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Introduction

Mining useful patterns in sequential data is a challenging task. Sequential pattern mining is among the most important and popular data mining task with many real applications such as the analysis of web click-streams, medical or biological data and textual data. For effectiveness and efficiency considerations, many authors have promoted the use of constraints to focus on the most promising patterns according to the interests given by the final user. In line with [START_REF] Pei | Mining sequential patterns with constraints in large databases[END_REF], many efficient ad hoc methods have been developed but they suffer from a lack of genericity to handle and to push simultaneously sophisticated combination of various types of constraints. Indeed, new constraints have to be hand-coded and their combinations often require new implementations.

Recently, several proposals have investigated relationships between sequential pattern mining and constraint programming (CP) to revisit data mining tasks in a declarative and generic way [START_REF] Coquery | A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence[END_REF][START_REF] Métivier | A constraint programming approach for mining sequential patterns in a sequence database[END_REF][START_REF] Kemmar | Mining relevant sequence patterns with cp-based framework[END_REF][START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF]. The great advantage of these approaches is their flexibility. The user can model a problem and express his queries by specifying what constraints need to be satisfied. But, all these proposals are not effective enough because of their CP encoding. Consequently, the design of new efficient declarative models for mining useful patterns in sequential data is clearly an important challenge for CP.

To address this challenge, we investigate in this paper the other side of the cross fertilization between data-mining and constraint programming, namely how the CP framework can benefit from the power of candidate pruning mechanisms used in sequential pattern mining. First, we introduce the global constraint PREFIX-PROJECTION for sequential pattern mining. PREFIX-PROJECTION uses a concise encoding and its filtering relies on the principle of projected databases [START_REF] Pei | PrefixSpan: Mining sequential patterns by prefix-projected growth[END_REF]. The key idea is to divide the initial database into smaller ones projected on the frequent subsequences obtained so far, then, mine locally frequent patterns in each projected database by growing a frequent prefix. This global constraint utilizes the principle of prefix-projected database to keep only locally frequent items alongside projected databases in order to remove infrequent ones from the domains of variables. Second, we show how the concise encoding allows for a straightforward implementation of the frequency constraint (PREFIX-PROJECTION constraint) and constraints on patterns such as size, item membership and regular expressions and the simultaneous combination of them. Finally, experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets for mining frequent sequential patterns or patterns under various constraints. It is worth noting that the experiments show that our approach achieves scalability while it is a major issue of CP approaches.

The paper is organized as follows. Section 2 recalls preliminaries. Section 3 provides a critical review of ad hoc methods and CP approaches for sequential pattern mining. Section 4 presents the global constraint PREFIX-PROJECTION. Section 5 reports experiments we performed. Finally, we conclude and draw some perspectives.

Preliminaries

This section presents background knowledge about sequential pattern mining and constraint satisfaction problems.

Sequential Patterns

Let I be a finite set of items. The language of sequences corresponds to L I = I n where n ∈ N + . Definition 1 (sequence, sequence database). A sequence s over L I is an ordered list s 1 s 2 . . . s n , where s i , 1 ≤ i ≤ n, is an item. n is called the length of the sequence s. A sequence database SDB is a set of tuples (sid, s), where sid is a sequence identifier and s a sequence.

Definition 2 (subsequence, relation).

A sequence α = α 1 . . . α m is a subsequence of s = s 1 . . . s n , denoted by (α s), if m ≤ n and there exist integers 1 ≤ j 1 ≤ . . . ≤ j m ≤ n, such that α i = s ji for all 1 ≤ i ≤ m. We also say that α is contained in s or s is a super-sequence of α. For example, the sequence BABC is a super-sequence of AC : AC BABC . A tuple (sid, s) contains a sequence α, if α s.

The cover of a sequence p in SDB is the set of all tuples in SDB in which p is contained. The support of a sequence p in SDB is the number of tuples in SDB which contain p. Definition 3 (coverage, support). Let SDB be a sequence database and p a sequence. cover SDB (p)={(sid, s) ∈ SDB | p s} and sup SDB (p) = #cover SDB (p). Definition 4 (sequential pattern). Given a minimum support threshold minsup, every sequence p such that sup SDB (p) ≥ minsup is called a sequential pattern [START_REF] Agrawal | Mining sequential patterns[END_REF]. p is said to be frequent in SDB. 

SPM under Constraints

In this section, we define the problem of mining sequential patterns in a sequence database satisfying user-defined constraints Then, we review the most usual constraints for the sequential mining problem [START_REF] Pei | Mining sequential patterns with constraints in large databases[END_REF]. Problem statement. Given a constraint C(p) on pattern p and a sequence database SDB, the problem of constraint-based pattern mining is to find the complete set of patterns satisfying C(p). In the following, we present different types of constraints that we explicit in the context of sequence mining. All these constraints will be handled by our concise encoding (see Sections 4.2 and 4.5).

-The minimum size constraint size(p, min ) states that the number of items of p must be greater than or equal to min .

