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Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization

This paper presents a new algorithm for online estimation of a sequence of homographies applicable to image sequences obtained from robotic vehicles equipped with a monocular camera. The approach taken exploits the underlying Special Linear group SL(3) structure of the set of homographies along with gyrometer measurements and direct point-and linefeature correspondences between images to develop temporal filter for the homography estimate. Theoretical analysis and experimental results are provided to demonstrate the robustness of the proposed algorithm. The experimental results show excellent performance even in the case of very fast camera motion (relative to frame rate), and in presence of severe occlusion, specular reflection, image blur, and light saturation.

I. INTRODUCTION

Different images of the same planar surface are related by homography mappings, and homographies have been used extensively in robotic applications as a vision primitive. Homography-based algorithms have been used for estimation of the rigid-body pose of a vehicle equipped with a camera [START_REF] Mufti | Super resolution of speed signs in video sequences[END_REF], [START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF]. Navigation of robotic vehicles has been developed based on homography sequences [START_REF] Fang | Homography-based visual servoing of wheeled mobile robots[END_REF], [START_REF] Fraundorfer | Topological mapping, localization and navigation using image collections[END_REF] and one of the most successful visual servo control paradigms uses homographies [START_REF] Malis | Boudet 2-1/2-D visual servoing[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF]. Homography-based methods are particularly well suited for navigation of UAV [START_REF] De Plinval | Visual servoing for underactuated VTOL UAVs: a linear homography-based approach[END_REF] where the ground terrain is viewed from a distance from which the relief of surface features is negligible compared to the vehicles's distance to the scene.

Computing homographies from image point-and linefeature correspondences has been extensively studied in the last fifteen years [START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF]. The quality of the homography estimate obtained depends heavily on the number and quality of the data features used in the estimation as well as the algorithm employed. For a well textured scene, the state-of-the-art methods can provide high quality homography estimates at the cost of significant computational effort (see [START_REF] Mei | Efficient homographybased tracking and 3-D reconstruction for single-viewpoint sensors[END_REF] and references therein). For a scene with poor texture, and consequently few reliable feature correspondences, existing homography estimation algorithms perform poorly. Robotic vehicle applications, however, provide temporal sequences of images and it seems natural to exploit the temporal correlation rather than try to compute individual raw homographies for each pair of frames. In [START_REF] Zhang | Self-recalibration of a structured light system via plane-based homography[END_REF] image flow computed from a pair of images is used to compute the relative homography, although this method still only considers isolated pairs of images.

In recent work [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF] by some authors of this paper, a nonlinear observer for homography estimation was proposed based on the group structure of the set of homographies, the Special Linear group SL [START_REF] Fang | Homography-based visual servoing of wheeled mobile robots[END_REF]. This observer uses velocity information to interpolate across a sequence of images and improve the individual homography estimates. The observer proposed in [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF] still requires individual image homographies to be computed for each image, which are then smoothed using filtering techniques. Although this approach provides improved homography estimates, it comes at the cost of running both a classical homography algorithm as well as the temporal filter algorithm, and only functions if each pair of images has sufficient data available to compute a raw homography. In our prior work [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF], the question of deriving an observer for a sequence of image homographies that takes image point-feature correspondences directly as input has been considered. The approach in [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF] takes a sequence of images associated with a continuous variation of the reference image, the most common case being a moving camera viewing a planar scene, a situation typical of robotic applications. The observer is posed on the Special Linear group SL [START_REF] Fang | Homography-based visual servoing of wheeled mobile robots[END_REF], that is in one-to-one correspondence with the group of homographies, and uses velocity measurements to propagate the homography estimate and fuse this with new data as it becomes available.

