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Explicit Complementary Observer Design on Special Linear Group
SL(3) for Homography Estimation using Conic Correspondences

Minh-Duc Hua, Tarek Hamel, Robert Mahony, Guillaume Allibert

Abstract— This paper presents a new observer on the Special
Linear group SL(3). The proposed solution is oriented towards
online homography estimation from video sequences obtained
from robotic vehicles equipped with a monocular camera. The
originality of this paper relies on the extension of our prior
works based on linear features to nonlinear features and more
particularly to conics. A comprehensive observability analysis is
provided. Performance and robustness of the proposed observer
are evaluated in both simulations and experiments.

I. INTRODUCTION

The homography is an invertible mapping relating two
views of the same planar scene. It plays a key role in
many computer vision and robotics applications, especially
those involving man-made environments composed of planar
surfaces. The problem of homography estimation has been
extensively studied (e.g. [2], [5]). However, most existing
works only consider the homography as an incidental vari-
able and are not focused on improving the estimation over
time. The quality of the homography estimates depends
heavily on the nature of the image features exploited as
well as the algorithm used. Image features for homography
estimation are typically geometric (points, lines, conics, etc.)
or texture. For a well textured scene, state-of-the-art methods
can provide high quality homography estimates at the cost
of high computational complexity (see [5]). For a scene with
poor texture, while significant computational effort is still
required, the poor quality of homography estimates is often
an important issue. This is particularly the case in varying
lighting conditions and in presence of specular reflections
or moving shadows, where photogrammetric error criteria
used in texture-based methods become ill-posed. Feature-
based methods of image-to-image homography estimation
are robust to these issues as long as good features and
good matching are obtained. They have been the mainstay
of robust computer vision in the past and most well-known
algorithms rely on point or line correspondences [2], [5].
Homography estimation based on nonlinear features such
as conics or contours has been less explored [7], [8]. As
opposed to linear images features, conics encode richer ge-
ometric information so that two conic correspondences may
be sufficient to compute the image-to-image homography
whereas at least 4 point (or 4 line) correspondences are
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required for the same task [5]. Based on at least 2 conic cor-
respondences, existing approaches compute homographies
from linear algebraic equations [3], [9], [15] or polynomial
equations [8], and by solving eigenvalue/eigenvector problem
[3] or eigen-decomposition problem [9]. Most of them,
however, restrict the type of conics to ellipses.

One of the objectives of the present work is to develop a
feature-based homography estimation algorithm that exploits
the temporal correlation of data across a video sequence
rather than computing algebraically individual raw homog-
raphy for each image. The methodology taken exploits the
underlying structure of the Special Linear group SL(3), a Lie
group isomorphic to the group of homographies. This prop-
erty has, however, seldom been considered in observer design
for smoothing the homography estimates [11], [13]. The
proposed approach is the continuation of our prior works on
the formulation of point (resp. line) feature-based innovation
that incorporates directly point (resp. line) correspondences
in the observer without requiring the prior reconstruction of
individual homographies [4] (resp. [6]). The features here
exploited are conics, which are of higher-level than point
and line features. The originality of this work relies on the
capacity of the observer of encompassing static and non-
static cases, temporal smoothing of noisy data, and providing
good homography estimates even in situations where the
number and quality of conic-feature correspondences on a
frame-by-frame basis are insufficient to directly compute
raw homographies, during a short time period. Beyond the
technical contributions, this work contributes to our ongoing
development of a unified observer on SL(3) that offers large
convergence domain and low computational complexity and
that can exploit all types of features, either geometric or
texture, for homography estimation.

The paper is organized as follows. Section II recalls some
algebraic equations of homographies and conics. Section III
is devoted to observer design and observability analysis. The
observer is derived from the theory of “invariant observers
based on homogeneous output space” [12] by adequately rep-
resenting the conic measurement in the homogeneous space.
A comprehensible observability analysis is also provided,
offering a generalization of existing studies on this topic.
In Section IV simulation results involving different types of
conics and large initial errors are presented to illustrate the
observer performance. Experimental results are reported in
Section V, showing that real-time implementation is possible
and that the observer performance is still acceptable in
situations where the observability is temporarily lost. Finally,
a short concluding section follows.



