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Riccati nonlinear observer for velocity-aided attitude estimation of accelerated vehicles using coupled velocity measurements

Motivated by drone autonomous navigation applications we address a novel problem of velocity-aided attitude estimation by combining two linear velocity components measured in a body-fixed frame and a linear velocity component measured in an inertial frame with the measurements of an Inertial Measurement Unit (IMU). The main contributions of the present paper are the design of a Riccati nonlinear observer, which may be viewed as deterministic versions of an Extended Kalman filter (EKF), and an analysis of observability conditions under which local exponential stability of the observer is achieved. Reported simulation results further indicate that the observer's domain of convergence is large.

I. INTRODUCTION

The development of reliable attitude (i.e. orientation) estimators is a key requirement for efficient automatic control of drones. Most existing attitude observers exploit the measurements of an IMU under the assumption of weak accelerations of the vehicle to justify the direct use of accelerometer measurements for the estimation of the gravity direction in a body-fixed frame [START_REF] Batista | Sensor-based globally asymptotically stable filters for attitude estimation: Analysis, design, and performance evaluation[END_REF], [START_REF] Hua | Implementation of a nonlinear attitude estimator for aerial robotic vehicles[END_REF], [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF], [START_REF] Martin | Design and implementation of a low-cost observer-based attitude and heading reference system[END_REF]. The violation of this assumption, when the vehicle undergoes sustained accelerations, jeopardizes the accuracy of the attitude estimate (cf. [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF]). To overcome this problem velocity-aided attitude observers have been developed in the literature by fusing IMU measurements with the vehicle's linear velocity measurements done either in an inertial frame [START_REF] Grip | A nonlinear observer for integration of GNSS and IMU measurements with gyro bias estimation[END_REF], [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF], [START_REF] Khosravian | State estimation for invariant systems on lie groups with delayed output measurements[END_REF], [START_REF] Martin | An invariant observer for Earth-Velocity-Aided attitude heading reference systems[END_REF], [START_REF] Roberts | On the attitude estimation of accelerating rigid-bodies using GPS and IMU measurements[END_REF] or in a body-fixed frame [START_REF] Allibert | Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling[END_REF], [START_REF] Bonnabel | Symmetry-preserving observers[END_REF], [START_REF] Hua | Stability analysis of velocityaided attitude observers for accelerated vehicles[END_REF], [START_REF] Troni | Preliminary experimental evaluation of a Doppler-aided attitude estimator for improved Doppler navigation of underwater vehicles[END_REF]. The present paper addresses a new problem of velocity-aided attitude estimation where the vehicle's linear velocity is measured partly in a body-fixed frame and partly in an inertial frame. A motivating application of this work is related to quadrotor UAV navigation in situations where linear velocity's components along two body axes orthogonal to the thrust direction and expressed in a body-fixed frame can be derived from accelerometer measurements combined with an aerodynamic linear drag model [START_REF] Mahony | Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor[END_REF], [START_REF] Martin | The true role of accelerometer feedback in quadrotor control[END_REF] and where the linear velocity's vertical component expressed in an inertial frame can be obtained from barometer measurements. The important nonlinearities resulting from the use of such measurements render the design of an attitude observer significantly more complex than when all the linear velocity's components are measured in a single frame, either inertial or body-fixed. They also exclude the possibility of proving semi-global, or almost-global, stability results similar to M.-D. Hua and T. Hamel are with I3S, Université Côte d'Azur, CNRS, Sophia Antipolis, France, hua(thamel)@i3s.unice.f r.
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these derived in [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF] and [START_REF] Hua | Stability analysis of velocityaided attitude observers for accelerated vehicles[END_REF] in the simpler case of complete linear velocity measurements in a single frame.

The design of the observer proposed in this paper is adapted from a recent deterministic Riccati observer design framework [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF] that relies on the solutions to the Continuous Riccati Equation (CRE) and encompasses EKF solutions. Accordingly, good conditioning of the solutions to the CRE and, subsequently, exponential stability of the obtained observer rely on conditions of uniform observability whose satisfaction calls for a specific analysis. Since only local stability is demonstrated simulation results are useful to get complementary indications about the performance and the size of the basin of attraction of the proposed observer.