-The item constraint item(p, t) states that an item t must belong (or not) to a pattern p.

-The regular expression constraint [START_REF] Garofalakis | Mining sequential patterns with regular expression constraints[END_REF] reg(p, exp) states that a pattern p must be accepted by the deterministic finite automata associated to the regular expression exp.

Projected Databases

We now present the necessary definitions related to the concept of projected databases [START_REF] Pei | PrefixSpan: Mining sequential patterns by prefix-projected growth[END_REF].

Definition 6 (prefix, projection, suffix). Let β = β 1 . . . β n and α = α 1 . . . α m be two sequences, where m ≤ n. -Sequence α is called the prefix of β iff ∀i ∈ [1..m], α i = β i .
-Sequence β = β 1 . . . β n is called the projection of some sequence s w.r.t. α, iff (1) β s, (2) α is a prefix of β and (3) there exists no proper super-sequence β of β such that β s and β also has α as prefix.

-Sequence γ = β m+1 . . . β n is called the suffix of s w.r.t. α. With the standard concatenation operator "concat", we have β = concat(α, γ).

Definition 7 (projected database). Let SDB be a sequence database, the α-projected database, denoted by SDB| α , is the collection of suffixes of sequences in SDB w.r.t. prefix α.

[14] have proposed an efficient algorithm, called PrefixSpan, for mining sequential patterns based on the concept of projected databases. It proceeds by dividing the initial database into smaller ones projected on the frequent subsequences obtained so far; only their corresponding suffixes are kept. Then, sequential patterns are mined in each projected database by exploring only locally frequent patterns.

Example 2. Let us consider the sequence database of Table 1 with minsup = 2. PrefixSpan starts by scanning SDB 1 to find all the frequent items, each of them is used as a prefix to get projected databases. For SDB 1 , we get 3 disjoint subsets w.r.t. the prefixes A , B , and C . For instance, SDB 1 | A consists of 3 suffix sequences: {(1, BCBC ), (2, BC ), (3, B )}. Consider the projected database SDB 1 | <A> , its locally frequent items are B and C. Thus, SDB 1 | <A> can be recursively partitioned into 2 subsets w.r.t. the two prefixes AB and AC . The AB -and AC -projected databases can be constructed and recursively mined similarly. The processing of a αprojected database terminates when no frequent subsequence can be generated.

Proposition 1 establishes the support count of a sequence γ in SDB| α [START_REF] Pei | PrefixSpan: Mining sequential patterns by prefix-projected growth[END_REF]: Proposition 1 (Support count). For any sequence γ in SDB with prefix α and suffix

β s.t. γ = concat(α, β), sup SDB (γ) = sup SDB|α (β).
This proposition ensures that only the sequences in SDB grown from α need to be considered for the support count of a sequence γ. Furthermore, only those suffixes with prefix α should be counted.

CSP and Global Constraints

A Constraint Satisfaction Problem (CSP) consists of a set X of n variables, a domain D mapping each variable X i ∈ X to a finite set of values D(X i ), and a set of constraints C. An assignment σ is a mapping from variables in X to values in their domains: ∀X i ∈ X, σ(X i ) ∈ D(X i ). A constraint c ∈ C is a subset of the cartesian product of the domains of the variables that are in c. The goal is to find an assignment such that all constraints are satisfied. Domain consistency (DC). Constraint solvers typically use backtracking search to explore the space of partial assignments. At each assignment, filtering algorithms prune the search space by enforcing local consistency properties like domain consistency. A constraint c on X is domain consistent, if and only if, for every X i ∈ X and for every d i ∈ D(X i ), there is an assignment σ satisfying c such that σ(X i ) = d i . Such an assignment is called a support. Global constraints provide shorthands to often-used combinatorial substructures. We present two global constraints. Let X = X 1 , X 2 , ..., X n be a sequence of n variables. Let V be a set of values, l and u be two integers s.t. 0 ≤ l ≤ u ≤ n, the constraint Among(X, V, l, u) states that each value a ∈ V should occur at least l times and at most u times in X [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF]. Given a deterministic finite automaton A, the constraint Regular(X, A) ensures that the sequence X is accepted by A [START_REF] Pesant | A regular language membership constraint for finite sequences of variables[END_REF].

This section provides a critical review of ad hoc methods and CP approaches for SPM.

3.1 Ad hoc Methods for SPM GSP [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] was the first algorithm proposed to extract sequential patterns. It uses a generate-and test approach. Later, two major classes of methods have been proposed: -Depth-first search based on a vertical database format e.g. cSpade incorporating contraints (max-gap, max-span, length) [START_REF] Zaki | Sequence mining in categorical domains: Incorporating constraints[END_REF], SPADE [START_REF] Zaki | SPADE: An efficient algorithm for mining frequent sequences[END_REF] or SPAM [START_REF] Ayres | Sequential pattern mining using a bitmap representation[END_REF].

