
HAL Id: hal-01628142
https://hal.science/hal-01628142

Submitted on 2 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Relevant Sequence Patterns with CP-Based
Framework

Amina Kemmar, Willy Ugarte, Samir Loudni, Thierry Charnois, Yahia
Lebbah, Patrice Boizumault, Bruno Crémilleux

To cite this version:
Amina Kemmar, Willy Ugarte, Samir Loudni, Thierry Charnois, Yahia Lebbah, et al.. Mining Rele-
vant Sequence Patterns with CP-Based Framework. 26th IEEE International Conference on Tools with
Artificial Intelligence, 2014, Limassol, Cyprus. pp.552 - 559, �10.1109/ICTAI.2014.89�. �hal-01628142�

https://hal.science/hal-01628142
https://hal.archives-ouvertes.fr

Mining Relevant Sequence Patterns with CP-based
Framework

Amina Kemmar∗‡, Willy Ugarte∗, Samir Loudni∗, Thierry Charnois†, Yahia Lebbah‡∗, Patrice Boizumault∗, Bruno
Crémilleux∗

∗GREYC (CNRS UMR 6072) – University of Caen, Campus II Côte de Nacre, 14000 Caen - France
†LIPN (CNRS UMR 7030) – University PARIS 13, 99, avenue Jean-Baptiste Clément 93430 Villetaneuse - France

‡LITIO, University of Oran, 1524 El-M’Naouer & EPSECG d’Oran, BP 65 Ch 2 USTO, Oran, Algeria

Abstract—Sequential pattern mining under various constraints
is a challenging data mining task. The paper provides a generic
framework based on constraint programming to discover se-
quence patterns defined by constraints on local patterns (e.g.,
gap, regular expressions) or constraints on patterns involving
combination of local patterns such as relevant subgroups and
top-k patterns. This framework enables the user to mine in
a declarative way both kinds of patterns. The solving step is
done by exploiting the machinery of Constraint Programming.
For complex patterns involving combination of local patterns,
we improve the mining step by using dynamic CSP. Finally, we
present two case studies in biomedical information extraction and
stylistic analysis in linguistics.

Keywords—Sequential mining, Constraint programming, sub-
group patterns.

I. INTRODUCTION

Sequential pattern mining is a well-known data mining tech-
nique introduced in [1] that aims at discovering correlations
between events through their order of appearance in a database
of sequences. For effectiveness and efficiency considerations,
many authors [2], [3] have promoted the use of constraint
programming to focus on the most promising knowledge by
reducing the number of extracted patterns to those of a poten-
tial interest given by the final user. In this paper, we propose a
generic approach for modelling and mining sequential patterns
under various constraints using Constraint Programming (CP).

Sequential pattern mining is one of the most studied and
challenging tasks in data mining with a wide range of appli-
cations and domains. Accurate processing of texts is crucial
for the numerous applications on textual data. In linguistics,
textual analysis enables to find interesting characteristic pat-
terns from corpora of a literary author. In biomedicine, more
than 20 million publications are currently listed in the PubMed
repository. The automatic extraction of gene for rare diseases
(RD) relationship, where the data is available in a textual form,
is a very motivating application, since about 7,000 RD affect
about 30 million people in Europe. A critical challenge is
then to discover relevant and useful knowledge spread in such
sequential data.

There are many algorithms to extract sequential patterns
under the frequency constraint such as PrefixSpan [4],
CloSpan [5], BIDE [6], etc. A survey of various constraints
such as regular expression, length, aggregates can be found
in [2]. But there is no unifying method to mine sequence

patterns under various constraints adding and handling simul-
taneously several types of constraints in a nice and elegant way
beyond the few classes of constraints studied is far from trivial.
The main problem with these methods is that the user has to
adopt a new method each time he wants to extract patterns
satisfying a new type of constraints.

The paper addresses this issue by taking benefit of the
Constraint Programming (CP) which brought successful results
in the data mining area [7], [8]. The key power of CP lies
in its generic and declarative approach to problem solving.
The user models a problem by specifying constraints and the
CP solver provides the complete set of solutions satisfying all
the constraints. The great advantage of this modelling is its
flexibility. It enables to define and to push new constraints
without having to develop new algorithms from scratch.

