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Point and line feature-based observer design on SL(3) for Homography
estimation and its application to image stabilization

Minh-Duc Hua, Jochen Trumpf, Tarek Hamel, Robert Mahony, Pascal Morin

Abstract— This paper presents a new algorithm for online
estimation of a sequence of homographies applicable to image
sequences obtained from robotic vehicles equipped with a
monocular camera. The approach taken exploits the underlying
Special Linear group SL(3) structure of the set of homographies
along with gyrometer measurements and direct point- and line-
feature correspondences between images to develop temporal
filter for the homography estimate. Theoretical analysis and
experimental results are provided to demonstrate the robustness
of the proposed algorithm. The experimental results show
excellent performance even in the case of very fast camera
motion (relative to frame rate), and in presence of severe
occlusion, specular reflection, image blur, and light saturation.

I. INTRODUCTION

Different images of the same planar surface are related by
homography mappings, and homographies have been used
extensively in robotic applications as a vision primitive.
Homography-based algorithms have been used for estimation
of the rigid-body pose of a vehicle equipped with a camera
[15], [16]. Navigation of robotic vehicles has been developed
based on homography sequences [3], [5] and one of the most
successful visual servo control paradigms uses homographies
[11], [12]. Homography-based methods are particularly well
suited for navigation of UAV [2] where the ground terrain
is viewed from a distance from which the relief of surface
features is negligible compared to the vehicles’s distance to
the scene.

Computing homographies from image point- and line-
feature correspondences has been extensively studied in the
last fifteen years [7]. The quality of the homography estimate
obtained depends heavily on the number and quality of the
data features used in the estimation as well as the algorithm
employed. For a well textured scene, the state-of-the-art
methods can provide high quality homography estimates
at the cost of significant computational effort (see [14]
and references therein). For a scene with poor texture, and
consequently few reliable feature correspondences, existing
homography estimation algorithms perform poorly. Robotic
vehicle applications, however, provide temporal sequences of
images and it seems natural to exploit the temporal correla-
tion rather than try to compute individual raw homographies
for each pair of frames. In [17] image flow computed from a
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pair of images is used to compute the relative homography,
although this method still only considers isolated pairs of
images.

In recent work [9], [12] by some authors of this paper, a
nonlinear observer for homography estimation was proposed
based on the group structure of the set of homographies,
the Special Linear group SL(3). This observer uses velocity
information to interpolate across a sequence of images and
improve the individual homography estimates. The observer
proposed in [9], [12] still requires individual image homo-
graphies to be computed for each image, which are then
smoothed using filtering techniques. Although this approach
provides improved homography estimates, it comes at the
cost of running both a classical homography algorithm as
well as the temporal filter algorithm, and only functions if
each pair of images has sufficient data available to compute
a raw homography. In our prior work [6], the question of
deriving an observer for a sequence of image homographies
that takes image point-feature correspondences directly as
input has been considered. The approach in [6] takes a
sequence of images associated with a continuous variation of
the reference image, the most common case being a moving
camera viewing a planar scene, a situation typical of robotic
applications. The observer is posed on the Special Linear
group SL(3), that is in one-to-one correspondence with the
group of homographies, and uses velocity measurements to
propagate the homography estimate and fuse this with new
data as it becomes available.

In this paper by considering the same problem of [6]
we extend the previous observer by also incorporating
image line-feature correspondences (in addition to point-
feature correspondences) directly as input in the design
of the observer innovation. Instead of using a Lyapunov-
based technique as in [6], the observer here proposed is
derived based on a recent advanced theory for nonlinear
observer design directly on the output space [10]. A key
advance of both the observer of [6] and the observer of
this paper with respect to the observer proposed in [9],
[12] is the formulation of a point/line-feature innovation
for the observer that incorporates point/line correspondences
directly in the observer without requiring reconstruction
of individual image homographies. This saves considerable
computational resources and makes the proposed algorithm
suitable for embedded systems with simple feature tracking
software. In addition, the algorithm is well posed even
when there is insufficient data for full reconstruction of a
homography using algebraic techniques. In such situations,
the proposed observer will continue to operate, incorporating



what information is available and relying on propagation
of prior estimates where necessary. Moreover, even if a
homography can be reconstructed from a small set of feature
correspondences, the estimate is often unreliable and the
associated error is difficult to characterize. The proposed
algorithm integrates information from a sequence of images,
and noise in the individual feature correspondences is fil-
tered through the natural low-pass response of the observer,
resulting in a highly robust estimate.