II. TECHNICAL BACKGROUND

A. Notation
• The Special Linear group SL(3) and its algebra sl(3) are

SL(3) , {H ∈ R3×3 | det H = 1},
sl(3) , {U ∈ R3×3 | tr(U) = 0}.

• The adjoint operator is a mapping Ad : SL(3)× sl(3)→
sl(3) defined by

AdHU , HUH−1, H ∈ SL(3),U ∈ sl(3).

• The projection operator P : R3×3 → sl(3) is defined by

P(A) , A− 1
3 tr(A)I,

with I the identity matrix.
• The Frobenius norm is defined by ‖A‖F ,

√
tr(AA>),

∀A ∈ R3×3. For any symmetric positive definite matrix K ∈
R3×3, the norm ‖A‖K, ∀A ∈ R3×3, is defined by ‖A‖K ,
‖AK

1
2 ‖F =

√
tr(AKA>).

• Let 〈·, ·〉 : sl(3) × sl(3) −→ R be an inner product on
sl(3), chosen to be the Euclidean matrix inner product on
R3×3. Then, a right-invariant Riemannian metric on SL(3)
induced by the inner product 〈·, ·〉 is defined by

〈U1H,U2H〉H , 〈U1,U2〉, H ∈ SL(3),U1,U2 ∈ sl(3).

• grad1f(·, ·) and Hess1f(·, ·) denote the gradient and
Hessian in the first variable of f(·, ·), respectively.

B. Homographies

Let Å (resp. A) denote projective coordinates for the
image plane of a camera Å (resp. A), and let {Å} (resp. {A})
denote its reference (resp. current) frame. Let ξ ∈ R3 denote
the position of the frame {A} with respect to {Å} expressed
in {Å}. The orientation of the frame {A} with respect
to {Å}, is given by a rotation matrix R ∈ SO(3), with
R : {A} → {Å} as a mapping. In addition, we denote by d̊
(resp. d) and η̊ (resp. η) respectively the distance from the
origin of {Å} (resp. {A}) to the planar scene and the normal
to the scene expressed in {Å} (resp. {A}). One has

P̊ = RP + ξ

as a relation between the coordinates of the same point in the
reference frame (P̊ ∈ {Å}) and in the current frame (P ∈
{A}). The camera internal parameters, in the commonly used
approximation [5], define a calibration matrix K ∈ R3×3 so
that1:

p̊ ∼= KP̊, p ∼= KP, (1)

where p ∈ A is the image of a point when the camera
is aligned with frame {A}, and can be written as (u, v, 1)>

using the homogeneous coordinate representation for that 2D
image point. Likewise, p̊ ∈ Å is the image of the same point
viewed when the camera is aligned with frame {Å}.

The image homography matrix that maps pixel coordinates
from A to Å is given by

Him = γK(R + ξη>

d )K−1,

with γ a scale factor. Without loss of generality, γ can be
chosen so that Him ∈ SL(3). In this case, γ is equal (d/d̊)

1
3

1Most statements in projective geometry involve equality up to a multi-
plicative constant denoted by ∼=.

and corresponds to the second singular value of Him [10].
The Euclidean homography H ∈ SL(3) is related to Him

by

H = K−1HimK = γ(R + ξη>

d ).

We have P ∼= H−1P̊ and p ∼= H−1
im p̊.

C. Conics and conic correspondences

In the Cartesian coordinate system, the general equation
of a conic is of the form

ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2 = 0,

with all coefficients real numbers and a, b, c not all null,
which in the homogeneous form can be written as

P>CP = 0,

with C ∈ R3×3 the conic in the homogeneous form

C =

a b d
b c e
d e f

 .
In this paper only non-degenerate conics are considered so
that their determinant is not null. Since the relation P>CP =
0 implies that P>(λC)P = 0 for any number λ 6= 0, all
λC represent the same conic. Therefore, without loss of
generality it can be assumed that C belongs to the set C
defined as

C , {C ∈ R3×3 | C> = C, det(C) = 1}.

If C is non-degenerate, its determinant ∆ = b2 − ac defines
the type of conic.

• If ∆ < 0, C is an ellipse;
• if ∆ > 0, C is a hyperbola;
• if ∆ = 0, C is a parabola.