We propose a unified framework for modelling and mining
sequence patterns in a sequence database under a large set
of constraints. We address both constraints dealing with local
patterns (e.g. frequency, size, gap, regular expressions) and
constraints defining more complex patterns such as relevant
subgroups and top-k patterns. Moreover, our approach enables
to combine simultaneously different types of constraints. To
the best of our knowledge, it is the first CP-based model for
discovering sequence patterns under various constraints. We
show the interest of our approach towards two case studies
in biomedical information extraction and stylistic analysis in
linguistics.

This paper is organized as follows. Section II gives the
preliminaries. In Section III, we state the sequence mining
problem and detail the constraints. Section IV introduces
the main principles of constraint programming. Section V
describes our CP model. We review related work in Section VI.
Section VII reports the two case studies. Finally, we conclude
and draw some perspectives.

II. PRELIMINARIES

In this section, we fix the notations and give the necessary
definitions according to [9], [10].

Let I be a set of distinct literals called items. The lan-
guage of sequences corresponds to LI = In where n ∈
N+. A sequence of items S is an ordered list of items:
S = s1s2..sn ∈ LI where n = |S| is the length of the
sequence. A sequence database SDB is a set of sequences,
SDB = {S1, S2,, Sm}, Si ∈ LI for all i ∈ 1..m. A

2

TABLE I: SDB1: a sequence database example.

Classes ID Sequences

D+
s1 DBED
s2 DBAC
s3 CED

D−
s4 ABAE
s5 DBCE

bipartition of SDB over I is the pair (D+,D−) where D+

and D− are disjoint sets of sequences whose union is SDB.
D+ (resp. D−) denotes the positive (resp. negative) class.

Definition 1 (Sequence pattern): Given the set of items I,
whose elements are also called solid characters. We introduce a
new symbol called wildcard (denoted by �) which can replace
any item in I. Let be IP = I ∪ {�}. A sequence pattern P
is a sequence over LP = I × (IP)`−1 where ` ∈ N+. We
impose that the sequence pattern starts with a solid character
and ends with any character including the wildcard.

Definition 2 (�, Occurrence): For any two characters
σ1, σ2 ∈ IP , we have σ1�σ2 if σ1 = � or σ1 = σ2.
A sequence pattern P = p1..p` ∈ LP is a sub-sequence
of S = s1..sn ∈ SDB, denoted by P�S, iff there
exists an integer i ≥ 1, such that occur(P, S, i) holds
(equivalently, we say that P occurs at position i in S), where
occur(P, S, i) ≡ (i+ ` ≤ n) and (pj�sj+i−1,∀j ∈ 1..`).

Definition 3 (Cover, Support): The cover of a sequence pat-
tern P in SDB is defined as the set coverSDB(P) = {S|S ∈
SDB,P�S}. The support of P , denoted by 1 supSDB(P),
is defined as the number of sequences in SDB which contain
P , supSDB(P) = |coverSDB(P)|. A sequence pattern P is
said frequent in a database SDB if, given a minimum support
threshold minsup, supSDB(P) ≥ minisup.

Table I represents a sequence database of five sequences
where the set of items is I = {A,B,C,D,E}. Let us consider
the pattern P = B�E. We have coverSDB1

(P) = {s4, s5},
since occur(P, s4, 2) = true and occur(P, s5, 2) = true. If
we consider minsup = 2, the pattern P = B�E is a frequent
sequence pattern because sup(P) ≥ 2.
III. MINING SEQUENCE PATTERNS WITH CONSTRAINTS

In this section, we define the problem of mining sequence
patterns in a sequence database of items satisfying user-defined
constraints. Then we present the modelling of several sequence
pattern constraints. These constraints address local patterns
(e.g., frequency, gap, regular expressions) or patterns involving
several local patterns such as relevant subgroups and top-
k patterns. Our framework does not require that constraints
satisfy an (anti-)monotonic property.
Problem statement. Given a constraint C(P, SDB) on se-
quence patterns P and a sequence database SDB, the problem
of constraint-based sequence pattern mining is to find the
complete set of sequence patterns satisfying C(P, SDB).