The paper is organized as follows. Notation, system equations, and the measurements involved in the observer design are specified in Section II. In the same section some basic definitions and conditions about system observability are recalled, together with elements of the deterministic Riccati observer design framework proposed in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]. In Section III the observer expressions are specified, and an analysis of associated observability conditions is carried out in Section IV. Simulation results illustrating the performance of the observer and showing that its domain of convergence can be large are reported in Section V. Conclusions then follow.

II. PRELIMINARY MATERIAL

A. Notation

• {e 1 , e 2 , e 3 } denotes the canonical basis of R 3 and [•] × denotes the skew-symmetric matrix associated with the cross product, i.e., [u] 

× v = u × v, ∀u, v ∈ R 3 .
The identity matrix of R n×n is denoted as I n and π x I 3 -xx ⊤ , ∀x ∈ S 2 (the unit 2-sphere), is the projection operator onto the plane orthogonal to x. Note that

π x = -[x] 2 × , ∀x ∈ S 2 . • {I} = {O; -→ ı 0 , -→  0 ,
-→ k 0 } denotes an inertial frame attached to the earth, typically chosen as the north-east-down frame, and {B} = {G; -→ ı , -→  , -→ k } is a body-fixed frame whose origin is the vehicle's center of mass G.

• The vehicle's attitude is represented by a rotation matrix R ∈ SO(3) of the frame {B} relative to {I}. The element at the intersection of the i th row and j th column of R is denoted as R i,j , with i, j ∈ {1, 2, 3}. • V ∈ R 3 and Ω ∈ R 3 are the vectors of coordinates of the vehicle's linear and angular velocities expressed in {B}. The linear velocity expressed in {I} is denoted as v ∈ R 3 so that v = RV .

B. System equations and measurements

The vehicle's attitude satisfies the differential equation

Ṙ = R[Ω] × (1)
We assume that the vehicle is equipped with an IMU consisting of a 3-axis gyrometer that measures the angular velocity Ω ∈ R 3 and of a 3-axis accelerometer that measures the specific acceleration a B ∈ R 3 , expressed in {B}. Using the flat non-rotating Earth assumption, we have [START_REF] Bonnabel | Symmetry-preserving observers[END_REF] V

= -[Ω] × V + a B + gR ⊤ e 3 (2) 
with g the gravity constant. A 3-axis magnetometer is also available to measure of the normalized Earth's magnetic field vector expressed in {B}.

Let m I = [m 1 , m 2 , m 3 ] ⊤ ∈ S 2
denote the known normalised Earth's magnetic field vector expressed in {I}. The vectors m I and e 3 are usually assumed to be non-collinear so that R can be estimated from the observation (measurements) in the body-fixed frame of the gravity vector and of the Earth's magnetic field vector.

The magnetometer thus measures m B = R ⊤ m I . We further assume that the vehicle is equipped with sensory devices that provide measurements of the two first components of V and the third component of v, i.e., V 1 , V 2 and v 3 . A possible combination of sensors providing such measurements in the case of a flying drone was evoked in the introduction.

C. Recalls of observability definitions and conditions

The following definitions and conditions are classical and just recalled here for the sake of completeness. Consider a linear time-varying (LTV) system

ẋ = A(t)x + B(t)u y = C(t)x (3) 
with x ∈ R n the system state vector, u ∈ R s the system input vector, and y ∈ R m the system output vector. 4) is satisfied one also says that the pair (A(t), C(t)) is uniformly observable. The following useful condition points out a sufficient condition for uniform observability.

Lemma 1 (see [START_REF] Scandaroli | Visuo-inertial data fusion for pose estimation and self-calibration[END_REF]) If there exists a matrix-valued function

M (•) of dimension (p × n) (p ≥ 1) composed of row vectors of N 0 = C, N k = N k-1 A + Ṅk-1 , k = 1, • • • such that for some positive numbers δ, μ and ∀t ≥ 0 1 δ t+ δ t M ⊤ (s)M (s)ds ≥ μI n (5)
then the observability Gramian of System (3) satisfies condition (4).