The paper is organized as follows. Section II provides
technical background. In Section III a nonlinear observer
on SL(3) is proposed using direct 2D point and line cor-
respondences and the knowledge of the group velocity. In
Section IV the homography and associated homography
velocity are related to rigid-body motion of the camera and
two observers are derived for the case where only the angular
velocity of the camera is known, a typical scenario in robotic
applications. In Section V, as a complement contribution, an
application of our approach to a real world problem in image
stabilization is presented. A video, showing the experiment
results, is provided as supplementary material.

II. TECHNICAL BACKGROUND

A. Notation
• The Special Linear group SL(3) and its algebra sl(3) are

SL(3) := {H ∈ R3×3 | detH = 1},
sl(3) := {U ∈ R3×3 | tr(U) = 0}.

• The adjoint operator is a mapping Ad : SL(3) × sl(3) →
sl(3) defined by

AdHU := HUH−1, H ∈ SL(3), U ∈ sl(3).

• Let 〈·, ·〉 : sl(3) × sl(3) −→ R be an inner product on
sl(3), chosen to be the Euclidean matrix inner product on
R3×3. Then, a right-invariant Riemannian metric on SL(3)
induced by the inner product 〈·, ·〉 is defined by
〈U1H,U2H〉H := 〈U1, U2〉, H ∈ SL(3), U1, U2 ∈ sl(3).

B. Homographies

Let Å (resp. A) denote projective coordinates for the
image plane of a camera Å (resp. A), and let {Å} (resp. {A})
denote its (right-hand) frame of reference. Let ξ ∈ R3

denote the position of the frame {A} with respect to {Å}
expressed in {Å}. The orientation of the frame {A} with
respect to {Å}, is given by a rotation matrix R ∈ SO(3),
with R : {A} → {Å} as a mapping. In addition, we denote
by d̊ (resp. d) and η̊ (resp. η) respectively the distance from
the origin of {Å} (resp. {A}) to the planar scene and the
normal to the scene expressed in {Å} (resp. {A}).

The image homography matrix that maps pixel coordinates
from A to Å is given by

G = γK(R+
ξη>

d
)K−1,

with K ∈ R3×3 the camera calibration matrix and γ a
scale factor. Without loss of generality, γ can be chosen
so that G ∈ SL(3). In this case, γ is equal (d/d̊)

1
3 and

corresponds to the second singular value of G [8]. The
Euclidean homography H ∈ SL(3) is related to G by

H = K−1GK = γ(R+
ξη>

d
).

Note that the homography matrix H maps Euclidean coor-
dinates of the scene’s points from {A} to {Å}.
III. NONLINEAR OBSERVER DESIGN ON SL(3) BASED ON

2D POINT AND LINE CORRESPONDENCES

In this section the design of an observer for H ∈ SL(3)
is based on a recent advanced theory for nonlinear observer
design directly on the output space [10].
A. Kinematics and measurements

Consider the kinematics of SL(3) given by
Ḣ = F (H,U) := HU, (1)

with U ∈ sl(3) the group velocity. Assume that U is
measured. Moreover, we consider a set of n (≥ 0) point
measurements pi ∈ S2, representing calibrated image points
re-normalized onto the unit sphere, and/or a set of m (≥ 0)
line measurements lj ∈ S2, corresponding to the normal
directions to the planes containing a given line in the image
and the camera focal point. All measurements are expressed
in the camera current frame:

pi = hp(H, p̊i) := H−1p̊i
|H−1p̊i| , i = {1, . . . , n}, (2)

lj = hl(H, l̊j) :=
H> l̊j

|H> l̊j |
, j = {1, . . . ,m}, (3)

where p̊i ∈ S2 and l̊j ∈ S2 are constant and known. For later
use, define

p̊ := (p̊1, · · · , p̊n), p := (p1, · · · , pn),

l̊ := (̊l1, · · · , l̊m), l := (l1, · · · , lm).