The following sections present different types of constraints
that we explicit in the context of the sequence patterns. All
these constraints are handled by our framework.

1When there is no ambiguity, supSDB(P) will be simply noted sup(P).

A. Constraints on local patterns
Local patterns are regularities that hold for a particular part

of the data. Here, locality refers to the fact that checking
whether a pattern satisfies or not a constraint can be performed
independently of the other patterns holding in the data. We
review some of the most important constraints on local pat-
terns [2].
Frequency constraint. Let P be a sequence pattern and
minsup a minimum support threshold. We say that P is a
frequent sequence pattern in SDB w.r.t. minsup if sup(P) ≥
minsup.
Size constraint. This constraint, noted sizemin,`(P, SDB),
restricts: (i) the length of a sequence pattern P to be equal
to ` and (ii) the number of solid characters in P to be
greater than or equal to min: sizemin,`(P, SDB) ≡ (|P | =
` ∧ |{i | pi 6= �}| ≥ min). For instance, if we impose the
constraint sup(P) ≥ 2 ∧ size2,4(P, SDB1), only one pattern
is mined from Table I: P1 = DB��.
Item constraint. An item constraint specifies a subset of items
that should or should not be present in the sequence patterns,
itemt(P, SDB) ≡ (∃i ∈ 1..|P |, pi = t). For instance, if we
impose the constraint itemA(P, SDB1) ∧ itemB(P, SDB1),
we can consider only the two sequences from Table I: s2 and
s4. Then, if we impose the constraint size2,3(P, SDB1) and
sup(P) ≥ 2, one sequence pattern is mined: P2 = BA�.
Gap constraint. Another widespread constraint is the
gap constraint. A pattern satisfying a gap constraint
gap(m,n)(P, SDB) is a pattern such that at least m wildcards
and at most n wildcards are allowed between every two solid
neighbor items in the pattern. For instance, let the following
three constraints gap(1,2)(P, SDB1), size2,3(P, SDB1), and
sup(P) ≥ 2, defined over sequences of Table I, pattern
P3 = B�E satisfies these three constraints.
Regular expression constraint. A regular expression con-
straint regexp(P, SDB) is a constraint specified as a regular
expression exp over the set of items of SDB. A pattern
satisfies regexp(P, SDB) iff the pattern is accepted by its
equivalent deterministic finite automata [11]. For example, the
sequence pattern DBC is extracted from SDB1 (Table I) since
it satisfies the regular expression constraint regexp(P, SDB1),
where exp = D{CE|AE|BC}.

B. Constraints on sets of local patterns
In practice, the data analyst is often interested in discovering

richer patterns than local patterns and he/she is looking for
patterns that reveal more complex characteristics from the
database. The definitions relevant to such patterns rely on
properties involving several local patterns [12], [13]. In the
following, we give the modelling of several such patterns.
Closedness constraint. A sequence pattern P is closed in a
sequence database SDB if there exists no sequence pattern
P ′ such that P � P ′ and sup(P)=sup(P ′). The closedness
constraint allows to get a condensed representation of the
complete set of extracted sequence patterns.

closedness(P, SDB) ≡

{
true if ∀P ′ ∈ LP such that P � P ′,
freq(P) > freq(P ′)
false otherwise

3

Top-k constraint. top-k patterns are the k patterns optimizing
an interestingness measure m. In this work, we consider the
problem of mining top-k frequent sequence patterns having
at least min solid characters. In this problem, the minimum
support threshold minsup is not known.

Definition 4: Let k and min be strictly positive integers.
A sequence pattern P is a top-k frequent pattern of at least
min solid characters if there exists no more than (k − 1)
sequence patterns having at least min solid characters and
whose support is higher than that of P .
From definition 4, we can formulate the top-k constraint as
follows:
topk,min(P, SDB) ≡ |{P ′ ∈ LP |P ′ 6= P ∧sizemin,`(P