D. Recalls of a Riccati observer design framework

The proposed observer design is adapted from the deterministic observer design framework reported in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]. Consider the nonlinear system 

ẋ = A(x 1 , t)x + u y = C(x, t)x (6) with x = [x ⊤ 1 , x ⊤ 2 ] ⊤ , x 1 ∈ B n r (the closed ball in R n of radius r), x 2 ∈ R n , y ∈ R m , A(x 1 ,
A(x 1 , t) = A 1,1 (t) 0 A 2,1 (x 1 , t) A 2,
Ṗ = AP + P A ⊤ -P C ⊤ Q(t)CP + S(t) (8) 
with P (0) ∈ R 2n×2n a symmetric positive definite matrix, Q(t) ∈ R m×m bounded continuous symmetric positive semidefinite, and S(t) ∈ R 2n×2n bounded continuous symmetric positive definite. Then, from Theorem 3.1 and Corollary 3.2 in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF], x = 0 is locally exponentially stable when Q(t) and S(t) are both larger than some positive matrix and the pair

(A ⋆ (t), C ⋆ (t)), with A ⋆ (t) A(0, t), C ⋆ (t) C(0, t) (9 
) is uniformly observable.

III. OBSERVER DESIGN

Let R ∈ SO(3) and V ∈ R 3 denote the estimates of R and V , respectively. The proposed observer is of the form

Ṙ = R[Ω] × -[σ R ] × R V = -[Ω] × V + a B + g R⊤ e 3 -σ V (10) 
where σ R , σ V ∈ R 3 are innovation terms specified thereafter. Defining the observer errors R R R⊤ , Ṽ V -V then the design objective is the exponential stability of ( R, Ṽ ) = (I 3 , 0). From (1), ( 2) and ( 10) one verifies that

Ṙ = R[σ R ] × V = -[Ω] × Ṽ + g R⊤ ( R⊤ -I 3 )e 3 + σ V (11) 
The next step consists in working out first order approximations of the error system (11) complemented with first order approximations of the measurement equations. The application to these approximations of the Riccati observer design framework reported in [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF] will then provide us with the expressions of the innovation terms σ R and σ V .

For this application we need to make the following technical (but non-restrictive) assumption. 

(t)| ≤ v max , | v1,2 (t)| ≤ v1,2max and |Ω(t)| ≤ Ω max .
First order approximations of the attitude error equation is derived by considering (local) minimal parametrizations of the three-dimensional group of rotations SO(3). The parametrization here chosen is the vector part q of the Rodrigues unit quaternion Q = (q 0 , q) associated with R.

Rodrigues formula relating Q to R is R = I 3 + 2[q] × (q 0 I 3 + [q] × ) = I 3 + [ λ] × + O(| λ| 2 )
with λ 2sign(q 0 )q. Then, in view of the dynamics of R in [START_REF] Mahony | Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor[END_REF] one verifies (see also [START_REF] Hamel | Riccati observers for the non-stationary PnP problem[END_REF]) that

λ = σ R + O(| λ||σ R |) (12) 
As for the dynamics of Ṽ one obtains

V = -[Ω] × Ṽ + g R⊤ [e 3 ] × λ + σ V + O(| λ| 2 ) (13) Concerning the measurement of v 3 one has v 3 -e ⊤ 3 R V = e ⊤ 3 ( R -I 3 ) R( V + Ṽ ) + e ⊤ 3 R Ṽ = -e ⊤ 3 [ R V ] × λ+e ⊤ 3 R Ṽ +O(| λ|| Ṽ |) +O(|V || λ| 2 ) (14)
As for the measurement of m B one obtains

Rm B ×m I = R⊤ m I × m I = π mI λ+O(| λ| 2 ) (15)
In view of relations ( 12), ( 13), ( 14) and [START_REF] Roberts | On the attitude estimation of accelerating rigid-bodies using GPS and IMU measurements[END_REF], by setting the system output vector equal to

y =     V 1 -V1 V 2 -V2 v 3 -e ⊤ 3 R V ( Rm B ) × m I    
one obtains LTV first order approximations in the form [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF] with

                 x = λ Ṽ , x 1 = λ, x 2 = Ṽ , u = σ R σ V A = 0 3×3 0 3×3 g R⊤ [e 3 ] × -[Ω] × , C =     0 1×3 e ⊤ 1 0 1×3 e ⊤ 2 -e ⊤ 3 [ R V ] × e ⊤ 3 R π mI 0 3×3     (16) 
From there the proposed observer is given by [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] with σ R and σ V determined from the input u calculated according to [START_REF] Hua | Implementation of a nonlinear attitude estimator for aerial robotic vehicles[END_REF] and [START_REF] Hua | Stability analysis of velocityaided attitude observers for accelerated vehicles[END_REF].