From two views, the conic correspondence C̊ ∈ {Å} and
C ∈ {A} of the same conic is related by a homography as

C = H>C̊H. (2)

In fact, for any point belonging to the conic one has
P>CP = P̊>C̊P̊ = 0. Then, replacing the relation P̊ ∼=
HP into P̊>C̊P̊ = 0 one obtains P>(H>C̊H)P = 0,
thus yielding (2) using the fact that det(C) = det(C̊) =
det(H) = 1.

The Euclidean conic C ∈ C and its associated image conic
Cim ∈ C are related by C ∼= K>CimK.

III. NONLINEAR OBSERVER DESIGN ON SL(3) BASED ON
COPLANAR CONIC CORRESPONDENCES

In this section an observer for H ∈ SL(3) is developed
from a recent advanced theory for nonlinear observer design
directly on the output space [12].



A. Kinematics and measurements

Consider the kinematics of SL(3) given by

Ḣ = F (H,U) , HU, (3)

with U ∈ sl(3) the group velocity. Assume that U is
measured. Moreover, we consider a set of N (≥ 2) conic
measurements Ck ∈ C. All measurements are expressed in
the camera current frame:

Ck = h(H, C̊k) , H>C̊kH, k = {1, . . . , N}, (4)

where C̊k ∈ C are constant and known. For later use, define

C̊ , (C̊1, · · · , C̊N ), C , (C1, · · · ,CN ).

One verifies that SL(3) is a symmetry group with group
actions

φ(Q,H) , HQ,

ψ(Q,U) , AdQ−1U = Q−1UQ,

ρ(Q, C̊k) , Q>C̊kQ,

with Q ∈ SL(3) and U ∈ sl(3). They are right group
actions in the sense of [12]. The kinematics are right
equivariant since it is verified that

ρ(Q, h(H, C̊k)) = h(φ(Q,H), C̊k),
dφQ(H)[F (H,U)] = F (φ(Q,H), ψ(Q,U)).

B. Observer design on SL(3) based on conic correspon-
dences

Let Ĥ ∈ SL(3) denote the estimate of H. Define the right
group error E := ĤH−1 ∈ SL(3) so that Ĥ converges to
H if and only if E converges to identity. Define the output
errors ek ∈ C, with k ∈ {1, · · · , N} as:

ek , ρ(Ĥ−1,Ck) = Ĥ−>CkĤ
−1 = E−>C̊kE

−1. (5)

The proposed observer takes the following general form

˙̂
H = ĤU−∆(Ĥ,C)Ĥ (6)

where ∆(Ĥ,C) ∈ sl(3) is the innovation term to be
designed thereafter and must be right equivariant in the sense
that

∆(φ(Q, Ĥ), ρ(Q,C1),. . ., ρ(Q,CN ))= ∆(Ĥ,C1,. . .,CN )

for all Q ∈ SL(3). Interestingly, if ∆ is right equivariant,
the dynamics of E are autonomous and given by [12, Th.
1]:

Ė = −∆(E, C̊)E (7)

To determine ∆(Ĥ,C), a non-degenerate right-invariant
cost function is needed. To this purpose, we first define
individual degenerate right-invariant costs at C̊k on the
output spaces as follows:

CC̊k
(Ĥ,Ck) , 1

2

∥∥∥Ĥ−>CkĤ
−1 − C̊k

∥∥∥2

Kk

,

with Kk ∈ R3×3 symmetric positive definite matrix. One
verifies that CC̊k

(Ĥ,Ck) are right-invariant in the sense
that CC̊k

(φ(Q, Ĥ), ρ(Q,Ck)) = CC̊k
(Ĥ,Ck), ∀Q∈SL(3).

Then, the aggregate cost defined as the sum of all the
individual costs

C(Ĥ,C) ,
N∑
k=1

CC̊k
(Ĥ,Ck) (8)

is also right-invariant. According to [12, Lem. 3], the aggre-
gate cost is non-degenerate if

N⋂
k=1

stabρ(C̊k) = {I} (9)

where the stabilizer stabρ(C̊k) of an element C̊k ∈ C is
defined by

stabρ(C̊k) , {Q ∈ SL(3) | ρ(Q, C̊k) = C̊k}.