′)∧
m(P ′) > m(P)}| < k
where ` is the length of the sequence pattern and m is the
frequency measure or any other measure. For instance, if we
look for Top-2 sequence patterns with min = 2 and ` = 3,
three sequence patterns are mined from Table I: DB� with
support 3, BA� and B�E with support 2.
Relevant subgroup constraint. Let the pair (D+, D−) be a
bipartition of SDB. Mining relevant patterns consists in finding
patterns that discriminate the positive dataset (D+) from the
negative one (D−) [14]. This constraint can be formulated as
follows:
subGminsup(P, SDB) ≡

true if
supD+ (P) ≥ minsup ∧ @P ′ ∈ LP :
coverD+ (P) ⊆ coverD+ (P ′) ∧
coverD− (P) ⊇ coverD− (P ′) ∧
(coverSDB(P) = coverSDB(P ′)⇒ P ′�P)
false otherwise

The last condition states that if two patterns cover exactly the
same set of sequences in SDB, the one that includes the other
is considered. Let us consider the database SDB1 from Table I.
We classify its sequences on two classes: D+ and D−. If
we impose the constraint size1,3(P, SDB1)∧subGminsup(P)
with minsup = 2, only one sequence pattern is considered as
relevant, which is P4 = DB�.

IV. CONSTRAINT PROGRAMMING

Constraint programming (CP) is a generic framework for
solving combinatorial problems modelled as Constraint Satis-
faction Problems (CSP).
Constraint Satisfaction Problems. A Constraint Satisfaction
Problem (CSP) consists of a finite set of variables X =
{X1, . . . , Xn} with finite domains D = {D1, . . . , Dn} such
that each Di is the set of values that can be assigned to Xi,
together with a finite set of constraints C, each on a subset of
X . A constraint C ∈ C is a subset of the cartesian product of
the domains of the variables that are in C. The goal is to find
an assignment (Xi = di) with di ∈ Di for i = 1, . . . , n, such
that all constraints are satisfied.
Dynamic CSPs. A Dynamic CSP [15] is a sequence
P1,P2, ...,Pn of CSPs, each one resulting from some changes
in the definition of the previous one. These changes may
affect every component in the problem definition: variables,
domains and constraints. For our approach, changes are only

performed by adding new constraints. Solving such dynamic
CSP involves solving a single CSP with additional constraints
posted during search. Each time a new solution is found,
new constraints are imposed. Such constraints will survive
backtracking and state that next solutions should verify both
the current set of constraints and the added ones.
Global constraints. An important modelling technique from
CP are the global constraints that provide shorthands to
often-used combinatorial substructures. We present briefly two
global constraints, Among and Regular, allowing to model
constraints described in Section III-A.
Among Constraint. This constraint restricts the number of
variables using values from a given set (see [16] for more
details).
Regular Constraint. Given a deterministic finite automaton
M describing a regular language, constraint Regular(X,M)
ensures that every sequence of values taken by the variables
of X have to be a member of the regular language recognised
by M [17].

V. OUR CP MODEL FOR SEQUENCE PATTERNS

We present our CP model for mining sequence patterns with
constraints. We start by introducing the model of a sequence
pattern that we defined within the CP paradigm (Section V-A).
Thanks to the nice declarative side of the CP, our approach
enables us to express in a straightforward way constraints on
local patterns (Section V-B). We describe how more complex
sequence patterns such as top-k and relevant subgroups can
be modelled and extracted using Dynamic CSP [15] (Section
V-C). To the best of our knowledge, our approach is the
first generic one for mining sequence patterns in a sequence
database under constraints on local patterns or on patterns
involving combination of local patterns.

A. Sequence pattern encoding

In the remainder of this section, let SDB be a dataset where
I is the set of its n items and S the set of its m sequences,
and let d be the matrix representing the SDB where S ∈ S
and for i ∈ {1, . . . , |S|}, dS,i = si.
Variables. Let P be the unknown sequence pattern of size
` we are looking for. First, ` variables {p1, p2, . . . , p`} are
introduced to represent P . The domains of variables pi are
defined as follows: D1 = I and ∀i ∈ [2..`], Di = IP . This
expresses that the first item of P must be different from the
wildcard symbol, while the other items of P may be wildcards.

Second, to encode that “P � S”, the following boolean
variables are introduced: POSS,j such that (POSS,j = 1)⇔
(occur(P, S, j) = true). Variables POSS,j enable us to
capture the positions where the candidate sequence pattern P
appears. As the last possible position of a pattern P in S is
(|S|+ 1− `), then j ∈ [1 . . . |S|+ 1− `].