IV. OBSERVABILITY ANALYSIS

According to [5, Corollary 3.2], good conditioning of the solutions P (t) to the CREs and exponential stability of the previously derived observer rely on the uniform observability of the pair (A ⋆ (t), C ⋆ (t)) obtained by setting x = 0 in the expressions of the matrices A and C derived previously. In view of ( 16) one has

A ⋆ = 0 3×3 0 3×3 gR ⊤ [e 3 ] × -[Ω] × , C ⋆ =   0 2×3 -e ⊤ 3 [v] × ∆ π mI 0 3×3   (17) 
with

∆ [e 1 | e 2 | R ⊤ e 3 ] ⊤ ∈ R 3×3 . Define D = D1,1 D1,2 D2,1 D2,2 M ⊤ M , with M C ⋆ C ⋆ A ⋆ + Ċ⋆ . From Lemma 1 the pair (A ⋆ , C ⋆ ) is uniformly observable if ∃δ > 0, µ > 0 such that 1 δ t+δ t D(s)ds ≥ µI 6 , ∀t > 0 (18) Straightforward calculations yield            D 1,1 = π mI + g 2 π e3 -g 2 (e 3 × Re 3 )(e 3 × Re 3 ) ⊤ + (e 3 × v)(e 3 × v) ⊤ + (e 3 × v)(e 3 × v) ⊤ D 1,2 = D ⊤ 2,1 = [v] × e 3 e ⊤ 3 R + g[e 3 ] × Rπ e3 [Ω] × D 2,2 = ∆ ⊤ ∆ -[Ω] × π e3 [Ω] × (19)
The following proposition points out more explicit conditions whose satisfaction ensures uniform observability and thus local exponential stability of the proposed observer. Its proof is based on the fact that (18) is equivalent to 6 and ∀t ≥ 0, which, by simple computations, is also equivalent to ∀x, y ∈ R 3 :

1 δ t+δ t X ⊤ D(s)Xds ≥ µ|X| 2 ∀X = [x ⊤ , y ⊤ ] ⊤ ∈ R
1 δ t+δ t m I × x 2 + g 2 [R(s)e 3 ] × [e 3 ] × x 2 + (e 3 ×v(s)) ⊤ x 2 + (e 3 × v(s)) ⊤ x 2 + y 2 1 + y 2 2 + (R ⊤ (s)e 3 ) ⊤ y 2 + [e 3 ] × [Ω(s)] × y 2 + 2g R ⊤ (s)[R(s)e 3 ] × [e 3 ] × x ⊤ [e 3 ] × [Ω(s)] × y +2((v(s)×e 3 ) ⊤ x) (R ⊤ (s)e 3 ) ⊤ y ds ≥ µ(|x| 2 + |y| 2 ) (20) Proposition 1 (Proof in Appendix A) Assume that ∃δ, ρ > 0 s.t. 1 δ t+δ t R 2 3,3 (s)ds ≥ ρ, ∀t ≥ 0 (21)
Then for the following cases: 1) Motion along the vertical direction, i.e. v(t)×e 3 ≡ 0; 2) Pure translation, i.e. Ω(t) ≡ 0;

3) Motion such that v 21) is violated when the gravity direction expressed in the body-fixed frame {B} (i.e. R ⊤ e 3 ) always remains on the plane spanned by e 1 and e 2 or approaches it asymptotically. For instance, if ∀t : R(t) ⊤ e 3 ∈ span(e 1 , e 2 ) then the uniform observability sufficient condition (18) is not satisfied since in that case the last row and last column of D (given by ( 19)) are equal to zero. However, this very particular situation of non observability is not supposed to occur in the case of VTOL UAV navigation.

• Condition (22) means that the norm of v1,2 (t) is not null for all time and its direction is not constant for all time. As for condition (23), it is not satisfied if ∀t : v2(t) v1(t) = m2 m1 which, a part from the case of constant horizontal linear velocity (i.e. v1 ≡ v2 ≡ 0), is also very particular. Note that even when both conditions ( 22) and ( 23) are violated, the condition of the third case, which does not rely on the horizontal linear accelerations, may still be satisfied. Moreover, all the five cases (combined with condition (21)) only provide nonminimal sufficient conditions for the validity of condition (18) and their violation thus does not necessarily lead to the violation of (18).