-Projected pattern growth such as PrefixSpan [START_REF] Pei | PrefixSpan: Mining sequential patterns by prefix-projected growth[END_REF] and its extensions, e.g. CloSpan for mining closed sequential patterns [START_REF] Yan | CloSpan: Mining closed sequential patterns in large databases[END_REF] or Gap-BIDE [START_REF] Li | Efficient mining of gap-constrained subsequences and its various applications[END_REF] tackling the gap constraint.

In [START_REF] Garofalakis | Mining sequential patterns with regular expression constraints[END_REF], the authors proposed SPIRIT based on GSP for SPM with regular expressions. Later, [START_REF] Trasarti | Sequence mining automata: A new technique for mining frequent sequences under regular expressions[END_REF] introduces Sequence Mining Automata (SMA), a new approach based on a specialized kind of Petri Net. Two variants of SMA were proposed: SMA-1P (SMA one pass) and SMA-FC (SMA Full Check). SMA-1P processes by means of the SMA all sequences one by one, and enters all resulting valid patterns in a hash table for support counting, while SMA-FC allows frequency based pruning during the scan of the database. Finally, [START_REF] Pei | Mining sequential patterns with constraints in large databases[END_REF] provides a survey for other constraints such as regular expressions, length and aggregates. But, all these proposals, though efficient, are ad hoc methods suffering from a lack of genericity. Adding new constraints often requires to develop new implementations.

CP Methods for SPM

Following the work of [START_REF] Guns | Itemset mining: A constraint programming perspective[END_REF] for itemset mining, several methods have been proposed to mine sequential patterns using CP. Proposals. [START_REF] Coquery | A SAT-based approach for discovering frequent, closed and maximal patterns in a sequence[END_REF] have proposed a first SAT-based model for discovering a special class of patterns with wildcards1 in a single sequence under different types of constraints (e.g. frequency, maximality, closedness). [START_REF] Métivier | A constraint programming approach for mining sequential patterns in a sequence database[END_REF] have proposed a CSP model for SPM. Each sequence is encoded by an automaton capturing all subsequences that can occur in it. [START_REF] Kemmar | Mining relevant sequence patterns with cp-based framework[END_REF] have proposed a CSP model for SPM with wildcards. They show how some constraints dealing with local patterns (e.g. frequency, size, gap, regular expressions) and constraints defining more complex patterns such as relevant subgroups [START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF] and top-k patterns can be modeled using a CSP. [START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF] have proposed two CP encodings for the SPM. The first one uses a global constraint to encode the subsequence relation (denoted global-p.f), while the second one encodes explicitly this relation using additional variables and constraints (denoted decomposed-p.f).

All these proposals use reified constraints to encode the database. A reified constraint associates a boolean variable to a constraint reflecting whether the constraint is satisfied (value 1) or not (value 0). For each sequence s of SDB, a reified constraint, stating whether (or not) the unknown pattern p is a subsequence of s, is imposed: (S s = 1) ⇔ (p s). A great consequence is that the encoding of the frequency measure is straightforward: f req(p) = s∈SDB S s . But such an encoding has a major drawback since it requires (m = #SDB) reified constraints to encode the whole database. This constitutes a strong limitation of the size of the databases that could be managed.

Most of these proposals encode the subsequence relation (p s) using variables P os s,j (s ∈ SDB and 1 ≤ j ≤ ) to determine a position where p occurs in s. Such an encoding requires a large number of additional variables (m× ) and makes the labeling computationally expensive. In order to address this drawback, [START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF] have proposed a global constraint exists-embedding to encode the subsequence relation, and used projected frequency within an ad hoc specific branching strategy to keep only frequent items before branching over the variables of the pattern. But, this encoding still relies on reified constraints and requires to impose m exists-embedding global constraints.

So, we propose in the next section the PREFIX-PROJECTION global constraint that fully exploits the principle of projected databases to encode both the subsequence relation and the frequency constraint. PREFIX-PROJECTION does not require any reified constraints nor any extra variables to encode the subsequence relation. As a consequence, usual SPM constraints (see Section 2.2) can be encoded in a straightforward way using directly the (global) constraints of the CP solver.

PREFIX-PROJECTION Global Constraint

This section presents the PREFIX-PROJECTION global constraint for the SPM problem.

A Concise Encoding

Let P be the unknown pattern of size we are looking for. The symbol 2 stands for an empty item and denotes the end of a sequence. The unknown pattern P is encoded with a sequence of variables P 1 , P 2 , . . . , P s.t. ∀i ∈ [1 . . . ], D(P i ) = I ∪ {2}. There are two basic rules on the domains:

1. To avoid the empty sequence, the first item of P must be non empty, so (2 ∈ D 1 ). 2. To allow patterns with less than items, we impose that ∀i ∈ [1..( -1)], (P i = 2) → (P i+1 = 2).