Let us introduce the following observability assumption.
Assumption 1 Assume that the union set S := Snp

⋂
Sml ,

with Snp the set of n (≥ 0) observed constant points p̊i ∈ S2

and Sml the set of m (≥ 0) observed constant lines l̊j ∈ S2,
satisfies one of the four following cases1:
• Case 1 (at least 4 points): There exists a subset S4

p ⊂ Snp
of 4 points such that all vector triplets in S4

p are linearly
independent.
• Case 2 (at least 4 lines): There exists a subset S4

l ⊂ Snl
of 4 lines such that all vector triplets in S4

l are linearly
independent.
• Case 3 (at least 3 points and 1 line): There exist 1 line l̊j
and a subset S3

p ⊂ Snp of 3 linearly independent points that
do not lie on the line l̊j , i.e. l̊>j p̊i 6= 0, ∀p̊i ∈ S3

p .
• Case 4 (at least 1 point and 3 lines): There exist a subset
S3
l ⊂ Sml of 3 linearly independent lines and 1 point p̊i that

does not lie on any line of S3
l , i.e. l̊>j p̊i 6= 0, ∀̊lj ∈ S3

l .
We verify that SL(3) is a symmetry group with group

actions
φ(Q,H) := HQ, ψ(Q,U) := AdQ−1U = Q−1UQ,

ρ(Q, p) := Q−1p
|Q−1p| , µ(Q, l) := Q>l

|Q>l| ,

which are right group actions in the sense of [10]. The
kinematics are right equivariant in the sense of [10] since it
is verified that

ρ(Q, hp(H, p̊i)) = hp(φ(Q,H), p̊i),

µ(Q, hl(H, l̊i)) = hl(φ(Q,H), l̊i),
dφQ(H)[F (H,U)] = F (φ(Q,H), ψ(Q,U)).

1The homography for case of 2 points and 2 lines is not observable and
cannot be algebraically reconstructed [7].



B. Observer design on SL(3)

Let Ĥ ∈ SL(3) denote the estimate of H . Define the right
group error E := ĤH−1 ∈ SL(3) and the output errors
epi ∈ S2, with i ∈ {1, · · · , n}, and elj ∈ S2, with j ∈
{1, · · · ,m}, as:

epi := ρ(Ĥ−1, pi) = Ĥpi
|Ĥpi|

= Ep̊i
|Ep̊i| ,

(4)

elj := µ(Ĥ−1, lj) =
Ĥ−>lj

|Ĥ−>lj |
=

E−> l̊j

|E−> l̊j |
. (5)

Inspired by [10], the proposed observer takes the form
˙̂
H = ĤU −∆(Ĥ, p, l)Ĥ (6)

where ∆(Ĥ, p, l) ∈ sl(3) is the innovation term to be
designed and must be right equivariant in the sense that

∆(ĤQ, ρ(Q, p1), · · · , ρ(Q, pn), µ(Q, l1), · · · , µ(Q, lm))

= ∆(Ĥ, p1, · · · , pn, l1, · · · , lm), ∀Q ∈ SL(3).