In this paper by considering the same problem of [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF] we extend the previous observer by also incorporating image line-feature correspondences (in addition to pointfeature correspondences) directly as input in the design of the observer innovation. Instead of using a Lyapunovbased technique as in [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF], the observer here proposed is derived based on a recent advanced theory for nonlinear observer design directly on the output space [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF]. A key advance of both the observer of [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF] and the observer of this paper with respect to the observer proposed in [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF] is the formulation of a point/line-feature innovation for the observer that incorporates point/line correspondences directly in the observer without requiring reconstruction of individual image homographies. This saves considerable computational resources and makes the proposed algorithm suitable for embedded systems with simple feature tracking software. In addition, the algorithm is well posed even when there is insufficient data for full reconstruction of a homography using algebraic techniques. In such situations, the proposed observer will continue to operate, incorporating what information is available and relying on propagation of prior estimates where necessary. Moreover, even if a homography can be reconstructed from a small set of feature correspondences, the estimate is often unreliable and the associated error is difficult to characterize. The proposed algorithm integrates information from a sequence of images, and noise in the individual feature correspondences is filtered through the natural low-pass response of the observer, resulting in a highly robust estimate.

The paper is organized as follows. Section II provides technical background. In Section III a nonlinear observer on SL(3) is proposed using direct 2D point and line correspondences and the knowledge of the group velocity. In Section IV the homography and associated homography velocity are related to rigid-body motion of the camera and two observers are derived for the case where only the angular velocity of the camera is known, a typical scenario in robotic applications. In Section V, as a complement contribution, an application of our approach to a real world problem in image stabilization is presented. A video, showing the experiment results, is provided as supplementary material.

II. TECHNICAL BACKGROUND A. Notation

• The Special Linear group SL(3) and its algebra sl(3) are 3) -→ R be an inner product on sl(3), chosen to be the Euclidean matrix inner product on R 3×3 . Then, a right-invariant Riemannian metric on SL(3) induced by the inner product •, • is defined by

SL(3) := {H ∈ R 3×3 | det H = 1}, sl (3) 
:= {U ∈ R 3×3 | tr(U ) = 0}. • The adjoint operator is a mapping Ad : SL(3) × sl(3) → sl(3) defined by Ad H U := HU H -1 , H ∈ SL(3), U ∈ sl(3). • Let •, • : sl(3) × sl(
U 1 H, U 2 H H := U 1 , U 2 , H ∈ SL(3), U 1 , U 2 ∈ sl(3).

B. Homographies

Let Å (resp. A) denote projective coordinates for the image plane of a camera Å (resp. A), and let { Å} (resp. {A}) denote its (right-hand) frame of reference. Let ξ ∈ R 3 denote the position of the frame {A} with respect to { Å} expressed in { Å}. The orientation of the frame {A} with respect to { Å}, is given by a rotation matrix R ∈ SO(3), with R : {A} → { Å} as a mapping. In addition, we denote by d (resp. d) and η (resp. η) respectively the distance from the origin of { Å} (resp. {A}) to the planar scene and the normal to the scene expressed in { Å} (resp. {A}).

The image homography matrix that maps pixel coordinates from A to Å is given by

G = γK(R + ξη d )K -1 ,
with K ∈ R 3×3 the camera calibration matrix and γ a scale factor. Without loss of generality, γ can be chosen so that G ∈ SL(3). In this case, γ is equal (d/ d)

1
3 and corresponds to the second singular value of G [START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF]. The Euclidean homography H ∈ SL(3) is related to G by

H = K -1 GK = γ(R + ξη d ).
Note that the homography matrix H maps Euclidean coordinates of the scene's points from {A} to { Å}.

III. NONLINEAR OBSERVER DESIGN ON SL(3) BASED ON 2D POINT AND LINE CORRESPONDENCES

In this section the design of an observer for H ∈ SL( 3) is based on a recent advanced theory for nonlinear observer design directly on the output space [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF].