Definition and Consistency Checking

The global constraint PREFIX-PROJECTION ensures both subsequence relation and minimum frequency constraint. Proof: This is a direct consequence of proposition 1. We have straightforwardly sup SDB (σ) = sup SDB|σ ( ) = #SDB| σ . Thus, suffixes of SDB| σ are supports of σ in the constraint PREFIX-PROJECTION (P, SDB, minsup), provided that #SDB| σ ≥ minsup. 2

The following proposition characterizes values in the domain of unassigned (i.e. future) variable P i+1 that are consistent with the current assignment of variables P 1 , ..., P i . Proposition 3. Let σ2 = d 1 , . . . , d i be a current assignment of variables P 1 , . . . , P i , P i+1 be a future variable. A value d ∈ D(P i+1 ) appears in a solution for PREFIX-PROJECTION (P, SDB, minsup) if and only if d is a frequent item in SDB| σ :

#{(sid, γ)|(sid, γ) ∈ SDB| σ ∧ d γ} ≥ minsup
Proof: Suppose that value d ∈ D(P i+1 ) occurs in SDB| σ more than minsup. From proposition 1, we have sup SDB (concat(σ, d )) = sup SDB|σ ( d ). Hence, the assignment σ ∪ d satisfies the constraint, so d ∈ D(P i+1 ) participates in a solution. 2 Anti-monotonicity of the frequency measure. If a pattern p is not frequent, then any pattern p satisfying p p is not frequent. From proposition 3 and according to the anti-monotonicity property, we can derive the following pruning rule: Proposition 4. Let σ = d 1 , . . . , d i be a current assignment of variables P 1 , . . . , P i . All values d ∈ D(P i+1 ) that are locally not frequent in SDB| σ can be pruned from the domain of variable P i+1 . Moreover, these values d can also be pruned from the domains of variables P j with j ∈ [i + 2, . . . , ].

Proof: Let σ = d 1 , . . . , d i be a current assignment of variables P 1 , . . . , P i . Let

d ∈ D(P i+1 ) s.t. σ = concat(σ, d ). Suppose that d is not frequent in SDB| σ .
According to proposition 1, sup SDB|σ ( d ) = sup SDB (σ ) < minsup, thus σ is not frequent. So, d can be pruned from the domain of P i+1 . Suppose that the assignment σ has been extended to concat(σ, α), where α corresponds to the assignment of variables P j (with j > i). If d ∈ D(P i+1 ) is not frequent, it is straightforward that sup SDB|σ (concat(α, d )) ≤ sup SDB|σ ( d ) < minsup. Thus, if d is not frequent in SDB| σ , it will be also not frequent in SDB| concat(σ,α) . So, d can be pruned from the domains of P j with j ∈ [i + 2, . . . , ]. 2 Example 3. Consider the sequence database of Table 1 with minsup = 2. Let P = P 1 , P 2 , P 3 with D(P 1 ) = I and D(P 2 ) = D(P 3 ) = I ∪ {2}. Suppose that σ(P 1 ) = A, PREFIX-PROJECTION(P, SDB, minsup) will remove values A and D from D(P 2 ) and D(P 3 ), since the only locally frequent items in SDB 1 | <A> are B and C. Proposition 4 guarantees that any value (i.e. item) d ∈ D(P i+1 ) present but not frequent in SDB| σ does not need to be considered when extending σ, thus avoiding searching over it. Clearly, our global constraint encodes the anti-monotonicity of the frequency measure in a simple and elegant way, while CP methods for SPM have difficulties to handle this property. In [START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF], this is achieved by using very specific propagators and branching strategies, making the integration quite complex (see [START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF]).

Building the projected databases.

The key issue of our approach lies in the construction of the projected databases. When projecting a prefix, instead of storing the whole suffix as a projected subsequence, one can represent each suffix by a pair (sid, start) where sid is the sequence identifier and start is the starting position of the projected suffix in the sequence sid. For instance, let 

}. This is the principle of pseudo-projection, adopted in PrefixSpan, exploited during the filtering step of our PREFIX-PROJECTION global constraint. Algorithm 1 details this principle. It takes as input a set of projected sequences P rojSDB and a prefix α. The algorithm processes all the pairs (sid, start) of P rojSDB one by one (line 2), and searches for the lowest location of α in the sequence s corresponding to the sid of that sequence in SDB (lines 6-8).

In the worst case, PROJECTSDB processes all the items of all sequences. So, the time complexity is O( × m), with m = #SDB and is the length of the longest sequence in SDB. The worst case space complexity of pseudo-projection is O(m), since we need to store for each sequence only a pair (sid, start), while for the standard projection the space complexity is O(m× ). Clearly, the pseudo-projection takes much less space than the standard projection.