Interestingly, if ∆ is equivariant, the dynamics of E is
autonomous and given by [10, Th. 1]:

Ė = −∆(E, p̊, l̊)E (7)

To determine ∆(Ĥ, p, l), a non-degenerate right-invariant
cost function is needed. To this purpose, we first define
individual degenerate right-invariant costs at p̊i or l̊j on the
output space S2 as follows:

Cp̊i(Ĥ, pi) := ki
2

∣∣∣ Ĥpi|Ĥpi|
− p̊i

∣∣∣2 ,
C̊lj (Ĥ, lj) :=

κj

2

∣∣∣ Ĥ−>lj|Ĥ−>lj |
− l̊j

∣∣∣2 ,
with ki, κj > 0. One verifies that Cp̊i(Ĥ, pi) and C̊lj (Ĥ, lj)

are right-invariant in the sense Cp̊i(ĤQ, ρ(Q, pi)) =
Cp̊i(Ĥ, pi) and C̊lj (ĤQ, µ(Q, pi)) = C̊lj (Ĥ, lj), ∀Q ∈
SL(3). Then, the aggregate cost defined as the sum of all
the individual costs

C(Ĥ, p, l) :=

n∑
i=1

ki
2

∣∣∣∣∣ Ĥpi|Ĥpi|
−p̊i

∣∣∣∣∣
2

+

m∑
j=1

κj
2

∣∣∣∣∣ Ĥ−>lj|Ĥ−>lj |
− l̊j

∣∣∣∣∣
2

(8)

is also right-invariant. According to [10, Lem. 3], the aggre-
gate cost is non-degenerate if

(
⋂n
i=1 stabρ(p̊i))

⋂
(
⋂m
j=1 stabµ(̊lj)) = {I}, (9)

where the stabilizer stabf (y) (with f standing for either ρ
or µ) of an element y ∈ S2 is defined by stabf (y) = {Q ∈
SL(3) | f(Q, y) = y}. In fact, (9) is equivalent to

(
⋂n
i=1 sρi)

⋂
(
⋂m
j=1 sµj) = {0}, (10)

with sρi = ker(dρp̊i(I)), sµj = ker(dµ̊lj (I)), respectively,
the Lie-algebra associated with stabρ(p̊i) and stabµ(̊lj).

Lemma 1 Under Assumption 1, the aggregate cost
C(Ĥ, p, l) defined by (8) is non-degenerate. As a
consequence, (I, p̊, l̊) is a global minimum of the aggregate
cost C(Ĥ, p, l).
The proof, which consists in proving condition (10), is
omitted but can be requested to the authors. Then, the
innovation term ∆(Ĥ, p, l) is computed as [10, Eq. (40)]

∆(Ĥ, p, l) = (grad1C(Ĥ, p, l))Ĥ−1, (11)

with grad1 the gradient in the first variable, using a right-
invariant Riemannian metric on SL(3). As a direct result

of [10], the innovation term ∆(Ĥ, p) defined by (11) is
right equivariant. Using standard rules for transformations
of Riemannian gradients and the fact that the Riemannian
metric is right-invariant, we obtain
D1C(Ĥ, p, l)[UĤ] = 〈grad1C(Ĥ, p, l), UĤ〉H

= 〈grad1C(Ĥ, p, l)Ĥ−1, U〉
= 〈∆(Ĥ, p, l), U〉,

(12)

with some U ∈ sl(3). In addition, in view of (8) we have
D1C(Ĥ, p, l)[UĤ] = dĤC(Ĥ, p, l)[UĤ]

=
∑n
i=1 ki

(
Ĥpi
|Ĥpi|

− p̊i
)>(

I − (Ĥpi)(Ĥpi)
>

|Ĥpi|2

)
(UĤ)pi
|Ĥpi|

+
∑m
j=1κj

(
Ĥ−>lj

|Ĥ−>lj |
− l̊j
)>(

I− (Ĥ−>lj)(Ĥ−>lj)>

|Ĥ−>lj |2

)
(−U>Ĥ−>)lj

|Ĥ−>lj |
=
∑n
i=1 ki(epi − p̊i)>(I − epie>pi)Uepi

−
∑m
j=1 κi(elj − l̊j)>(I − elje>lj)U>elj

= −tr
(∑n

i=1 kiπepi p̊ie
>
piU
>)+ tr

(∑m
j=1 κjelj l̊

>
j πeljU

>
)

=
〈
−
∑n
i=1 kiπepi p̊ie

>
pi +

∑m
j=1 κjelj l̊

>
j πelj , U

〉
,

(13)
where we have used the projection πx :=(I−xx>), ∀x ∈ S2.