A. Kinematics and measurements

Consider the kinematics of SL(3) given by Ḣ = F (H, U ) := HU, (1) with U ∈ sl(3) the group velocity. Assume that U is measured. Moreover, we consider a set of n (≥ 0) point measurements p i ∈ S2 , representing calibrated image points re-normalized onto the unit sphere, and/or a set of m (≥ 0) line measurements l j ∈ S 2 , corresponding to the normal directions to the planes containing a given line in the image and the camera focal point. All measurements are expressed in the camera current frame:

p i = h p (H, pi ) := H -1 pi |H -1 pi| , i = {1, . . . , n}, (2) 
l j = h l (H, lj ) := H lj |H lj | , j = {1, . . . , m}, (3) 
where pi ∈ S 2 and lj ∈ S 2 are constant and known. For later use, define

p := (p 1 , • • • , pn ), p := (p 1 , • • • , p n ), l := ( l1 , • • • , lm ), l := (l 1 , • • • , l m ).
Let us introduce the following observability assumption. Assumption 1 Assume that the union set S := S n p S m l , with S n p the set of n (≥ 0) observed constant points pi ∈ S 2 and S m l the set of m (≥ 0) observed constant lines lj ∈ S 2 , satisfies one of the four following cases1 : • Case 1 (at least 4 points): There exists a subset S 4 p ⊂ S n p of 4 points such that all vector triplets in S 4 p are linearly independent.

• Case 2 (at least 4 lines): There exists a subset S 4 l ⊂ S n l of 4 lines such that all vector triplets in S 4 l are linearly independent.

• Case 3 (at least 3 points and 1 line): There exist 1 line lj and a subset S 3 p ⊂ S n p of 3 linearly independent points that do not lie on the line lj , i.e. l j pi = 0, ∀p i ∈ S 3 p . • Case 4 (at least 1 point and 3 lines): There exist a subset S 3 l ⊂ S m l of 3 linearly independent lines and 1 point pi that does not lie on any line of S 3 l , i.e. l j pi = 0, ∀ lj ∈ S 3 l . We verify that SL(3) is a symmetry group with group actions

φ(Q, H) := HQ, ψ(Q, U ) := Ad Q -1 U = Q -1 U Q, ρ(Q, p) := Q -1 p |Q -1 p| , µ(Q, l) := Q l
|Q l| , which are right group actions in the sense of [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF]. The kinematics are right equivariant in the sense of [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF] since it is verified that

ρ(Q, h p (H, pi )) = h p (φ(Q, H), pi ), µ(Q, h l (H, li )) = h l (φ(Q, H), li ), dφ Q (H)[F (H, U )] = F (φ(Q, H), ψ(Q, U )).

B. Observer design on SL(3)

Let Ĥ ∈ SL(3) denote the estimate of H. Define the right group error E := ĤH -1 ∈ SL(3) and the output errors e pi ∈ S 2 , with i ∈ {1, • • • , n}, and e lj ∈ S 2 , with j ∈ {1, • • • , m}, as:

e pi := ρ( Ĥ-1 , p i ) = Ĥpi | Ĥpi| = Epi |Epi| , (4) 
e lj := µ( Ĥ-1 , l j ) = Ĥ-lj | Ĥ-lj | = E -lj |E -lj | . (5) 
Inspired by [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF], the proposed observer takes the form

Ḣ = ĤU -∆( Ĥ, p, l) Ĥ (6) 
where ∆( Ĥ, p, l) ∈ sl(3) is the innovation term to be designed and must be right equivariant in the sense that

∆( ĤQ, ρ(Q, p 1 ), • • • , ρ(Q, p n ), µ(Q, l 1 ), • • • , µ(Q, l m )) = ∆( Ĥ, p 1 , • • • , p n , l 1 , • • • , l m ), ∀Q ∈ SL(3).
Interestingly, if ∆ is equivariant, the dynamics of E is autonomous and given by [10, Th. 1]:

Ė = -∆(E, p, l)E (7) 
To determine ∆( Ĥ, p, l), a non-degenerate right-invariant cost function is needed. To this purpose, we first define individual degenerate right-invariant costs at pi or lj on the output space S 2 as follows:

C pi ( Ĥ, p i ) := ki 2 Ĥpi | Ĥpi| -pi 2 , C lj ( Ĥ, l j ) := κj 2 Ĥ-lj | Ĥ-lj | -lj 2 , with k i , κ j > 0. One verifies that C pi ( Ĥ, p i ) and C lj ( Ĥ, l j ) are right-invariant in the sense C pi ( ĤQ, ρ(Q, p i )) = C pi ( Ĥ, p i ) and C lj ( ĤQ, µ(Q, p i )) = C lj ( Ĥ, l j ), ∀Q ∈ SL(3)
. Then, the aggregate cost defined as the sum of all the individual costs

C( Ĥ, p, l) := n i=1 k i 2 Ĥp i | Ĥp i | -p i 2 + m j=1 κ j 2 Ĥ-l j | Ĥ-l j | -lj 2 (8) 
is also right-invariant. According to [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF]Lem. 3], the aggregate cost is non-degenerate if

( n i=1 stab ρ (p i )) ( m j=1 stab µ ( lj )) = {I}, (9) 
where the stabilizer stab f (y) (with f standing for either ρ or µ) of an element y ∈ S 2 is defined by

stab f (y) = {Q ∈ SL(3) | f (Q, y) = y}.
In fact, ( 9) is equivalent to

( n i=1 s ρi ) ( m j=1 s µj ) = {0}, (10) 
with s ρi = ker(dρ pi (I)), s µj = ker(dµ lj (I)), respectively, the Lie-algebra associated with stab ρ (p i ) and stab µ ( lj ).

Lemma 1 Under Assumption 1, the aggregate cost C( Ĥ, p, l) defined by (8) is non-degenerate. As a consequence, (I, p, l) is a global minimum of the aggregate cost C( Ĥ, p, l).

The proof, which consists in proving condition [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF], is omitted but can be requested to the authors. Then, the innovation term ∆( Ĥ, p, l) is computed as [10, Eq. (40)]

∆( Ĥ, p, l) = (grad 1 C( Ĥ, p, l)) Ĥ-1 , (11) 
with grad 1 the gradient in the first variable, using a rightinvariant Riemannian metric on SL(3). As a direct result of [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF], the innovation term ∆( Ĥ, p) defined by ( 11) is right equivariant. Using standard rules for transformations of Riemannian gradients and the fact that the Riemannian metric is right-invariant, we obtain

D 1 C( Ĥ, p, l)[U Ĥ] = grad 1 C( Ĥ, p, l), U Ĥ H = grad 1 C( Ĥ, p, l) Ĥ-1 , U = ∆( Ĥ, p, l), U , (12) 
with some U ∈ sl(3). In addition, in view of (8) we have 

D 1 C( Ĥ, p, l)[U Ĥ] = d Ĥ C( Ĥ, p, l)[U Ĥ] = n i=1 k i Ĥpi | Ĥpi| -pi I -( Ĥpi)( Ĥpi) | Ĥpi| 2 (U Ĥ)pi | Ĥpi| + m j=1 κ j Ĥ-lj | Ĥ-lj | -lj I - ( Ĥ-lj )( Ĥ-lj ) | Ĥ-lj | 2 (-U Ĥ-)lj | Ĥ-lj | = n i=1 k i (e pi -pi
where we have used the projection π x := (I -xx ), ∀x ∈ S 2 .

Then, we directly deduce from ( 12) and ( 13) the expression of the innovation term ∆( Ĥ, p, l) as

∆( Ĥ, p, l) = - n i=1 k i π epi pi e pi + m j=1 κ j e lj l j π e lj (14) 
We deduce from ( 14) that ∆(E, p, l) = ∆( Ĥ, p, l) and, consequently, from ( 7) that

Ė = n i=1 k i π epi pi e pi - m j=1
κ j e lj l j π e lj E.