Filtering

Ensuring DC on PREFIX-PROJECTION(P, SDB, minsup) is equivalent to finding a sequential pattern of length ( -1) and then checking whether this pattern remains a frequent pattern when extended to any item d in D(P ). Thus, finding such an assignment (i.e. support) is as much as difficult than the original problem of sequential pattern mining. [START_REF] Yang | Computational aspects of mining maximal frequent patterns[END_REF] has proved that the problem of counting the number of maximal3 frequent patterns in a database of sequences is #P-complete, thereby proving the NP-hardness of the problem of mining maximal frequent sequences. The difficulty is due to the exponential number of candidates that should be parsed to find the frequent patterns. Thus, finding, for every variable P i ∈ P and for every d i ∈ D(P i ), an assignment σ satisfying PREFIX-PROJECTION(P, SDB, minsup) s.t. σ(P i ) = d i is of exponential nature.

So, the filtering of the PREFIX-PROJECTION constraint maintains a consistency lower than DC. This consistency is based on specific properties of the projected databases Algorithm 2: FILTER-PREFIX-PROJECTION(SDB, σ, i, P , minsup) Data: SDB: initial database; σ: current prefix σ(P1), . . . , σ(Pi) ; minsup: the minimum support threshold; PSDB: internal data structure of PREFIX-PROJECTION for storing pseudo-projected databases begin 1

if (see Proposition 3), and anti-monotonicity of the frequency constraint (see Proposition 4), and resembles forward-checking regarding Proposition 3. PREFIX-PROJECTION is considered as a global constraint, since all variables share the same internal data structures that awake and drive the filtering.

(i ≥ 2 ∧ σ(Pi) = 2)
Algorithm 2 describes the pseudo-code of the filtering algorithm of the PREFIX-PROJECTION constraint. It is an incremental filtering algorithm that should be run when some i first variables are assigned according to the following lexicographic ordering P 1 , P 2 , . . . , P of variables of P . It exploits internal data-structures enabling to enhance the filtering algorithm. More precisely, it uses an incremental data structure, denoted PSDB, that stores the intermediate pseudo-projections of SDB, where PSDB i (i ∈ [0, . . . , ]) corresponds to the σ-projected database of the current partial assignment σ = σ(P 1 ), . . . , σ(P i ) (also called prefix) of variables P 1 , . . . , P i , and PSDB 0 = {(sid, 1)|(sid, s) ∈ SDB} is the initial pseudo-projected database of SDB (case where σ = ). It also uses a hash table indexing the items I into integers (1 . . . #I) for an efficient support counting over items (see function getFreqItems).

Algorithm 2 takes as input the current partial assignment σ = σ(P 1 ), . . . , σ(P i ) of variables P 1 , . . . , P i , the length i of σ (i.e. position of the last assigned variable in P ) and the minimum support threshold minsup. It starts by checking if the last assigned variable P i is instantiated to 2 (line 1). In this case, the end of sequence is reached (since value 2 can only appear at the end) and the sequence σ(P 1 ), . . . , σ(P i ) constitutes a frequent pattern in SDB; hence the algorithm sets the remaining ( -i) unassigned variables to 2 and returns true (lines 2-4). Otherwise, the algorithm computes incrementally PSDB i from PSDB i-1 by calling function PROJECTSDB (see Algorithm 1). Then, it checks in line 6 whether the current assignment σ is a legal prefix for the constraint (see Proposition 2). This is done by computing the size of PSDB i . If this size is less than minsup, we stop growing σ and we return false. Otherwise, the algorithm computes the set of locally frequent items F I in PSDB i by calling function getFreqItems (line 8).

Function getFreqItems processes all the entries of the pseudo-projected database one by one, counts the number of first occurrences of items a (i.e. SupCount[a]) in each entry (sid, start), and keeps only the frequent ones (lines [START_REF] Novak | Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining[END_REF][START_REF] Pei | PrefixSpan: Mining sequential patterns by prefix-projected growth[END_REF][START_REF] Pei | Mining sequential patterns with constraints in large databases[END_REF][START_REF] Pesant | A regular language membership constraint for finite sequences of variables[END_REF][START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF][START_REF] Trasarti | Sequence mining automata: A new technique for mining frequent sequences under regular expressions[END_REF][START_REF] Yan | CloSpan: Mining closed sequential patterns in large databases[END_REF][START_REF] Yang | Computational aspects of mining maximal frequent patterns[END_REF][START_REF] Zaki | Sequence mining in categorical domains: Incorporating constraints[END_REF]. This is done by using ExistsItem data structure. After the whole pseudo-projected database has been processed, the frequent items are returned (line 22), and Algorithm 2 updates the current domains of variables P j with j ≥ (i + 1) by pruning inconsistent values, thus avoiding searching over not frequent items (lines 9-11). 

(m × + m × ( + d) + × d) = O(m × + m × d + × d).
The space complexity of the filtering algorithm lies in the storage of the PSDB internal data structure. In the worst case, we have to store pseudo-projected databases. Since each pseudo-projected database requires O(m), the worst case space complexity is O(m × ). 2

Encoding of SPM Constraints

Usual SPM constraints (see Section 2.2) can be reformulated in a straightforward way. Let P be the unknown pattern.