Then, we directly deduce from (12) and (13) the expres-
sion of the innovation term ∆(Ĥ, p, l) as

∆(Ĥ, p, l)=−
n∑
i=1

kiπepi p̊ie
>
pi +

m∑
j=1

κjelj l̊
>
j πelj (14)

We deduce from (14) that ∆(E, p̊, l̊) = ∆(Ĥ, p, l) and,
consequently, from (7) that

Ė =
( n∑
i=1

kiπepi p̊ie
>
pi −

m∑
j=1

κjelj l̊
>
j πelj

)
E. (15)

From here, the convergence and stability of the proposed
observer is stated next.

Theorem 1 Consider the autonomous error system (15).
Assume that Assumption 1 is satisfied. Then, the equilibrium
E = I of System (15) is locally asymptotically stable.
This theorem can be seen as a direct result of Theorem 2 in
[10] and Lemma 1.

IV. APPLICATION TO ROBOTIC SYSTEMS

A. Homography kinematics from a camera moving with
rigid-body motion

In this section we consider the case where a sequence of
homographies is generated by a moving camera viewing a
stationary planar surface. The goal is to develop a nonlinear
filter for the image homography sequence using the velocity
associated with the rigid-body motion of the camera rather
than the group velocity of the homography sequence, as was
assumed in Section III. In fact, any group velocity (infinites-
imal variation of the homography) must be associated with
an instantaneous variation in measurement of the current
image A and not with a variation in the reference image
Å. This imposes constraints on two degrees of freedom
in the homography velocity, namely those associated with
variation of the normal to the reference image, and leaves
the remaining six degrees of freedom in the homography
group velocity depending on the rigid-body velocities.



Denote the rigid-body angular velocity and linear velocity
of {A} with respect to {Å} expressed in {A} by Ω and V ,
respectively. The kinematics of (R, ξ) are given by:

Ṙ = RΩ× (16)

ξ̇ = RV (17)
where Ω× is the skew symmetric matrix associated with the
vector cross-product, i.e. Ω×y = Ω × y, for all y ∈ R3.
Consider a camera attached to the frame A moving with
kinematics (16)–(17) viewing a stationary planar scene. The
group velocity U ∈ sl(3) induced by the rigid-body motion,
and such that the dynamics of H satisfies (1), is given by
[9, Lem. 5.3]

U = Ω× + V η>

d − η>V
3d I. (18)

Note that the group velocity U induced by camera motion
depends on the additional variables η and d, which are
unmeasurable and cannot be extracted directly from the
measurements. In the sequel, we rewrite

U = Ω× + Γ = Ω× + Γ1 − 1
3 tr(Γ1)I, (19)

with Γ := V η>

d − η>V
3d I and Γ1 := V η>

d .
Since {Å} is stationary by assumption, the vector Ω can be

directly obtained from the set of embedded gyrometers. The
term Γ is related to the translational motion expressed in the
current frame {A}. If we assume that ξ̇d is constant (e.g., the
situation in which the camera moves with a constant velocity
parallel to the scene or converges exponentially toward it),
and using V = R>ξ̇, it is follows:

Γ̇ = [Γ,Ω×], (20)
where [Γ,Ω×] = ΓΩ× − Ω×Γ is the Lie bracket. However,
if we assume that V

d is constant (the situation in which
the camera follows a circular trajectory over the scene or
performs an exponential convergence towards it), it follows:

Γ̇1 = Γ1Ω×. (21)
B. Observer with partially known velocity of the rigid body

Assume that the part Γ (resp. Γ1) of the group velocity
U in (19) is not available to measurement. The goal is to
provide an estimate Ĥ ∈ SL(3) for H ∈ SL(3) to drive the
group error E (= ĤH−1) to the identity matrix I and the
error term Γ̃ = Γ− Γ̂ (resp. Γ̃1 = Γ1 − Γ̂1) to 0 if Γ (resp.
Γ1) is constant or slowly time varying. The observer when
ξ̇
d is constant is chosen as follows (compare to (6)):