In fact, (9) is equivalent to
N⋂
k=1

ker(dρC̊k
(I)) = {0}, (10)

with ker(dρC̊k
(I)) the Lie-algebra associated with

stabρ(C̊k).

Lemma 1 (See [12, Lem. 3]) If (10) is satisfied, then the
aggregate cost C(Ĥ,C) defined by (8) is non-degenerate and
(I, C̊) is a global minimum of C(Ĥ,C).

In fact, condition (10) ensures that the Hessian
Hess1C(I, C̊) is positive definite [12, Lem. 3]. In Section III-
C, more explicit sufficient conditions will be provided and
interpreted so that (10) is satisfied. For instance, assume that
Lemma 1 is valid, the innovation term ∆(Ĥ,C) involved in
(6) is computed as [12, Eq. (40)]

∆(Ĥ,C) = (grad1C(Ĥ,C))Ĥ−1, (11)

using a right-invariant Riemannian metric on SL(3). As a
direct result of [12], the innovation term ∆(Ĥ,C) defined
by (11) is right-equivariant. Using standard rules for trans-
formations of Riemannian gradients and the fact that the
Riemannian metric is right-invariant, one obtains

D1C(Ĥ,C)[UĤ] = 〈grad1C(Ĥ,C),UĤ〉H
= 〈(grad1C(Ĥ,C))Ĥ−1Ĥ,UĤ〉H
= 〈(grad1C(Ĥ,C))Ĥ−1,U〉
= 〈∆(Ĥ,C),U〉,

(12)

with some U ∈ sl(3). On the other hand, from (8) one has

D1C(Ĥ,C)[UĤ] = dĤC(Ĥ,C)[UĤ]

=
∑N
k=1tr

(
(Ĥ−>CkĤ

−1 − C̊k)Kk

((−U>Ĥ−>)CkĤ
−1 + Ĥ−>Ck(−Ĥ−1U))

)
= −tr

(∑N
k=1(ek − C̊k)Kk(U>ek + ekU)

)
= −tr

(∑N
k=1(ek(ek−C̊k)Kk+ekKk(ek−C̊k))U>

)
= −

〈
P
(∑N

k=1 ek(ek−C̊k)Kk+ekKk(ek−C̊k)
)
,U
〉
(13)

Then, one directly deduces from (12) and (13) the expres-
sion of the innovation term ∆(Ĥ,C) as

∆(Ĥ,C) = −P
(∑N

k=1 ek(ek−C̊k)Kk+ekKk(ek−C̊k)
)

(14)
One deduces from (14) that ∆(E, C̊) = ∆(Ĥ,C) and,
subsequently, from (7) that



Ė=−P
(∑N

k=1 ek(ek−C̊k)Kk+ekKk(ek−C̊k)
)
E (15)

with ek = E−>C̊kE
−1.

Theorem 1 Consider the autonomous error system (15).
Assume that condition (10) is satisfied. Then, the equilibrium
E = I of System (15) is locally exponentially stable.

The proof is a direct result of [12, Theorem 2]. It remains
to determine more explicit conditions under which condition
(10) is satisfied, thereby ensuring the validity of Theorem 1.

C. Observability analysis

The following lemma provides an explicit sufficient con-
dition for the satisfaction of the algebraic constraint (10) and
thus the local observability of the homography.

Lemma 2 (Local observability) Assume that there exist two
non-degenerate conics C̊1, C̊2 belonging to the set SNC of all
the observed conics such that M, defined by M , C̊1C̊

−1
2 ,

has three distinct non-null eigenvalues. Then, (10) is satisfied
and, consequently, the result of Theorem 1 holds.

Proof: One has

dρC̊k
(H)[HU] = d

(
H>C̊kH

)
[HU]

= U>H>C̊kH + H>C̊kHU,
(16)

with some U ∈ sl(3). From (16) one deduces

ker(dρC̊k
(I)) = {U ∈ sl(3) | (C̊kU)>=−C̊kU}.

Therefore,
N⋂
k=1

ker(dρC̊k
(I))=

{
U∈sl(3) | (C̊kU)>=−C̊kU,∀C̊k∈SNC

}
We will determine U ∈ sl(3) such that (C̊kU)>=−C̊kU,
for all k = 1, · · · , N . The relation (C̊kU)>=−C̊kU means
that C̊kU is anti-symmetric.