-Minimum size constraint: size(P, min ) ≡ i= min i=1

(P i = ) -Item constraint: let V be a subset of items, l and u two integers s.t. 0 ≤ l ≤ u ≤ . item(P, V ) ≡ t∈V Among(P, {t}, l, u) enforces that items of V should occur at least l times and at most u times in P . To forbid items of V to occur in P , l and u must be set to 0.

-Regular expression constraint: let A reg be the deterministic finite automaton encoding the regular expression exp. reg(P, exp) ≡ Regular(P, A reg ). 

Experimental Evaluation

This section reports experiments on several real-life datasets from [START_REF] Fournier-Viger | SPMF: A Java Open-Source Pattern Mining Library[END_REF][START_REF] Béchet | Sequential pattern mining to discover relations between genes and rare diseases[END_REF][START_REF] Trasarti | Sequence mining automata: A new technique for mining frequent sequences under regular expressions[END_REF] of large size having varied characteristics and representing different application domains (see Table 2). Our objective is (1) to compare our approach to existing CP methods as well as to state-of-the-art methods for SPM in terms of scalability which is a major issue of existing CP methods, (2) to show the flexibility of our approach allowing to handle different constraints simultaneously.

Experimental protocol. The implementation of our approach was carried out in the Gecode solver 4 . All experiments were conducted on a machine with a processor Intel X5670 and 24 GB of memory. A time limit of 1 hour has been used. For each dataset, we varied the minsup threshold until the methods are not able to complete the extraction of all patterns within the time limit. was set to the length of the longest sequence of SDB. The implementation and the datasets used in our experiments are available online 5 . We compare our approach (indicated by PP) with:

1. two CP encodings [START_REF] Negrevergne | Constraint-based sequence mining using constraint programming[END_REF], the most efficient CP methods for SPM: global-p.f and decomposed-p.f; 2. state-of-the-art methods for SPM : PrefixSpan and cSpade; 3. SMA [START_REF] Trasarti | Sequence mining automata: A new technique for mining frequent sequences under regular expressions[END_REF] for SPM under regular expressions. We used the author's cSpade implementation 6 for SPM, the publicly available implementations of PrefixSpan by Y. Tabei7 and the SMA implementation 8 for SPM under regular expressions. The implementation 9 of the two CP encodings was carried out in the Gecode solver. All methods have been executed on the same machine. (a) Comparing with CP Methods for SPM. First we compare PP with the two CP encodings global-p.f and decomposed-p.f (see Section 3.2). CPU times (in logscale for BIBLE, Kosarak and PubMed) of the three methods are shown on Fig. 1. First, decomposed-p.f is the least performer method. On all the datasets, it fails to complete the extraction within the time limit for all values of minsup we considered. Second, PP largely dominates global-p.f on all the datasets: PP is more than an order of magnitude faster than global-p.f. The gains in terms of CPU times are greatly amplified for low values of minsup. On BIBLE (resp. PubMed), the speed-up is 84.4 (resp. 33.5) for minsup equal to 1%. Another important observation that can be made is that, on most of the datasets (except BIBLE and Kosarak), global-p.f is not able to mine for patterns at very low frequency within the time limit. For example on FIFA, PP is able to complete the extraction for values of minsup up to 6% in 1, 457 seconds, while global-p.f fails to complete the extraction for minsup less than 10%.

To complement the results given by Fig. 1, Table 3 reports for different datasets and different values of minsup, the number of calls to the propagate routine of Gecode (column 5), and the number of nodes of the search tree (column 6). First, PP explores less nodes than global-p.f. But, the difference is not huge (gains of 45% and 33% on FIFA and BIBLE respectively). Second, our approach is very effective in terms of number of propagations. For PP, the number of propagations remains small (in thousands for small values of minsup) compared to global-p.f (in millions). This is due to the huge number of reified constraints used in global-p.f to encode the subsequence relation. On the contrary, our PREFIX-PROJECTION global constraint does not require any reified constraints nor any extra variables to encode the subsequence relation. (b) Comparing with ad hoc Methods for SPM. Our second experiment compares PP with state-of-the-art methods for SPM. Fig. 2 shows the CPU times of the three methods. First, cSpade obtains the best performance on all datasets (except on Protein). However, PP exhibits a similar behavior as cSpade, but it is less faster (not counting the highest values of minsup). The behavior of cSpade on Protein is due to the vertical representation format that is not appropriated in the case of databases having large sequences and small number of distinct items, thus degrading the performance of the mining process. Second, PP which also uses the concept of projected databases, clearly outperforms PrefixSpan on all datasets. This is due to our filtering algorithm combined together with incremental data structures to manage the projected databases.

On FIFA, PrefixSpan is not able to complete the extraction for minsup less than 12%, while our approach remains feasible until 6% within the time limit. On Protein, PrefixSpan fails to complete the extraction for all values of minsup we considered. These results clearly demonstrate that our approach competes well with state-of-the-art methods for SPM on large datasets and achieves scalability while it is a major issue of existing CP approaches.