Finally, m variables {T1, . . . , Tm}, having the domain
{0, 1}, are used such that (TS = 1) iff the sequence S contains
the sequence pattern P :

∀S ∈ S, (TS = 1)⇔ (P � S) (1)

4

q0 qF Q1 Q2 Qi Qm Qj Qn Qc
�

�

� � � � �

�

�

�
�

�

�

Fig. 1: Automaton Am,n. � represents the wildcard symbol
and � represents any symbol of I.

Occurrence constraint. From equation (1) we have: (Ts =
1)⇔ ∃j ∈ [1 . . . |S|+ 1− `] such that occur(P, S, j) = true.
This property is reformulated by the following constraint:
∀S ∈ S, (TS = 1)⇔ (Σj∈[1...|S|+1−`]POSS,j ≥ 1) (2)

The relationship between each candidate pattern P and a
sequence S of the SDB where P appears is expressed by the
following constraint, stating that, for all i ∈ [1..`], item of rank
(j + i− 1) in S corresponds to the i− th item of P , and the
first item of P must be different from �.
(POSS,j = 1)⇔ (P1 = dS,j)∧ (

∧
i∈[2..`]

(pi = �∨ pi = dS,j+i−1)) (3)

B. Reformulating constraints on local patterns
This section shows how our model allows us to express in

a straightforward way constraints presented in Section III-A
using the constraints provided by CP solvers.
Frequency constraint: sup(P) ≥ minsup ≡

∑
S∈S TS ≥ minsup

Item constraint: itemV (P, SDB) ≡
∧

t∈V Among(P, {t}, [l, u]).
V is a subset of items, l and u are two integers s.t. 0 ≤ l ≤
u ≤ `. It enforces that items of V should be present at least
l times and at most u times in P . To forbid items of V to
appear in P , it suffices to set l and u to 0.
Size constraint:sizemin,`(P, SDB)≡Among(P, {�}, [1, `−min]).
Regular expression constraint: regexp(P, SDB) ≡
Regular(P,Areg). Areg is the deterministic finite automaton
encoding the regular expression exp over the set of items.
Gap constraint: gap(m,n)(P, SDB) ≡ Regular(P,Am,n).

Am,n is defined by a 5-tuple {Q,Σ, δ, q0, F} where Q is a
finite set of states, Σ=IP the emission alphabet, δ : Q×Σ→
Q the transition function, q0 is the initial state and F ⊆ Q the
set of final states. The idea is to record in a state Qi the last i
consecutive wildcards encountered in the sequence pattern P .
As at most n wildcards are allowed, we create n such states.
We also add a final state qF . The first item of pattern must be
different from wildcard, we define a transition from a state q0
to state qF on value �. To satisfy the minimum gap constraint,
we must add the following transitions: Q1 = δ(qF , �) and
Qi+1 = δ(Qi, �) for all i ∈ [1,m− 1]. In addition, the states
Qi, m ≤ i ≤ n are linked to allow sequence patterns with a
number of wildcards between m and n. So, all these states are
accepting states. Consequently, a transition on a non-wildcard
value is added from each final state Qi, m ≤ i ≤ n to state
qF . The loop transition defined on qF is only considered when
m = 0 so that patterns without gap will be accepted. Figure
1 illustrates the automaton that would be built for the gap

constraint gap(m,n). Finally, to allow wildcards at the end of
patterns, we add the state Qc with the following transitions:
Qc = δ(Qn, �) and Qc = δ(Qc, �).

C. Dynamic CSP for Mining richer Sequence Patterns

This section describes how sequence patterns under con-
straints involving combination of local patterns can be mod-
elled and extracted using Dynamic CSP [15]. We start by
giving the key ideas of our method and then we show how
it performs in the case of the top-k patterns and relevant
subgroups.
A) Principles of the method. Basically, the main idea is
to exploit a preference relation (noted �) between patterns
to produce a continuous refinement on the extracted patterns
thanks to constraints dynamically posted during the mining
process. Each dynamic constraint will impose that none of the
candidate patterns already extracted is better (w.r.t �) than the
next pattern (which is searched). This process stops when no
better solution can be found. We define a preference relation
� between patterns as follows:

Definition 5 (Preference relation): A preference � is a
strict partial order relation on LP . Let P and P ′ be two
sequence patterns, P � P ′ means that P is strictly preferred
than P ′.

