Algorithm 2. We benched our propagator independently from the PCP, using Choco 3. 3.3 [Prud'homme et al., 2014] on a I7-4720HQ linux laptop with 16GB of RAM. Minimizing the objective of a single AtMostNVector constraint is a NP-Hard problem [START_REF] Chabert | A constraint on the number of distinct vectors with application to localization[END_REF]. We compared the number of nodes and time required to find an optimal solution and to prove optimality on randomly generated domains, using a bottom-up scheme. We used a search strategy that does not require a random process: select the variable with the largest domain and split this domain at each choice point2 . We generated series of 100 instances with 24 variables and domains of 10/15/20 values, randomly generated from shuffled arrays of 20/30/40 values. We compared two propagators: (IS), a propagator based on the state-of-the-art lower bound (maximum independent set), where values are filtered similarly to Algorithm 2 but using the Favaron's approximation instead of Algorithm 1; (ISC), the IS propagator used in combination with Algorithm 2.

Table 1 provides the number of instances where the optimal solution is proved in less than 5 minutes. Average time is computed with instances that are both solved by the two techniques. Average nodes are computed on all solved instances. The average number of nodes is reduced using ISC. A few instances are solved using ISC and not using IS. Figure 2 shows gain and loss in % when ISC is used, in comparison with IS. The black graph represents gain/loss in number of nodes of each of the 100 instances for the data set where we observed the lowest benefit using ISC, 24 variables (8×3) with domains generated from a range of 20 values. Dots represent the gain/loss in time per instance. Figure 2 shows that ISC is the more robust technique. Almost all instances with a loss are easy. The maximum loss in time using ISC (-25%) occurs for an instance (85) that is solved in less than 0.04 sec., which has not a lot of meaning in Java.

In a last experiment, we computed average time for a first solution on 100 backtrack-free instances, in order to check Algorithm 2 scalability, using Choco 3. Results are 75.1 sec. for 10000 variables (2500×4) and 10 values per domain and 40.7 sec. for 100 variables and 1000000 values per domain.

Experimental results on PCP instances

We solved three real instances of the PCP in the field of gene therapy for retinal blinding diseases. The first one is related to the development of a gene addition therapy [START_REF] Boye | [END_REF] in three animal models of inherited photoreceptor dystrophies: a dog model of PDE6 β-retinitis pigmentosa, a dog model of RPGRIP1 -leber congenital amaurosis and a rat model of RDH12 -retinitis pigmentosa. In each model, one dog/rat sequence as well as one human sequence gene are evaluated. The problem considers the cloning of six inserts (number of candidate sites between 31 and 56), with the use of six intermediate plasmids (number of candidate sites between 14 and 16). The second one is related to the development of a neuro-protective strategy to delay cone photorecetor degeneration in a mouse model of retinitis pigmentosa [START_REF] Punzo | [END_REF]: 6 inserts (39 to 54 sites) and 3 intermediate plasmids (18 to 20 sites). The third one refers to an optogenetic therapy to restore visual perception at late stages of retinal degeneration [START_REF] Sahel | Gene therapy for blindness[END_REF]: 7 in-serts (47 to 56 sites) and 2 intermediate plasmids (3 and 14 sites). Table constraints involve up to millions of tuples. We used the solving scheme described in section 3.1, with LastK-Conflicts [START_REF] Lecoutre | Reasoning from last conflict(s) in constraint programming[END_REF]. This "meta-mechanism" allows to guide search toward sources of conflicts. Using LastKConflicts, the best variable strategy was to assign first the final plasmid vars, and then the remaining vars for each insert successively, and then the costs, simply using the lexicographic order within each subset, with minimum value selection. The LastKConflicts best parameter is 2, probably because the model is strongly structured along variable pairs. Table 2 shows the results, following the solving scheme presented in Section 3.1. Full i are the three real instances considered in a perfect world where all existing enzymes are available in the laboratory. Real i are the same instances but with enzymes available in collaborator's laboratory. Simu i are instances derived from Real i by randomly modifying 30% of enzymes in components. The time limit was 5 minutes for each minimization step. LastKConflicts turned out to be of major importance in the solving process. All solutions were proved to be optimal for the two points of the Pareto front that make sense in practice. The results demonstrate the relevance of our constraint model for solving real instances of the PCP. They confirm a gain of solving robustness when AtMostNVector is propagated using Algorithm 2 (ISC), although this gain is mitigated by the use of LastKConflicts.