(c) SPM under size and item constraints. Our third experiment aims at assessing the interest of pushing simultaneously different types of constraints. We impose on the PubMed dataset usual constraints such as the minimum frequency and the minimum size constraints and other useful constraints expressing some linguistic knowledge such as the item constraint. The goal is to retain sequential patterns which convey linguistic regularities (e.g., gene -rare disease relationships) [START_REF] Béchet | Sequential pattern mining to discover relations between genes and rare diseases[END_REF]. The size constraint allows to remove patterns that are too small w.r.t. the number of items (number of words) to be relevant patterns. We tested this constraint with min set to 3. The item constraint imposes that the extracted patterns must contain the item GENE and the item DISEASE. As no ad hoc method exists for this combination of constraints, we only compare PP with global-p.f. Fig. 3 shows the CPU times and the number of sequential patterns extracted with and without constraints. First, pushing simultaneously the two constraints enables to reduce significantly the number of patterns. Moreover, the CPU times for PP decrease slightly whereas for global-p.f (with and without constraints), they are almost the same. This is probably due to the weak communication between the m exists-embedding reified global constraints and the two constraints. This reduces significantly the quality of the whole filtering. Second (see Table 4), when considering the two constraints, PP clearly dominates global-p.f (speed-up value up to 51.5).

Moreover, the number of propagations performed by PP remains very small as com- pared to global-p.f. Fig. 3c compares the two methods under the minimum size constraint for different values of min , with minsup fixed to 1%. Once again, PP is always the most performer method (speed-up value up to 53.1). These results also confirm what we observed previously, namely the weak communication between reified global constraints and constraints imposed on patterns (i.e., size and item constraints).

(d) SPM under regular constraints. Our last experiment compares PP-REG against two variants of SMA: SMA-1P (SMA one pass) and SMA-FC (SMA Full Check). Two datasets are considered from [START_REF] Trasarti | Sequence mining automata: A new technique for mining frequent sequences under regular expressions[END_REF]: one synthetic dataset (data-200k), and one real-life dataset (Protein). On the synthetic dataset, our approach is very effective. For RE14, our method is more than an order of magnitude faster than SMA. On Protein, the gap between the 3 methods shrinks, but our method remains effective. For the particular case of RE2, the Regular constraint can be substituted by restricting the domain of the first and third variables to {S, T } and {R, K} respectively (denoted as PP-SRE), thus improving performances. 

Conclusion

We have proposed the global constraint PREFIX-PROJECTION for sequential pattern mining. PREFIX-PROJECTION uses a concise encoding and provides an efficient filtering based on specific properties of the projected databases, and anti-monotonicity of the frequency constraint. When this global constraint is integrated into a CP solver, it enables to handle several constraints simultaneously. Some of them like size, item membership and regular expression are considered in this paper. Another point of strength, is that, contrary to existing CP approaches for SPM, our global constraint does not require any reified constraints nor any extra variables to encode the subsequence relation. Finally, although PREFIX-PROJECTION is well suited for constraints on sequences, it would require to be adapted to handle constraints on subsequence relations like gap. Experiments performed on several real-life datasets show that our approach clearly outperforms existing CP approaches and competes well with ad hoc methods on large datasets and achieves scalability while it is a major issue of CP approaches. As future work, we intend to handle constraints on set of sequential patterns such as closedness, relevant subgroup and skypattern constraints.

Proposition 5 .

 5 In the worst case, filtering with PREFIX-PROJECTION global constraint can be achieved in O(m × + m × d + × d). The worst case space complexity of PREFIX-PROJECTION is O(m × ). Proof: Let be the length of the longest sequence in SDB, m = #SDB, and d = #I. Computing the pseudo-projected database PSDB i can be done in O(m × ): for each sequence (sid, s) of SDB, checking if σ occurs in s is O( ) and there are m sequences. The total complexity of function GETFREQITEMS is O(m × ( + d)). Lines (9-11) can be achieved in O( × d). So, the whole complexity is O

Fig. 1 :

 1 Fig. 1: Comparing PP with global-p.f for SPM on real-life datasets: CPU times.

Fig. 2 :Fig. 3 :

 23 Fig. 2: Comparing PREFIX-PROJECTION with state-of-the-art algorithms for SPM.

  For data-200k, we used two RE: RE10 ≡ A * B(B|C)D * EF * (G|H)I * and RE14 ≡ A * (Q|BS * (B|C))D * E(I|S) * (F |H)G * R. For Protein, we used RE2 ≡ (S|T ) . (R|K) (where . represents any symbol). Fig. 4 reports CPU-times comparison.

Fig. 4 :

 4 Fig. 4: Comparing PREFIX-PROJECTION with SMA for SPM under RE constraint.

Table 1 :

 1 SDB 1 : a sequence database example.Example 1. Table1represents a sequence database of four sequences where the set of items is I = {A, B, C, D}. Let the sequence p = AC . We have cover SDB1 (p) = {(1, s 1 ), (2, s 2 )}. If we consider minsup = 2, p = AC is a sequential pattern because sup SDB1 (p) ≥ 2.

	sid Sequence
	1	ABCBC
	2	BABC
	3	AB
	4	BCD

Definition 5 (sequential pattern mining (SPM)). Given a sequence database SDB and a minimum support threshold minsup. The problem of sequential pattern mining is to find all patterns p such that sup SDB (p) ≥ minsup.