Let us consider the sequence P1, ...,Pn of CSP where each
Pi = ({P},LP , Ci(P)) and:

Ci+1(P) =

{
C(P) if i = 0
Ci(P) ∧ φ(Pi, P) if i > 0

(4)

C(P) is the initial constraint system. It expresses some
property that must be satisfied by the unknown pattern P , like
minimum frequency. Each time the first solution Pi is found
to Ci(P), we dynamically post a new constraint φ(Pi, P).
Constraints φ(Pi, P) for i ∈ [1..n] successively impose that all
patterns Pi found may not be better (according to �) than the
searched pattern P . Thus, at step (i+1) we add the constraint
φ(Pi, P) defined by : φ(Pi, P) = ¬(Pi � P).

Consequently, none of the patterns P1, P2, . . ., Pi obtained
is better than P (immediate proof by induction). The new
constraints φ(Pi, P) added dynamically enable to reduce the
search space. This process stops when no better pattern can
be found (i.e. there exists n such that Cn(P) has no solution).
Finally, the completeness of our approach is ensured by the
completeness of the CP solver. But, the n extracted patterns
P1, P2, . . ., Pn are not necessarily all final solutions as the
considered preference relation � is a partial order. Some
of them can only be ”intermediate” patterns simply used to
improve the pruning of the search space. A post processing
step must be performed to filter all candidate patterns Pi for
which there exists Pj (1 ≤ i < j ≤ n) s.t. Pj � Pi. So, the
mining process is achieved in a two-steps: (1) Compute the
set {P1, P2, . . . , Pn} of candidates using Dynamic CSP; (2)
Remove all ”intermediate” patterns Pi.

The following sections describe how the examples in Sec-
tion III-B can be modelled and solved using Dynamic CSP.
For two of them, we give the initial constraint system and the
constraints φ(Pi, P) added dynamically.

5

B) Mining the top-k sequence patterns. Initially, we have to
set the minimum support minsup to 1 to ensure that all the
top-k patterns will be found. Moreover, we impose that the
searched pattern P must have at least min solid characters.
Thus, C(P) ≡ sup(P) ≥ 1 ∧ sizemin,`(P, SDB). During the
search, a list of candidate patterns Cand is maintained and
ordered according to their frequency. At the beginning, all the
mined patterns are added until Cand has k candidate patterns.
Thus, φ(Pi, P)=true. Once k patterns are found2, we impose
that the new searched pattern P must have a frequency greater
than the minimum frequency of the k patterns. This is done
by adding the dynamic constraint φ(Pi, P) and by removing
from Cand the pattern with the smallest value of frequency
i.e Cand ← Cand \ {arg min

Pj∈Cand
sup(Pj)}. Thus, φ(Pi, P) is

defined as follows:

φ(Pi, P) =

{
sup(P) > min

Pj∈Cand

sup(Pj) if i ≥ k

true otherwise

This process is repeated until no pattern is generated. The great
interest of this iterative process is that the added constraints
will refine the pruning condition leading to more and more
powerful pruning of the search space. Let us note that for
the top-k patterns, no post-processing step is required as the
extracted patterns are ordered according to a total order relation
on the frequency measure.
C) Mining the relevant subgroups. From the relevant sub-
group constraint defined in Section III-B, the initial constraint
system and the constraints φ(Pi, P) to be added dynamically
are defined as follows: C(P) ≡ sup(P) ≥ minsup and

φ(Pi, P) ≡

{
coverD+(P) * coverD+(Pi)∨
coverD−(P) + coverD−(Pi)∨
(coverSDB(Pi) = coverSDB(P) ∧ Pi 6�P)

Finally, contrary to the top-k sequence patterns, the relevant
subgroup sequence patterns are ordered by a partial order
relation. Thus, a post-processing step is required to eliminate
the irrelevant ones.