V. SIMULATION RESULTS

Simulations are conducted on a model of a vertical takeoff and landing (VTOL) aerial drone, also used in [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF]. The vehicle is stabilized along a circular reference trajectory, with the linear velocity expressed in the inertial frame {I} given by v r = [-15α sin(αt); 15α cos(αt); 0] (m/s), with α = 2/ √ 15. Due to aerodynamic forces the vehicle's orientation varies in large proportions. The normalized earth's magnetic field and the gravity constant are respectively equal to m I = [0.434; -0.0091; 0.9008] and g = 9.81(m/s 2 ).

The proposed observer is tuned analogously to Kalman-Bucy filters where the matrices S and Q -1 are interpreted as covariance matrices of the additive noise on the system state and output respectively. The following parameters are chosen:

P (0) = diag(2I 3 , 20I 3 ), Q(t) = diag(25I 3 , 100I 3 ), S(t) = diag(0.01I 3 , I 3 ).
Two simulations are reported next. • Simulation 1: In this simulation, the observer is simulated in the ideal case (i.e. noise-free measurements) for a set of initial attitude and velocity estimates corresponding to the following initial estimation errors ṽ(0) = [-5; 5; -5](m/s)

q(0) = [cos( π 2 ); sin( π 2 )e 1 ] (24) 
This extreme case corresponds to an initial attitude error of 180(deg) in roll w.r.t. the true attitude. The time evolutions of the estimated and real attitudes, represented by Euler angles, along with the estimated and real velocity are shown in Figs. 1 and2, respectively. The observer ensures the asymptotic convergence of the estimated variables to the real values despite the extremely large initial estimation errors, with quite good convergence rate.

• Simulation 2: This simulation is conducted with the same initial condition (24) as in Simulation 1. However, the measurements are now corrupted by Gaussian zero-mean additive noises with standard deviations reflecting the above choice of Q (0.2 m/s for v 3 and V 1,2 and 0.1 for m B ) and of S (0.1 rad/s for Ω and 1 m/s 2 for a B ). Moreover, they are discretized with update frequencies of 20 Hz, for the measurements of V 1 , V 2 , v 3 and m B , and of 50 Hz, for the measurements of Ω and a B . The results reported in Figs. 3 and4 indicate that important noises and low update frequencies of the measurements only marginally affect the overall performance of the observer.

VI. CONCLUSIONS In this paper, a new problem of coupled velocity-aided attitude estimation has been addressed and a nonlinear observer has been proposed on the basis of a recent deterministic Riccati observer design framework. It is supported by comprehensive stability and observability analysis, and also by convincing simulation results. Acknowledgement: This research was supported by the French Agence Nationale de la Recherche via the ASTRID SCAR (ANR-12-ASTR-0033) and ROBOTEX (ANR-10-EQPX-44) projects.

APPENDIX

A. Proof of Proposition 1

Case 1: In this case v × e 3 ≡ v × e 3 ≡ 0 and

1 δ t+δ t X ⊤ D(s)Xds = 1 δ t+δ t |m I ×x| 2 + εrg 2 1+εr [R(s)e 3 ] × [e 3 ] × x 2 +y 2 1 + y 2 2 + (R ⊤ (s)e 3 ) ⊤ y 2 -ε r [e 3 ] × [Ω(s)] × y 2 + gR ⊤ (s)[R(s)e3]×[e3]×x √ 1+εr + √ 1+ε r [e 3 ] × [Ω(s)] × y 2 ds ≥ |m I ×x| 2 + 1 δ t+δ t ε r g 2 1 + ε r [R(s)e 3 ] × [e 3 ] × x 2 ds +y 2 1 + y 2 2 + 1 δ t+δ t (R ⊤ (s)e 3 ) ⊤ y 2 ds -ε r Ω 2 max |y| 2 (25) with ε r > 0 such that ∃µ r y > 0: y 2 1 + y 2 2 + 1 δ t+δ t (R ⊤ (s)e 3 ) ⊤ y 2 ds ≥ (µ r y +ε r Ω 2 max )|y| 2 (26) A number ε r satisfying this inequality is calculated next. Defining γ R ⊤ e 3 ∈ S 2 one gets γ ⊤ y 2 = (γ 3 y 3 ) 2 +2(γ 1 y 1 +γ 2 y 2 )(γ 3 y 3 )+(γ 1 y 1 +γ 2 y 2 ) 2 ≥ 1 3 (γ 3 y 3 ) 2 -1 2 (γ 1 y 1 +γ 2 y 2 ) 2 ≥ 1 3 (γ 3 y 3 ) 2 -(γ 1 y 1 ) 2 -(γ 2 y 2 ) 2 when using the following Young inequalities 2(γ 1 y 1 + γ 2 y 2 )(γ 3 y 3 ) ≥ -2 3 (γ 3 y 3 ) 2 -3 2 (γ 1 y 1 + γ 2 y 2 ) 2 (γ 1 y 1 + γ 2 y 2 ) 2 ≤ 2((γ 1 y 1 ) 2 + (γ 2 y 2 ) 2 ) Since γ 3 = R 3,3 one deduces from (21) that y 2 1 + y 2 2 + 1 δ t+δ t (R ⊤ (s)e 3 ) ⊤ y 2 ds -ε r Ω 2 max |y| 2 ≥ 1 δ t+δ t (1-γ 2 1 (s))y 2 1 + (1-γ 2 2 (s))y 2 2 + 1 3 γ 2 3 (s)y 2 3 ds -ε r Ω 2 max |y| 2 ≥ ( 1 3δ t+δ t γ 2 3 (s)ds -ε r Ω 2 max )|y| 2 ≥ µ r y |y| 2 (27) with µ r y ρ/3 -ε r Ω 2 max .
Therefore, any number ε r such that 0 < ε r < ρ/(3Ω 2 max ) ensures that µ r y in (27) is positive. Let us now consider the term