Since C̊1U and C̊2U are anti-symmetric, there exist
a1,a2 ∈ R3 such that C̊1U = a1×, C̊2U = a2×. One
deduces

U = C̊−1
1 a1× = C̊−1

2 a2× (17)

and, subsequently,

a1× = C̊1C̊
−1
2 a2× = Ma2× (18)

Since M has three distinct non-null eigenvalues
λM1, λM2, λM3, it can be diagonalized as M =
PMΛMP−1

M , with some invertible matrix PM ∈ R3×3 and
ΛM = diag(λM1, λM1, λM3). Using (18) and the property
A(a × b) = det(A)(A−>a × A−>b) for any invertible
matrix A ∈ R3×3 and a,b ∈ R3, one obtains

0 = x>a1×x = x>PMΛMP−1
M (a2 × x)

= det(PM )−1(ΛM x̄)>(ā2 × x̄), ∀x ∈ R3.
(19)

with x̄ , P>Mx and ā2 , P>Ma2. Thus, one deduces

(λM2−λM1)ā23x̄1x̄2 + (λM3−λM2)ā21x̄2x̄3

+(λM1−λM3)ā22x̄3x̄1 = 0, ∀x̄1, x̄2, x̄3 ∈ R, (20)

with ā21, ā22, ā23 the 3 components of ā2. From here, it is
straightforward to verify that ā21 = ā22 = ā23 = 0 (i.e.

ā2 = 0), which implies that a2 = P−>M ā2 = 0. This in turn
implies that U = 0 and concludes the proof.

It is noticeable that the homography matrix H ∈ SL(3)
has 8 degrees of freedom whereas a conic provides 5 degrees
of freedom. It is thus expected that 2 conic correspondences
would be sufficient to recover H algebraically. However, this
is not always the case. For instance, the correspondences of 2
concentric circles do not determine the homography uniquely
since concentric circles are invariant to rotations around
their centre. Now, for further discussions, let us assume that
N = 2 (i.e. only 2 conic correspondences) and that C̊1, C̊2

and M (= C̊1C̊
−1
2 ) are non-degenerate. We now investigate

the cases where M has a multiple eigenvalue so that the
sufficient observability condition of Lemma 2 is violated.

• Case of M having a triple eigenvalue: This case im-
plies that M = I using that fact that det(M) =
det(C̊1)det(C̊2)−1 = 1. Thus, C̊1 = C̊2, meaning that the
two conics coincide (i.e. only one conic correspondence is
available). In this case, H is clearly unobservable.

• Case of M having a double eigenvalue (i.e. λM1 =
λM2 6= λM3) and diagonalizable as M = PMΛMP−1

M

with some invertible matrix PM ∈ R3×3 and ΛM =
diag(λM1, λM1, λM3):
When does this case occur? Define a “virtual homography”
HM , det(PM )

1
3 P−>M ∈ SL(3), and C1M , H>M C̊1HM ,

C2M , H>M C̊2HM , representing the projective transfor-
mation by HM of C̊1, C̊2, respectively. One deduces from
M = PMΛMP−1

M that

C1MC−1
2M = ΛM = λ1MI + (λ3M − λ1M )e3e

>
3

⇒ C1M = λ1MC2M + (λ3M − λ1M )e3e
>
3 C2M

Since C1M and C2M are symmetric and λ3M 6= λ1M ,
one deduces that e3e

>
3 C2M = C2Me3e

>
3 , from which one

obtains the following form of C2M

C2M =

a2M b2M 0
b2M c2M 0

0 0 f2M

 , (21)

and, thus,

C1M = λ1M

a2M b2M 0
b2M c2M 0

0 0 1
λ3
1M
f2M

 , (22)

when using the relation det(M) = λ2
1Mλ3M = 1. From (21)

and (22), it is straightforward to deduce that C1M and C2M

(resp. C̊1 and C̊2) are concentric, of the same type, and scale
of each other. Since they are non-degenerate, they cannot be
parabolas and, thus, must be both ellipses or hyperbolas.