Conclusion

We provided a solution technique to the Plasmid Cloning Problem (PCP) in molecular biology. Our approach optimally solved real instances in the domain of gene therapy for retinal diseases. In addition, from a generic point of view in Constraint Programming, we proposed a new propagator for the AtMostNVector constraint, proved to be complementary to the existing ones. Future work includes the development of a user-friendly software product for biologists, based on the proof of concept offered by this research work.
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 1 Figure 1: Construction of plasmids using the digestion/ligation method. (A) General procedure for cloning an insert into a plasmid. Using polymerase chain reaction, restriction sites (SpeI and EcoRV in this example) are added at both ends of an oriented insert i (arrow). The insert and the plasmid are digested by restriction enzymes to generate sticky and complimentary ends. With the addition of DNA ligase, the insert and the plasmid recombine at the sticky end sites. The result is a new plasmid containing the insert. (B)-(D) Orientation and compatibility constraints for the cloning of an insert into a final plasmid, in one step (B), (C), or when an intermediate plasmid is required (D). Restricted sites that are excluded are in grey. Restriction site position in the plasmid is given in parenthesis.

  ) position of t > position of u. A re-inversion is required, position of r should be ≤ position of u, while position of s should be ≥ position of t (B and D). Transition constraint YZ test. Tuples should preserve ends compatibility (A) and distance between enzymes in each component (B), similarly to XY test. Objective constraints and optimization scheme. An instance of AtMostNVector(V, obj nvector ) defines the first objective, such that V = {(z test[0].before, z test[0].after ), (z test[1].before, z test[1].after ),. . .} ∪ {(z cont[0].before, z cont[0].after ),(z cont[1].before, z cont[1].after ),. . . }.

1

  card := Cardinalities of values in each row of vec; 2 scard := Sort each row of card in ascending order; 3 int res := 1; 4 for j ∈ {0, 1, . . . , p -1} do 5 nbco := 0; cur := 0; i := scard[j].length -1; 6 while nbco < k do 7 nbco := nbco + scard[j][i]; 8 i := i -1; cur := cur + 1; 9 res := max(res, cur ); 10 return res; Algorithm 1: NVECTORLB.

1

  obj := NVECTORLB(vec, card ); // Fill card 2 for i ∈ {0, 1, . . . , k -1} do 3 for j ∈ {0, 1, . . . , p -1} do 4 for v ∈ D(vec[i][j]) do 5 Decrease by 1 v cardinality in card [j]; 6 scard [j] := Sort card [j] in ascending order; 7 nbco := 0; lb := 0; idx := scard[j].length -1; 8 while nbco < k and idx > 0 do 9 nbco := nbco + scard[j][idx]; 10 lb := lb + min(1, scard[j][idx]); 11 idx := idx -1; 12 if lb > obj ∨ (lb = obj ∧ nbco < k) then 13 for v ∈ D(vec[i][j]) do 14 once := True; 15 nbco := 0; cur := 0; idx := scard[j].length -1; 16 while nbco < k do 17 nbco := nbco + scard[j][idx]; 18 if scard[j][idx] = cardinality of v in card [j] and once then 19 nbco := nbco + 1; 20 once := False; 21 idx := idx -1; cur := cur + 1; 22 if cur > obj then remove v; 23 for v ∈ D(vec[i][j]) do 24 Increase by one v cardinality in scard Algorithm 2: NVCARDINALITYPROPAGATOR.

  Di ≤ k × p × d, where d is the maximum domain size. Algorithm 2 runs in O(max( Di ×k, p × r)) time. Proof. (Sketch) Algorithm 1 computes all cardinalities in O(max( Di , p × r)) by traversing domains, in each row ccard [j].

Figure 2 :

 2 Figure 2: Gain and loss in nodes and time using ISC. The graph represents gain/loss in number of nodes for each of the 100 instances. Dots represent the gain/loss in time per instance.