From here, the convergence and stability of the proposed observer is stated next.

Theorem 1 Consider the autonomous error system [START_REF] Mufti | Super resolution of speed signs in video sequences[END_REF]. Assume that Assumption 1 is satisfied. Then, the equilibrium E = I of System (15) is locally asymptotically stable.

This theorem can be seen as a direct result of Theorem 2 in [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF] and Lemma 1.

IV. APPLICATION TO ROBOTIC SYSTEMS A. Homography kinematics from a camera moving with rigid-body motion

In this section we consider the case where a sequence of homographies is generated by a moving camera viewing a stationary planar surface. The goal is to develop a nonlinear filter for the image homography sequence using the velocity associated with the rigid-body motion of the camera rather than the group velocity of the homography sequence, as was assumed in Section III. In fact, any group velocity (infinitesimal variation of the homography) must be associated with an instantaneous variation in measurement of the current image A and not with a variation in the reference image Å. This imposes constraints on two degrees of freedom in the homography velocity, namely those associated with variation of the normal to the reference image, and leaves the remaining six degrees of freedom in the homography group velocity depending on the rigid-body velocities.

Denote the rigid-body angular velocity and linear velocity of {A} with respect to { Å} expressed in {A} by Ω and V , respectively. The kinematics of (R, ξ) are given by: Ṙ = RΩ × (16) ξ = RV [START_REF] Zhang | Self-recalibration of a structured light system via plane-based homography[END_REF] where Ω × is the skew symmetric matrix associated with the vector cross-product, i.e. Ω × y = Ω × y, for all y ∈ R 3 . Consider a camera attached to the frame A moving with kinematics ( 16)-( 17) viewing a stationary planar scene. The group velocity U ∈ sl(3) induced by the rigid-body motion, and such that the dynamics of H satisfies (1), is given by [9, Lem. 5.3]

U = Ω × + V η d -η V 3d I. ( 18 
)
Note that the group velocity U induced by camera motion depends on the additional variables η and d, which are unmeasurable and cannot be extracted directly from the measurements. In the sequel, we rewrite

U = Ω × + Γ = Ω × + Γ 1 -1 3 tr(Γ 1 )I, (19) 
with Γ := V η d -η V 3d I and Γ 1 := V η d . Since { Å} is stationary by assumption, the vector Ω can be directly obtained from the set of embedded gyrometers. The term Γ is related to the translational motion expressed in the current frame {A}. If we assume that ξ d is constant (e.g., the situation in which the camera moves with a constant velocity parallel to the scene or converges exponentially toward it), and using V = R ξ, it is follows:

Γ = [Γ, Ω × ], (20) 
where [Γ, Ω × ] = ΓΩ × -Ω × Γ is the Lie bracket. However, if we assume that V d is constant (the situation in which the camera follows a circular trajectory over the scene or performs an exponential convergence towards it), it follows:

Γ1 = Γ 1 Ω × . (21) 

B. Observer with partially known velocity of the rigid body

Assume that the part Γ (resp. Γ 1 ) of the group velocity U in (19) is not available to measurement. The goal is to provide an estimate Ĥ ∈ SL(3) for H ∈ SL(3) to drive the group error E (= ĤH -1 ) to the identity matrix I and the error term Γ = Γ -Γ (resp. Γ1 = Γ 1 -Γ1 ) to 0 if Γ (resp. Γ 1 ) is constant or slowly time varying. The observer when ξ d is constant is chosen as follows (compare to ( 6)):

Ḣ = Ĥ(Ω × + Γ) -∆( Ĥ, p, l) Ĥ (22) Γ = [ Γ, Ω × ] -k I Ad Ĥ ∆( Ĥ, p, l)
(23) and the observer when V d is constant is defined as follows:

Ḣ = Ĥ(Ω × + Γ1 - 1 3 tr( Γ1 )I) -∆( Ĥ, p, l) Ĥ (24) Γ1 = Γ1 Ω × -k I Ad Ĥ ∆( Ĥ, p, l) (25 
) with some positive gain k I and ∆( Ĥ, p, l) given by [START_REF] Mei | Efficient homographybased tracking and 3-D reconstruction for single-viewpoint sensors[END_REF]. Proposition 1 Consider a camera moving with kinematics (16)-( 17) viewing a planar scene. Assume that Å is stationary and that Ω is measured and bounded. Consider the kinematics (1) along with (19). Assume that H is bounded and that Γ (resp. Γ 1 ) is such that it obeys (20) (resp. (21)).

Consider the nonlinear observer defined by (22-23), (resp. (24-25)) along with the innovation ∆( Ĥ, p, l) ∈ sl(3) given by [START_REF] Mei | Efficient homographybased tracking and 3-D reconstruction for single-viewpoint sensors[END_REF]. Assume that Assumption 1 holds. Then, the equilibrium (E, Γ) = (I, 0) (resp. (E, Γ1 ) = (I, 0)) is locally asymptotically stable.

Proof: We will consider only the situation where the estimate of Γ is used. The same arguments can also be used for the case where the estimate of Γ 1 is considered. Differentiating e i (4) and using ( 22) yields ėi = -π ei (∆ + Ad Ĥ Γ)e i . Define the following candidate Lyapunov function:

L = L 0 + 1 2k I || Γ 2 = n i=1 ki 2 |e i -p i | 2 + 1 2k I || Γ 2 .
(26) Differentiating L and using tr( Γ ([ Γ, Ω])) = 0, it follows:

L = n i=1 k i (e i -pi ) ėi + tr( Γ Ad ĤT ∆).
Introducing the above expression of ėi and using the fact that tr(AB) = tr(B A ), it follows:

L = - n i=1 k i (e i -p i ) π ei (∆+Ad Ĥ Γ)e i +tr(Ad Ĥ-1 ∆ Γ) = tr( n i=1 k i e i p i π ei (∆ + Ad Ĥ Γ) + Ad Ĥ-1 ∆ Γ) = tr( n i=1 k i e i p i π ei ∆ + Ad Ĥ-1 (∆ + n i=1 k i e i p i π ei ) Γ) = -∆ 2 .
The derivative of the Lyapunov function is negative semidefinite, and equal to zero when ∆ = 0. Given that Ω is bounded, it is easily verified that L is uniformly continuous and Barbalat's Lemma can be used to prove asymptotic convergence of ∆ → 0. Since the cost C(E, p, l) is nondegenerate (Lemma 1), we evoke the same arguments as in the proof of Theorem 2 in [START_REF] Mahony | Observers for Kinematic Systems with Symmetry[END_REF] to ensure the existence of a set B ⊆ SL(3) such that for all E(0) ∈ B, E(t) converges to I. Consequently, the left-hand side of (26) converges to zero and Γ 2 converges to a constant.

Computing the time derivative of E and using the fact that ∆ converges to zero and E converges to I, it is straightforward to show that lim t→∞ Ė = -Ad Ĥ Γ = 0. Using boundedness of H, one ensures the boundedness of Ĥ and Ĥ-1 and consequently lim t→∞ Γ = 0.