˙̂
H = Ĥ(Ω× + Γ̂)−∆(Ĥ, p, l)Ĥ (22)
˙̂
Γ = [Γ̂,Ω×]− kIAdĤ>∆(Ĥ, p, l) (23)

and the observer when V
d is constant is defined as follows:

˙̂
H = Ĥ(Ω× +Γ̂1 −

1

3
tr(Γ̂1)I)−∆(Ĥ, p, l)Ĥ (24)

˙̂
Γ1 = Γ̂1Ω× − kIAdĤ>∆(Ĥ, p, l) (25)

with some positive gain kI and ∆(Ĥ, p, l) given by (14).

Proposition 1 Consider a camera moving with kinematics
(16)–(17) viewing a planar scene. Assume that Å is sta-
tionary and that Ω is measured and bounded. Consider the
kinematics (1) along with (19). Assume that H is bounded
and that Γ (resp. Γ1) is such that it obeys (20) (resp. (21)).

Consider the nonlinear observer defined by (22–23), (resp.
(24–25)) along with the innovation ∆(Ĥ, p, l) ∈ sl(3)
given by (14). Assume that Assumption 1 holds. Then, the
equilibrium (E, Γ̃) = (I, 0) (resp. (E, Γ̃1) = (I, 0)) is
locally asymptotically stable.

Proof: We will consider only the situation where the
estimate of Γ is used. The same arguments can also be
used for the case where the estimate of Γ1 is considered.
Differentiating ei (4) and using (22) yields

ėi = −πei(∆ + AdĤ Γ̃)ei.

Define the following candidate Lyapunov function:

L=L0 + 1
2kI
||Γ̃‖2 =

∑n
i=1

ki
2 |ei−p̊i|

2
+ 1

2kI
||Γ̃‖2. (26)

Differentiating L and using tr(Γ̃>([Γ̃,Ω])) = 0, it follows:
L̇ =

∑n
i=1 ki(ei − p̊i)>ėi + tr(Γ̃>AdĤT ∆).

Introducing the above expression of ėi and using the fact
that tr(AB) = tr(B>A>), it follows:

L̇ = −
∑n
i=1ki(ei−p̊i)>πei(∆+AdĤ Γ̃)ei+tr(AdĤ−1∆>Γ̃)

= tr(
∑n
i=1 kieip̊

>
i πei(∆ + AdĤ Γ̃) + AdĤ−1∆>Γ̃)

= tr(
∑n
i=1 kieip̊

>
i πei∆ + AdĤ−1(∆>+

∑n
i=1 kieip̊

>
i πei)Γ̃)

= −‖∆‖2.
The derivative of the Lyapunov function is negative semi-
definite, and equal to zero when ∆ = 0. Given that Ω is
bounded, it is easily verified that L̇ is uniformly continuous
and Barbalat’s Lemma can be used to prove asymptotic
convergence of ∆ → 0. Since the cost C(E, p̊, l̊) is non-
degenerate (Lemma 1), we evoke the same arguments as in
the proof of Theorem 2 in [10] to ensure the existence of a
set B ⊆ SL(3) such that for all E(0) ∈ B, E(t) converges
to I . Consequently, the left-hand side of (26) converges to
zero and ‖Γ̃‖2 converges to a constant.

Computing the time derivative of E and using the fact
that ∆ converges to zero and E converges to I , it is
straightforward to show that limt→∞ Ė = −AdĤ Γ̃ = 0.
Using boundedness of H , one ensures the boundedness of
Ĥ and Ĥ−1 and consequently limt→∞ Γ̃ = 0.