|m I ×x| 2 + 1 δ t+δ t ε r g 2 1 + ε r [R(s)e 3 ] × [e 3 ] × x 2 ds
involved in the last inequality of (25). By simple computations one obtains

[Re 3 ] × [e 3 ] × x =   -R 3,3 0 0 0 -R 3,3 0 R 1,3 R 2,3 0   x =   -R 3,3 x 1 -R 3,3 x 2 R 1,3 x 1 +R 2,3 x 2  
Thus, defining εr εr g 2 1+εr and using (21) one deduces

|m I ×x| 2 + 1 δ t+δ t ε r g 2 1 + ε r [R(s)e 3 ] × [e 3 ] × x 2 ds = (m 3 x 2 -m 2 x 3 ) 2 +(m 3 x 1 -m 1 x 3 ) 2 +(m 2 x 1 -m 1 x 2 ) 2 + 1 δ t+δ t εr R 2 3,3 (s)(x 2 1 +x 2 2 )+ εr (R 1,3 (s)x 1 +R 2,3 (s)x 2 ) 2 ds ≥ (m 3 x 2 -m 2 x 3 ) 2 +(m 3 x 1 -m 1 x 3 ) 2 + εr ρ(x 2 1 + x 2 2 ) = m 2 3 + εr ρ 2 x 2 -m2m3 √ m 2 3 + εr ρ 2 x 3 2 + m 2 3 + εr ρ 2 x 1 -m1m3 √ m 2 3 + εr ρ 2 x 3 2 + εr ρ 2 (x 2 1 + x 2 2 ) + (m 2 1 +m 2 2 )εrρ 2m 2 3 +εrρ x 2 3 ≥ µ r x |x| 2 (28) with µ r x min εr ρ 2 , (m 2 1 +m 2 2 )εr ρ 2m 2 3 +εr ρ
, which is positive since m I and e 3 are non-collinear. From (25), ( 27), (28) one then deduces that 1 δ t+δ t X ⊤ D(s)Xds ≥ µ|X| 2 with µ min(µ r

x , µ r y ) > 0. This concludes the proof of the first case. Case 2: The proof proceeds analogously to the proof of the first case. Since Ω(t) ≡ 0, similarly to (25) one deduces that the left-hand side of (20) satisfies

1 δ t+δ t X ⊤ D(s)Xds ≥ y 2 1 + y 2 2 + 1 δ t+δ t ε t 1 + ε t (R ⊤ (s)e 3 ) ⊤ y 2 ds +|m I ×x| 2 + g 2 δ t+δ t [R(s)e 3 ] × [e 3 ] × x 2 ds -ε t v 2 1,2max (x 2 1 + x 2 2 ) (29) 
with some ε t > 0. Relation ( 28) is now replaced by