  Algorithm 1: PROJECTSDB(SDB, P rojSDB, α)

		Data: SDB: initial database; P rojSDB: projected sequences; α: prefix
		begin
	1	SDB|α ← ∅ ;
	2	for each pair (sid, start) ∈ P rojSDB do
	3	s ← SDB[sid] ;
	4	posα ← 1; poss ← start ;
	5	while (posα ≤ #α ∧ poss ≤ #s) do
	6	if (α[posα] = s[poss]) then
	7	posα ← posα + 1 ;
	8	poss ← poss + 1 ;
	9	if (posα = #α + 1) then
	10	SDB|α ← SDB|α ∪ {(sid, poss)}
	11	return SDB|α ;

us consider the sequence database of Table 1. As shown in example 2, SDB| A consists of 3 suffix sequences: {(1, BCBC ), (2, BC ), (3, B )}. By using the pseudoprojection, SDB| A can be represented by the following three pairs: {(1, 2), (2, 3),

Table 2 :

 2 Dataset Characteristics.

	dataset	#SDB #I avg (#s) maxs∈SDB (#s)	type of data
	Leviathen 5834 9025 33.81	100	book
	Kosarak	69999 21144 7.97	796	web click stream
	FIFA	20450 2990 34.74	100	web click stream
	BIBLE	36369 13905 21.64	100	bible
	Protein	103120 24	482	600	protein sequences
	data-200K 200000 20	50	86	synthetic dataset
	PubMed	17527 19931	29	198	bio-medical text

Table 3 :

 3 PP vs. global-p.f.

				CPU times (s)	#PROPAGATIONS	#NODES
				PP global-p.f	PP global-p.f	PP global-p.f
		20	938	8.16	129.54 1884	11649290 1025	1873
		18	1743	13.39	222.68 3502	19736442 1922	3486
	FIFA	16 14	3578 7313	24.39 44.08	396.11 7181 704 14691	35942314 3923 65522076 8042	7151 14616
		12	16323	86.46	1271.84 32820	126187396 18108	32604
		10	40642	185.88	2761.47 81767	266635050 45452	81181
		10	174	1.98	105.01	363	4189140 235	348
		8	274	2.47	153.61	575	5637671 362	548
	BIBLE	6 4	508 1185	3.45 5.7	270.49 1065 552.62 2482	8592858 669 15379396 1575	1016 2371
		2	5311	15.05	1470.45 11104	39797508 7048	10605
		1	23340	41.4	3494.27 49057	98676120 31283	46557
		5	2312	8.26	253.16 4736	15521327 2833	4619
		4	3625	11.17	340.24 7413	20643992 4428	7242
	PubMed	3 2	6336 13998	16.51 28.91	536.96 12988 955.54 28680	29940327 7757 50353208 17145	12643 27910
		1	53818	77.01	2581.51 110133	124197857 65587	107051
		99.99	127	165.31	219.69	264	26731250 172	221
		99.988	216	262.12	411.83	451	44575117 293	390
	Protein	99.986 99.984	384 631	467.96 753.3	909.47 1443.92 1322 805	80859312 514 132238827 845	679 1119
		99.982	964	1078.73	2615 2014	201616651 1284	1749
		99.98	2143	2315.65	-4485	-2890	-

Table 4 :

 4 PP vs. global-p.f under minimum size and item constraints.

	Dataset minsup (%) #PATTERNS	CPU times (s) PP global-p.f	#PROPAGATIONS PP global-p.f	#NODES PP global-p.f
		5	279	6.76	252.36 7878	12234292 2285	4619
		4	445	8.81	339.09 12091	16475953 3618	7242
	PubMed	3 2	799 1837	12.35 20.41	535.32 20268 953.32 43088	24380096 6271 42055022 13888	12643 27910
		1	7187	49.98	2574.42 157899	107978568 52508	107051
	data-200k (RE10)		data-200k (RE14)		Protein (RE2)

A wildcard is a special symbol that matches any item of I including itself.

We indifferently denote σ by d1, . . . , di or by σ(P1), . . . , σ(Pi) .

A sequential pattern p is maximal if there is no sequential pattern q such that p q.

http://www.gecode.org

https://sites.google.com/site/prefixprojection4cp/

http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/

https://code.google.com/p/prefixspan/

http://www-kdd.isti.cnr.it/SMA/

https://dtai.cs.kuleuven.be/CP4IM/cpsm/

Acknowledgments. The authors would like to thank the anonymous referees for their valuable comments. This work is partly supported by the ANR (French Research National Agency) funded projects Hybride ANR-11-BS002-002.