Now, proceeding analogously to the proof of Lemma 2
one deduces (see Eq. (19))

(ΛM x̄)>(ā2 × x̄) = 0, (Λ−1
M x̄)>(ā1 × x̄) = 0, ∀x̄ ∈ R3,

with ā1 , P>Ma1, ā2 , P>Ma2. Since λM1 = λM2 6= λM3,
one can only deduce that ā11 = ā12 = ā21 = ā22 = 0. Thus,

a1 = P−>M ā1 = ā13P
−>
M e3,

a2 = P−>M ā2 = ā23P
−>
M e3.
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(E) Use of ellipse ]1 & hyperbola ]10
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(F) Use of concentric circles ]2 & ]3

Fig. 1: Simulation results illustrating the performance of the proposed algorithm by using 6 combinations of conic
correspondences: 5 observable cases (A–E) and 1 unobservable case (F). Both reference and current views of the “ladybird”
are put in the same figures; warped current conics using the final estimated homography are presented by cyan and dashed
conics; the evolutions of the iterated homography estimates {Ĥk} are presented by 3 curves (green, blue, magenta) obtained
from the projective transformation of 3 points of the “ladybird” by these homographies.

Therefore, in contrast with Lemma 2, two conic correspon-
dences in this case are not sufficient to deduce a1 = a2 = 0
(i.e. U = 0), meaning that neither (10) nor the observability
of H is guaranteed.

IV. SIMULATION RESULTS

In this section simulation results are presented to illustrate
the performance of the proposed observer (i.e. (6)+(14))
applied to the estimation of the homography relating two
views of a planar scene (static case, i.e. U ≡ 0).

A discrete version of the proposed observer is imple-
mented using the accelerated line search (ALS) algorithm
on manifolds proposed in [1, Page 63]. In more detail, by
adapting that ALS algorithm to our observer and by setting
U in (6) equal to zero, the update formula at each iteration
step is given by

Ĥk+1 = e−∆ktkĤk

with ∆k calculated according to (14) using Ĥk in the
replacement of Ĥ, and tk the step length obtained from
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(B) Current view

Fig. 2: Left: the simulation scene that we call “ladybird”
is composed of 10 conics (9 ellipses or circles and 1
hyperbola), where conics ]2 and ]3 are concentric circles
and conic ]10 is a hyperbola. Right: the current view of the
same scene by application of a homography corresponding
to a large motion in both rotation and translation.



Fig. 3: Experiment 1 (Observable case): Homography estimation using the correspondences of two ellipses (red color) with
distinct centres. Reference image on top left; 4 current image frames (50, 250, 295, 1090) and their associated warped
images using the homography estimates.

Fig. 4: Experiment 1 (Unobservable case): One of the 2 ellipse correspondences is intentionally removed from homography
estimation from second 25 to second 35. During that period only the observed ellipse is stabilized in the warped images
but not the whole scene. The correct homography estimates are quickly recovered when both ellipse correspondences are
again available (after second 35).

Armijo’s backtracking procedure (see [1, Page 62]) that relies
on the following Armijo-like condition

C(Ĥk,C)− C(Ĥk+1,C) ≥ tAk σ‖∆k‖2F

with tAk (= βmᾱ) the Armijo step size [1, Definition 4.2.2]
for the given ᾱ, β, σ,∆k. The chosen parameters are ᾱ =
0.05, σ = 0.25, β = 0.75. Finally, all gain matrices Kk in-
volved in the expression (14) of ∆k are taken as diag(1, 1, 2).

The reference and current views of the simulated “lady-
bird” planar scene composed of 10 conics (9 ellipses or
circles and 1 hyperbola) are depicted in Fig. 2. A large
number of conics is deliberately chosen so as to show that
the proposed algorithm can easily handle such a situation.
Six simulation tests have been performed using the corre-
spondences of:

1) all 10 conics [Fig. 1(A)];
2) ellipses ]1 and ]2 [Fig. 1(B)];
3) ellipses ]3 and ]8 [Fig. 1(C)];
4) ellipses ]4 and ]7 [Fig. 1(D)];
5) ellipse ]1 and hyperbola ]10 [Fig. 1(E)];
6) concentric circles ]2 and ]3 [Fig. 1(F)];

The results are presented in Figs. 1(A–F) where the 10
warped conics, plotted in cyan color and dashed curves, are
obtained from projective transformation of the 10 current
conics by the estimated homography matrices according to

(5). The superposition of the warped conics and the reference
ones is an indicator of successful homography estimation for
the 5 first cases (see Figs. 1(A)–1(E)). On the contrary, the
use of correspondences of two concentric circles ]2 and ]3
(Case 6) no longer provides a correct homography estimate
as shown in Fig. 1(F) where only the used conics ]2 and
]3 are correctly warped. This illustrates the unobservability
issue discussed in Section III-C.