|m I ×x| 2 + g 2 δ t+δ t [R(s)e 3 ] × [e 3 ] × x 2 ds-ε t v 2 1,2max (x 2 1 +x 2 2 ) ≥ g 2 ρ 2 -ε t v 2 1,2max (x 2 1 + x 2 2 ) + (m 2 1 +m 2 2 )g 2 ρ 2m 2 3 +g 2 ρ x 2 3 ≥ min g 2 ρ 2 -ε t v 2 1,2max , (m 2 1 +m 2 2 )g 2 ρ 2m 2 3 +g 2 ρ |x| 2 ≥ µ t x |x| 2 (30) with µ t x min g 2 ρ 2 -ε t v 2 1,2max , (m 2 1 +m 2 2 )g 2 ρ 2m 2 3 +g 2 ρ . This num- ber is positive if ε t is chosen such that 0 < ε t < g 2 ρ 2v 2 1,2max
. Relation ( 27) is now replaced by

y 2 1 + y 2 2 + 1 δ t+δ t ε t 1 + ε t (R ⊤ (s)e 3 ) ⊤ y 2 ds ≥ 1 δ t+δ t ε t 1 + ε t (y 2 1 + y 2 2 + (γ ⊤ (s)y) 2 )ds ≥ µ t y |y| 2 ( 
31) with µ t y εtρ 3(1+εt) . From (29), (30), (31) one then deduces that 1 δ t+δ t X ⊤ D(s)Xds ≥ µ|X| 2 , with µ min(µ t

x , µ t y ) > 0. This concludes the proof of this case. Case 3: Using the same procedure as the one used to derive relations (25), (27), and (28) one deduces where the last inequality is obtained by proceeding analogously to (28) . From here by choosing any positive number

1 δ t+δ t X ⊤ D(s)Xds ≥ |m I ×x| 2 + 1 δ t+δ t ε 2 g 2 1 + ε 2 [R(s)e 3 ] × [e 3 ] × x 2 ds -ε 1 v 2 1,2max (x 2 1 + x 2 2 ) +y 2 1 +y 2 2 + 1 δ t+δ t ε 1 1+ε 1 (R ⊤ (s)e 3 ) ⊤ y 2 ds-ε 2 Ω 2 max |y| 2 ≥ ε2g 2 ρ 2(1+ε2) -ε 1 v 2 1,2max (x 2 1 + x 2 2 ) + (m 2 1 +m 2 2 )ε2ρ 2m 2 3 +ε2ρ x 2 3 + ε1ρ 3(1+ε1) -ε 2 Ω 2 max |y| 2 with ε2 ε 2 g 2 1 + ε 2 and ε 1 , ε 2 > 0 chosen such that        ε 2 1 + ε 2 > α 1 ε 1 , with α 1 2v 2 1,2max g 2 ρ ε 1 1 + ε 1 > α 2 ε 2 , with α 2 3Ω 2 max ρ ( 
ε 1 < ε2 2v 2 1,2max
, (18) then directly follows.
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 1 Fig. 1. Simulation 1: Estimated and real attitude represented by roll, pitch and yaw Euler angles (deg) versus time (s).
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 2 Fig. 2. Simulation 1: Estimated and real velocity (m/s) versus time (s).
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 3 Fig. 3. Simulation 2: Estimated and real attitude represented by roll, pitch and yaw Euler angles (deg) versus time (s).
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 4 Fig. 4. Simulation 2: Estimated and real velocity (m/s) versus time (s).

  t) a continuous matrixvalued function uniformly bounded w.r.t. t and uniformly continuous w.r.t. x 1 of the form

  2 (t) and C(x, t) a continuous matrix-valued function uniformly bounded w.r.t. t and uniformly continuous w.r.t. x. Apply u = -P C ⊤ Qy (7) with P ∈ R 2n×2n a symmetric positive definite matrix solution to the following CRE

  1,2max Ω max ≤ gρ √ 6 , with v 1,2max and Ω max standing for the bounds of v 1,2 and Ω defined in

	Assumption 1;		
	4) Persistently accelerated translational motion such that
	∃ρ 1 > 0, ∀t ≥ 0: 1 δ t 5) Persistently accelerated translational motion such that t+δ v1,2 (s) v⊤ (22) 1,2 (s)ds ≥ ρ 1 I 2
	∃ρ 2 > 0, ∀t ≥ 0: 1 δ t+δ t m 2 v1 (s) -m 1 v2 (s)	2 ds ≥ ρ 2	(23)
	Some comments on Proposition 1 are provided next.	
	• The third case of Proposition 1 encompasses the first and second cases.
	• Condition (		

condition (18) is satisfied. Consequently, the pair (A ⋆ , C ⋆ ) given by
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is uniformly observable and the equilibrium ( R, Ṽ ) = (I 3 , 0) of the proposed Riccati observer is locally exponentially stable.