  Instance, number of vectors, sum of costs, proof of optimality for vectors and costs, nodes and time. Size of instances: 1 and 2: 141 variables, 80 constraints. 3: 164 variables, 96 constraints. Proof of optimality of cost sum is considered given the current value of the number of vectors (2 Pareto points: the second row corresponds to the best cost result when the number of vectors is relaxed by 1).

  at least one intermediate is required to ligate the final plasmids test and/or control, this component represents the pairs of enzymes used to cut the insert, with respect to test and/or control. We can determine whether at least one direct solution exists or not before solving the problem by comparing all site pairs. This modeling structurally guarantees that constraints (E) of Section 2 is satisfied, as if there are two intermediate they share the same component x[i]. Domains of x[i].before and x[i].after are generated from lists of candidate sites. In agreement with biologists, cost domain is D(x[i].cost) = {0, 1, 2, 4, 6}. • Two components y p test[i] and y p cont[i] that represent site pairs that will match to x[i] in the intermediate plasmid when no direct solution exist for i, and site pairs used to cut the insert otherwise. In the case of use of an intermediate plasmid, more than one intermediate candidate may exist in data. We merge in the domains the sites of all candidates. Cost domains are {0, 1, 2, 4, 6}. • Two integer variables, ind y test[i] and ind y cont[i], whose domains are the set of all unique identifiers for plasmid candidates, plus value -1 to deal with the case where no intermediate plasmid is used. • Two components z test[i] and z cont[i] that represent the pair of sites selected in the target plasmid. Domains are generated similarly to x[i]. In addition, we define two objective variables, one for the number of distinct vectors in target plasmids, obj nvector , and one for the sum of costs, obj sumcost. The table constraints are the following. Recall that consistent pairs of enzymes and their cost and position are data. Suffix C is used to state a constraint on costs and string test for test inserts/plasmids. We present only test plasmids constraints: to add constraints on control plasmids in the model, just duplicate all constraints with string test and replace test by cont. For each i we define: Yp test C(y p test[i].before, y p test[i].after , y p test[i].cost) Yc test C(y c test[i].before, y c test[i].after , y c test[i].cost) Z test C(z test.before[i], z test[i].after , z test[i].cost) XY test(x [i].before, x [i].after , ind y test[i],

X C(x [i].before, x [i].after , x [i].cost) y p test[i].before, y p test[i].after ) YY test(ind y test[i], y p test[i].before, y p test[i].after , y c test[i].before, y c[i].test after ) YZ test(y c test[i].before, y c.test[i].after , z test[i].before, z test[i].after )

Table 1 :

 1 IS / ISC. Results on 100 instances, 5 min. time limit.

	Nb.	Domain	Number of	Average	Average
	variables	size: range	Optimal proofs	Nodes	Time (sec.)
	24 (6×4)	10: [0,19]	99 / 100	111840 / 13769	0.92 / 0.53
	24 (8×3)	10: [0,19]	100 / 100	93468 / 72560	13.9 / 10.91
	24 (6×4)	10: [0,29]	93 / 94	1555719 / 77518	7.67 / 2.9
	24 (8×3)	10: [0,29]	100 / 100	217880 / 99161	16.36 / 11.8
	24 (6×4)	15: [0,39]	100 / 100	1074183 / 70814	11.39 / 7.65
	24 (6×4)	20: [0,39]	99 / 100	636983 / 16450	3.6 / 1.23

Table 2 :

 2 IS / ISC. Results on full, real and simulated instances.

	Inst.	Nb.		Opt.	Opt.	Nodes	Time
		vect.	costs	vect.	cost.		(sec.)
	Full1	1	24	yes	yes	205 / 188	2.4 / 2.3
		2	24	-	yes	905 / 723	2.6 / 2.3
	Real1	1	24	yes	yes	66 / 66	1.4 / 1.4
		2	24	-	yes	97 / 84	0.8 / 0.8
	Simu1	4	38	yes	yes	2.1K / 2.1K	5 / 4.5
		5	35	-	yes	10.6K / 10.6K	7 / 7.2
	Full2	1	24	yes	yes	100 / 100	2.8 / 2.8
		2	24	-	yes	3.3K / 3.1K	8.6 / 8.3
	Real2	3	35	yes	yes	30.7K / 21.4K	33.9 / 26.1
		4	26	-	yes	42.5K / 39K	29.5 / 29.3
	Simu2	4	24	yes	yes	34.8K / 21.1K	24.6 / 17.3
		5	24	-	yes	4.7K / 4.6K	3.1 / 3.1
	Full3	1	44	yes	yes	293 / 293	4.2 / 4.2
		2	35	-	yes	4.2K / 3.4K	8.9 / 6.9
	Real3	2	38	yes	yes	508 / 508	4.6 / 4.7
		3	33	-	yes	6.5K / 5.7K	9.5 / 8.1
	Simu3	3	37	yes	yes	955 / 937	6.3 / 6.2
		4	33	-	yes	3.3K / 3.3.K	5.7 / 6.2

Results are similar using a lexicographic order of variables. The instances are harder to solve and ISC always leads to less nodes.
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