V. EXPERIMENTAL RESULTS – IMAGE STABILIZATION

In this section an application of the proposed algorithm to
image stabilization is presented. The experimentations have
been performed with a classical webcam that provides 20
images per second with a resolution of 752 × 416 pixels.
The estimated camera parameters are (792, 768) pixels for
the focal length and (375.5, 207.5) pixels for the principle
point. Code has been implemented in C++ with ViSP library
[14]. The vpMeEllipse Class is used for real-time tracking of
selected ellipses and, subsequently, their associated equation.
After the step of feature tracking, the ASL version of the
proposed observer is iterated with the maximum number of
iteration equal to 2500 per image frame. The computational
effort for this last step is negligible compared to the previous
image processing step and does not affect the real-time
capability of the proposed approach. Since the group velocity
U is not measured, it is simply set to zero. This in turn allows



Fig. 5: Experiment 2 (Observable case): Homography estimation using the correspondences of two ellipses (red color) with
same centre. Reference image on top left; 4 current image frames (226, 268, 500, 640) and their associated warped images
using the homography estimates.

Fig. 6: Experiment 3 (Unobservable case): Homography estimation using the correspondences of two equivalent ellipses
(red color) with same centre, same form, same orientation but different scales. Reference image on top left; 4 current image
frames (140, 365, 400, 674) and their associated warped images using the homography estimates. Only the observed ellipses
are stabilized in the warped images but not the whole scene.

us to validate the robustness of the proposed approach with
respect to the unavailability of such measurements.

Three experiments have been carried out using the corre-
spondences of:

1) 2 ellipses with distinct centres (Experiment 1);
2) 2 ellipses with same centre (Experiment 2);
3) 2 equivalent ellipses with same centre, same form, same

orientation but different scales (Experiment 3).

Some screenshots of these experiments are depicted in Figs.
3–6. A video of full experimental results is available at

http://goo.gl/8wFGb5
showing good and robust performance of the proposed
approach. It can be observed that the reference image is
successfully stabilized by the warped current images when
the sufficient observability condition in Lemma 2 is satisfied
(when using two conic correspondences) as in Experiment
1 (Fig 3) and Experiment 2 (Fig 5). On the other hand,
when one of the two ellipse correspondences is intention-
ally removed from homography estimation from second 25
to second 35 in Experiment 1, the homography estimates
become erroneous during that period of unobservability
(Fig. 4). However, the proposed algorithm still continues to
operate and exploit the remaining ellipse correspondence for
homography estimation (the used ellipse is still stabilized in
the warped image) and quickly recovers correct homogra-

phy estimates when two ellipse correspondences are again
available (after second 35). This illustrates the robustness
of our algorithm. As for Experiment 3 that corresponds to
an unobservable case discussed in Section III-C where the
matrix M = C̊1C̊

−1
2 has a double eigenvalue, it can be

observed that, similarly to Case 6 in the simulation section
IV, only the two observed conics are stabilized in the warped
current images but not the whole scene (Fig. 6). This again
allows us to confirm the observability analysis given in
Section III-C.

VI. CONCLUSIONS

A nonlinear observer designed on the Special Linear group
SL(3) for the estimation of a sequence of homographies
has been proposed. It extends our prior works on this
topic by exploiting conics as image features. The proposed
observer directly incorporates conic correspondences from
an image sequence without requiring explicit computation of
individual homographies between images. The observability
issue associated with the considered image features has been
carefully addressed. While only local exponential stability of
the observer can be proved with the kind of cost function
considered, simulation and experimental results have been
provided as a complement to the theoretical approach in
order to demonstrate a large domain of stability.
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