V. EXPERIMENTAL RESULTS – IMAGE STABILIZATION

We present an application of our approach to image
stabilization in the presence of very fast camera motion,
severe occlusion, specular reflections, image blurring, and
light saturation. The reported test has been conducted on
a data set recorded by a prototype synchronized camera-
IMU combination with an Aptina MT9V034 CMOS sensor
and an Analog Devices ADIS16375 MEMS IMU. The IMU
runs at 100 Hz, providing angular velocity measurements
to the observer. The camera provides 20 frames per second
at a resolution of 752 × 480 pixels. The estimated camera
parameters are (464.66, 462.75) pixels for the focal length
and (385.63, 227.53) pixels for the principle point.
Point-feature detection and matching: Code has been
implemented in C++ with OpenCV library. Point-features are
extracted using the FastFeatureDetector routine, with
descriptors extracted using OrbDescriptorExtractor,
and then matched using OpenCV’s brute-force matcher



BFMatcher routine with L2-norm. We have purposefully
avoided using more sophisticated image processing routines
in order to demonstrate the raw performance of our ob-
server. It is quite unrealistic to track one and the same
set of point-features through the long video sequence, in
particular given the low frame rate and comparatively rapid
motion in our test sequence as well as the presence of
severe occlusion, specular reflections, poor image quality
due to blur or light saturation. We have hence opted to
match point-features between the reference image and each
subsequent image frame separately. To do this, we first
forward integrate the observer equations (22)–(23) using only
the gyrometer measurements, i.e. setting the observer gains
ki (i = 1, · · · , n), κj (j = 1, · · · ,m), and kI to zero
(i.e. Prediction step). We then use the resulting predicted
homography estimate Ĥ+ to transform the current image
(i.e. warp the current image using the predicted homography
Ĥ+ to obtain a prediction of the reference image) using the
OpenCV’s warpPerspective function before applying
feature extraction and matching. The brute-force matching
algorithm is well suited to this approach since it favors
translational motion over rotational motion, and most of
the rotational motion has already been compensated for by
forward integrating the angular velocity.

To remove matched point-feature outliers, we first com-
pute the standard deviation (sdu, sdv) and mean val-
ues (mu,mv) of the differences of coordinates in pixel
(duk, dvk) of the point correspondences and then keep only
those satisfying mu −max(sdu, S) ≤ duk ≤ mu + max(sdu, S)

mv −max(sdv, S) ≤ dvk ≤ mv + max(sdv, S)
|duk| ≤ D, |dvk| ≤ D

with S,D pre-defined positive thresholds (S = 30, D = 80
in our experiments). Again, we have purposefully avoided
the use of more sophisticated (and much more computation-
ally expensive) alternative algorithms for outlier removal,
such as RANSAC [4]. Our simple and fast outlier removal
method has yielded quite remarkable matching results as for
the test sequence there are either none or very few outliers
(see Fig. 1 and the supplemental video).

Fig. 1. Matching point correspondences between the warped image
frame 264 (warped by the predicted homography) and the reference frame.
Poor matching (top) and excellent matching (bottom) before and after
applying our outlier removal procedure. Reference frame (left), warped
current frame (right), current frame (small image on top right corner).

Line-feature detection and matching: Line-features are
extracted using the probabilistic Hough transform [13] with
the OpenCV’s HoughLinesP routine. Each extracted line
in image coordinates (given by two points P1 and P2 in
homogeneous coordinates) is then transformed into the line
representation used in this paper (i.e., the normal to the plane
containing the scene’s line and the camera focal point) as

l = (K−1P1)×(K−1P2)
|(K−1P1)×(K−1P2)| ∈ S2.

Fig. 2. Successful line matching between the image frame 169 (right)
and the reference frame (left). Colorful points in both images are point
correspondences used for our line matching algorithm.