  32)One then verifies that positive solutions of ε 1 and ε 2 to (32) exist if α 1 α 2 < 1 or, equivalently, if v 1,2max Ω max ≤ gρ 3 x 2 -m 2 x 3 ) 2 +(m 3 x 1 -m 1 x 3 ) 2 onededuces from (35), (36) and the relations(m 2 x 1 -m 1 x 2 ) 2 = (m 2 1 ) + (m 3 x 2 -m 2 x 3 ) 2 +(m 3 x 1 -m 1 x 3 ) 2

					Choosing any positive number ε 2 <	m 2 1 +m 2 2 1,2max v2	and defining
					ε2 min	ε2ρ2 (1+ε2)(m 2 1 +m 2 2 ) , m 2 1 + m 2 2 -ε 2 1,2max > 0, + m 2 v2 2 )x 2 2 , x2 1 + x2 2 = x 2 1 + x 2 2
	√ 6 . Then, proceeding similarly to (25), (28), (31), and using (33) From here (18) follows immediately. Case 4: Using (22) one obtains 1 δ t+δ t (e 3 × v(s)) ⊤ x 2 ds = -x 2 x 1 ⊤ 1 δ t+δ t v1,2 (s) v⊤ 1,2 (s)ds -x 2 x 1 ≥ ρ 1 (x 2 1 + x 2 2 ) (33)	that	t+δ ≥ ε2 (x 2 1 δ t 1 + x 2 X ⊤ D(s)Xds 2 -ε 1 v 2 1,2max x 2 1 +x 2 2 + ≥ ε2 2 -ε 1 v 2 1,2max (x 2 1 + x 2 ε 1 ρ 3(1 + ε 1 ) 2 ) + (m 2 |y| 2 1 + m 2 2 )ε 2 2m 2 3 + ε2 + ε 1 ρ 3(1 + ε 1 ) |y| 2	x 2 3
	one deduces from the right-hand side of (20) that
	1 δ =	t 1 δ	t+δ t+δ X ⊤ D(s)Xds t m I ×x	2
	+y 2 1 + y 2 2 + ε1 1+ε1 (R 2 ds
	≥ m I ×x ≥ ρ1 2 (x 2 1 + x 2 2 + ρ1 (x 2 1 + x 2 2 ) + ε1ρ 3(1+ε1) |y| 2 2 ) + (m 2 1 + m 2 2 )ρ 1 2m 2 3 + ρ1 x 2 3 + ε 1 ρ 3(1 + ε 1 ) with 0 < ε 1 < ρ 1 /v 2 1,2max and ρ1 1,2max > 0. |y| 2 (34) ρ 1 -ε 1 v 2 From here one easily deduces (18).
	Case 5: From the first equality of (34) and using (21), one
	deduces t+δ 1 δ t ≥ (m 2 x 1 -m 1 x 2 ) 2 + X ⊤ D(s)Xds +(m -ε 1 v 2 1,2max x 2 1 +x 2 2 + 1 δ with ε 1 > 0 specified hereafter. Defining t+δ (-v2 (s)x 1 + v1 (s)x 2 ) 2 ds t ε 1 ρ 3(1 + ε 1 ) |y| 2 (35)
					m1
			x1	
			x2	
	≥	1 1 +m 2 (m 2 2 )δ ε2ρ2 (1+ε2)(m 2 1 +m 2 t+δ t + √ 1 + ε 2 (m 1 v1 (s) + m 2 v2 (s))x 2 -m1 v2(s)+m2 v1(s) √ 1+ε2 x1 2 ) x2 v2 1,2max x2 2 1 -ε 2	2 ds (36)

2

+ (e 3 × v(s)) ⊤ x 2 -ε 1 (e 3 ×v(s)) ⊤ x ⊤ (s)e 3 ) ⊤ y 2 + √ 1 + ε 1 (v(s)×e 3 ) ⊤ x + (R ⊤ (s)e3) ⊤ y √ 1+ε1 2 + gR ⊤ (s)[R(s)e 3 ] × [e 3 ] × x + [e 3 ] × [Ω(s)] × y