V. EXPERIMENTAL RESULTS -IMAGE STABILIZATION

We present an application of our approach to image stabilization in the presence of very fast camera motion, severe occlusion, specular reflections, image blurring, and light saturation. The reported test has been conducted on a data set recorded by a prototype synchronized camera-IMU combination with an Aptina MT9V034 CMOS sensor and an Analog Devices ADIS16375 MEMS IMU. The IMU runs at 100 Hz, providing angular velocity measurements to the observer. The camera provides 20 frames per second at a resolution of 752 × 480 pixels. The estimated camera parameters are (464.66, 462.75) pixels for the focal length and (385.63, 227.53) pixels for the principle point. Point-feature detection and matching: Code has been implemented in C++ with OpenCV library. Point-features are extracted using the FastFeatureDetector routine, with descriptors extracted using OrbDescriptorExtractor, and then matched using OpenCV's brute-force matcher BFMatcher routine with L 2 -norm. We have purposefully avoided using more sophisticated image processing routines in order to demonstrate the raw performance of our observer. It is quite unrealistic to track one and the same set of point-features through the long video sequence, in particular given the low frame rate and comparatively rapid motion in our test sequence as well as the presence of severe occlusion, specular reflections, poor image quality due to blur or light saturation. We have hence opted to match point-features between the reference image and each subsequent image frame separately. To do this, we first forward integrate the observer equations ( 22)-(23) using only the gyrometer measurements, i.e. setting the observer gains

k i (i = 1, • • • , n), κ j (j = 1, • • • , m
), and k I to zero (i.e. Prediction step). We then use the resulting predicted homography estimate Ĥ+ to transform the current image (i.e. warp the current image using the predicted homography Ĥ+ to obtain a prediction of the reference image) using the OpenCV's warpPerspective function before applying feature extraction and matching. The brute-force matching algorithm is well suited to this approach since it favors translational motion over rotational motion, and most of the rotational motion has already been compensated for by forward integrating the angular velocity.

To remove matched point-feature outliers, we first compute the standard deviation (sd u , sd v ) and mean values (m u , m v ) of the differences of coordinates in pixel . Again, we have purposefully avoided the use of more sophisticated (and much more computationally expensive) alternative algorithms for outlier removal, such as RANSAC [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. Our simple and fast outlier removal method has yielded quite remarkable matching results as for the test sequence there are either none or very few outliers (see Fig. 1 and the supplemental video). Line-feature detection and matching: Line-features are extracted using the probabilistic Hough transform [START_REF] Matas | Robust Detection of Lines Using the Progressive Probabilistic Hough Transform[END_REF] with the OpenCV's HoughLinesP routine. Each extracted line in image coordinates (given by two points P 1 and P 2 in homogeneous coordinates) is then transformed into the line representation used in this paper (i.e., the normal to the plane containing the scene's line and the camera focal point) as Pi and l j = λ j G lj , with λ j := 1 |G lj | . Therefore, for any two points (of index i 1 and i 2 ) and a line (of index j), one has P i1 l j = λ j P i1 lj , P i2 l j = λ j P i2 lj , yielding the following equality (P i1 l j )( P i2 lj ) -( P i1 lj )(P i2 l j ) = 0.

l = (K -1 P1)×(K -1 P2) |(K -1 P1)×(K -1 P2)| ∈ S 2 .
In view of (27), two lines l j1 ∈ S l and lj2 ∈ Sl can be matched if they satisfy ). The observer continues to operate even when temporarily no usable feature match is available (e.g., frames 1148, 1593). In each subplot of current frame, colorful points and lines are those successfully matched with the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster) using the homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling us if the image is well stabilized or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.

   C(l j1 , lj2 ) ≤ C(l j1 , lj ), ∀ lj ∈ Sl C(l j1 , lj2 ) ≤ C(l j , lj2 ), ∀l j ∈ S l C(l j1 , 
Performance evaluation: The experimental results (cf. the video in the supplementary material and available at [1]) show good and robust performance throughout the entire video sequence, including the previously mentioned passages with severe occlusion, specular reflection, poor image quality due to blur and/or light saturation (see Fig. 3). Even when temporarily no usable feature correspondence is available (e.g., frames 1148, 1593), or when our algorithm selects a wrong feature matching set (e.g., frames 1474 -1488, 1571 -1581) the observer continues to track the region of interest well and quickly recovers from any tracking errors.