Matching two sets of lines of the reference image and
the current image is more involved and has been scarcely
developed in literature (and in OpenCV) compared to the
point matching problem. However, keeping in mind that
for most of the time we have “good” matched point-
features, the following simple line matching algorithm has
been developed. Assume that two sets of good matched
points (in homogeneous coordinates) Sp := {Pi, · · · , Pn}
from the current image and S̊p := {P̊1, · · · , P̊n} from the
reference image are available for matching two sets of lines
Sl := {l1, · · · , lm1

} and S̊l := {̊l1, · · · , l̊m2
} from the same

respective images. For any point and any line on the planar
target, it is verified that Pi = G−1P̊i and lj = λjG

> l̊j , with
λj := 1

|G> l̊j |
. Therefore, for any two points (of index i1 and

i2) and a line (of index j), one has
P>i1 lj = λjP̊

>
i1 l̊j , P>i2 lj = λjP̊

>
i2 l̊j ,

yielding the following equality
(P>i1 lj)(P̊

>
i2 l̊j)− (P̊>i1 l̊j)(P

>
i2 lj) = 0. (27)

In view of (27), two lines lj1 ∈ Sl and l̊j2 ∈ S̊l can be
matched if they satisfy

C(lj1 , l̊j2) ≤ C(lj1 , l̊j), ∀̊lj ∈ S̊l
C(lj1 , l̊j2) ≤ C(lj , l̊j2), ∀lj ∈ Sl
C(lj1 , l̊j2) ≤ εc

where εc > 0 is a small threshold associated with the non-
negative cost function C(·, ·) defined by

C(la, l̊b) :=
∑n
i=1 f

(
(P>1 la)(P̊>i l̊b)− (P̊>1 l̊b)(P

>
i la)

)
,

with la ∈ Sl, l̊b ∈ S̊l, and f(·) an even convex non-negative
function. In our experiments, f(x) = 1

n

√
|x|,∀x ∈ R,

and εc = 0.025. Excellent line matching results have been
obtained for the reported test sequence (see Fig. 2 and the
supplemental video).
Correction step of the observer: After the steps of feature
detection and matching, we use the observer gains of ki =
200 (i = 1, · · · , n), κj = 100 (j = 1, · · · ,m), kI = 0.05
to rapidly iterate the observer equations 200 times per video
frame. The computational effort for this last step is negligible
compared to the previous image processing steps.



Fig. 3. Good and robust performance of our algorithm for a very fast camera motion (relative to frame rate), and in presence of strong occlusion (e.g.,
frames 200, 2044), severe image blur (e.g., frames 1394, 1593) and light saturation (e.g., frame 363, 2044). The observer continues to operate even when
temporarily no usable feature match is available (e.g., frames 1148, 1593). In each subplot of current frame, colorful points and lines are those successfully
matched with the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster) using the
homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling us if the image is well stabilized
or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.

Performance evaluation: The experimental results (cf. the
video in the supplementary material and available at [1])
show good and robust performance throughout the entire
video sequence, including the previously mentioned passages
with severe occlusion, specular reflection, poor image quality
due to blur and/or light saturation (see Fig. 3). Even when
temporarily no usable feature correspondence is available
(e.g., frames 1148, 1593), or when our algorithm selects
a wrong feature matching set (e.g., frames 1474 − 1488,
1571 − 1581) the observer continues to track the region of
interest well and quickly recovers from any tracking errors.

Experiment conducted on the video test sequence was run
on a laptop equipped with a 2.9 GHz Intel(R) Core(TM) i7-
4910MQ and a 32Go RAM. We are currently able to perform
between 9 and 20 fps (and 14 fps in average) using standard
OpenCV functions. Replacing these basic OpenCV functions
with OpenCV GPU functions (based on CUDA library) for
a more real-time implementation is now under development.

VI. CONCLUSIONS

A nonlinear observer for a sequence of homographies
represented as elements of SL(3) has been proposed. It
directly makes use of point- and line-feature correspondences
from an image sequence without requiring explicit computa-
tion of the individual homographies between any two given
images and fuses these measurements with measurements of
angular velocity from onboard gyrometers using the correct
Lie group geometry. The stability of the observer has been
proved for both cases of known full group velocity and
known rigid-body velocities only. Even if the characteri-
zation of the stability domain still remains an open issue,
experimental results have been provided as a complement
to the theoretical approach to demonstrate a large domain
of stability. A potential application to image stabilization in
the presence of very fast camera motion, severe occlusion,
specular reflection, image blur, and light saturation has
been demonstrated with very encouraging results even for
a relatively low video frame rate.
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