Experiment conducted on the video test sequence was run on a laptop equipped with a 2.9 GHz Intel(R) Core(TM) i7-4910MQ and a 32Go RAM. We are currently able to perform between 9 and 20 fps (and 14 fps in average) using standard OpenCV functions. Replacing these basic OpenCV functions with OpenCV GPU functions (based on CUDA library) for a more real-time implementation is now under development.

VI. CONCLUSIONS

A nonlinear observer for a sequence of homographies represented as elements of SL(3) has been proposed. It directly makes use of point-and line-feature correspondences from an image sequence without requiring explicit computation of the individual homographies between any two given images and fuses these measurements with measurements of angular velocity from onboard gyrometers using the correct Lie group geometry. The stability of the observer has been proved for both cases of known full group velocity and known rigid-body velocities only. Even if the characterization of the stability domain still remains an open issue, experimental results have been provided as a complement to the theoretical approach to demonstrate a large domain of stability. A potential application to image stabilization in the presence of very fast camera motion, severe occlusion, specular reflection, image blur, and light saturation has been demonstrated with very encouraging results even for a relatively low video frame rate.
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Fig. 1 .

 1 Fig. 1.Matching point correspondences between the warped image frame 264 (warped by the predicted homography) and the reference frame. Poor matching (top) and excellent matching (bottom) before and after applying our outlier removal procedure. Reference frame (left), warped current frame (right), current frame (small image on top right corner).

Fig. 2 .

 2 Fig. 2. Successful line matching between the image frame 169 (right) and the reference frame (left). Colorful points in both images are point correspondences used for our line matching algorithm. Matching two sets of lines of the reference image and the current image is more involved and has been scarcely developed in literature (and in OpenCV) compared to the point matching problem. However, keeping in mind that for most of the time we have "good" matched pointfeatures, the following simple line matching algorithm has been developed. Assume that two sets of good matched points (in homogeneous coordinates) S p := {P i , • • • , P n } from the current image and Sp := { P1 , • • • , Pn } from the reference image are available for matching two sets of lines S l := {l 1 , • • • , l m1 } and Sl := { l1 , • • • , lm2 } from the same respective images. For any point and any line on the planar target, it is verified that P i = G -1Pi and l j = λ j G lj , with λ j := 1 |G lj | . Therefore, for any two points (of index i 1 and i 2 ) and a line (of index j), one has P i1 l j = λ j P i1 lj , P i2 l j = λ j P i2 lj , yielding the following equality (P i1 l j )( P i2 lj ) -( P i1 lj )(P i2 l j ) = 0.(27)

  lj2 ) ≤ ε c where ε c > 0 is a small threshold associated with the nonnegative cost function C(•, •) defined by C(l a , lb ) := n i=1 f (P 1 l a )( P i lb ) -( P 1 lb )(P i l a ) , with l a ∈ S l , lb ∈ Sl , and f (•) an even convex non-negative function. In our experiments, f (x) = 1 n |x|, ∀x ∈ R, and ε c = 0.025. Excellent line matching results have been obtained for the reported test sequence (see Fig. 2 and the supplemental video). Correction step of the observer: After the steps of feature detection and matching, we use the observer gains of k i = 200 (i = 1, • • • , n), κ j = 100 (j = 1, • • • , m), k I = 0.05 to rapidly iterate the observer equations 200 times per video frame. The computational effort for this last step is negligible compared to the previous image processing steps.

Fig. 3 .

 3 Fig.3. Good and robust performance of our algorithm for a very fast camera motion (relative to frame rate), and in presence of strong occlusion (e.g., frames 200, 2044), severe image blur (e.g., frames 1394, 1593) and light saturation (e.g., frame 363, 2044). The observer continues to operate even when temporarily no usable feature match is available (e.g., frames 1148, 1593). In each subplot of current frame, colorful points and lines are those successfully matched with the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster) using the homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling us if the image is well stabilized or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.

The homography for case of

points and 2 lines is not observable and cannot be algebraically reconstructed[START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF].
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