VI. RELATED WORK

Computing Sequential Patterns. In the context of
constraint-based sequential pattern mining, several algorithms
have been proposed [2], [18], [19], [20] All these algorithms
exploit properties of the constraints to perform effective prun-
ing. For constraints that do not fit in these categories, they are
handled by relaxing them to achieve some nice property (like
anti-monotonicity) facilitating the pruning. Such a method,
though interesting, makes tricky the integration of such con-
straints in a nice and elegant way. So, unlike these algorithms,
our approach enables to address in a unified framework a
broader set of constraints defined on local patterns or on
patterns involving the combination of local patterns.

2Since there could be more than one sequence pattern having the same
support in a sequence database, the number of the top-k patterns may be
greater than k. To generate all top-k patterns, we need just to replace the
strict inequality in φ(Pi, P) by an inequality (≥). For our experiments, we
have considered the strict inequality.

CP for Pattern Mining. In the context of local patterns, an
approach using CP for itemset mining has been proposed in
[8]. This approach addresses in a unified framework a large set
of local patterns. To deal with richer patterns satisfying proper-
ties involving several local patterns, different extensions have
been proposed, such as pattern sets [21], n-ary patterns [7],
dominance algebra [22] or skypatterns [23]. Our approach also
benefits from the recent progress on cross-fertilization between
data mining and CP for itemset mining, but it addresses a
different problem with a different modelling.
CP for Sequence Mining. More recently, [9], [24] have
proposed a SAT-Based approach for discovering frequent,
closed and maximal sequential patterns with wildcards in only
a single sequence of items or itemsets. However, unlike [9],
[24], our approach considers a sequence database of items.
Moreover, our approach allows to consider a broader set
of constraints that are not handled in [9] (e.g. gap, regular
expression, top-k and relevant subgroup constraints). Finally,
[25] have proposed a CP-based approach for mining sequential
patterns in a sequence database. Each sequence is encoded by
an automaton capturing all subsequences that can be found
inside this sequence. However, our sequence pattern encoding
is very different and much more efficient. Moreover, we are
able to address constraints defined on top-k patterns and on
relevant subgroups patterns.

VII. EXPERIMENTATIONS

This section evaluates the performance of our approach.
For this purpose, we selected two case studies. The first one
focuses on the extraction of sequence patterns under various
constraints (frequency, gap, item, top-k) from biomedical texts.
The second one aims at discovering subgroup patterns for the
stylistics analysis of literary texts. All experiments are done on
a 8-cores of 2.00GHZ Intel Xeon, running the Linux operating
system at UCI-Cerist and UCI-UOran. The implementation
was carried out in Gecode3. A timeout of 24 hours has been
used. When the extraction process cannot be completed within
the time limit, it will be indicated by the symbol (−) in the
table.

A. Mining Sequence Patterns from Biomedical Texts
Problem. The goal of this application is to discover relations
between genes and diseases from biomedical texts. The details
of this application is given in [26]. In this section, we focus
on the extraction of sequence patterns, using our CP approach.
Settings. We created a corpus from the PubMed database
using HUGO4 and Orphanet dictionaries to query the database
to get sentences having these two kinds of entities. 17, 527
sentences of size up to 2, 000 words have been extracted in
this way and we labelled the gene and rare disease (RD)
names thanks to the two dictionaries. For instance, the sentence
“<disease>Muir-Torre syndrome<\disease> is usually in-
herited in an autosomal dominant fashion and associated
with mutations in the mismatch repair genes, predominantly
in <gene>MLH1<\gene> and <gene>MSH2<\gene>

3www.gecode.org
4www.genenames.org

6

genes.” contains one recognized RD, and two recognized
genes. These 17, 527 sentences are the training corpus from
which we experiment the sequence pattern extraction.

Sequences of the SDB are the sentences of the training
corpus: an item corresponds to a word of the sentence. We
carry out a POS tagging of the sentences thanks to the
TreeTagger tool [27]. In the sentences, each word is replaced
by its lemma, except for gene names (respectively disease
names) which are replaced by the generic item GENE
(respectively DISEASE). Note that unlike machine learning
based approaches relations (e.g. gene-disease relations) are not
annotated, but are discovered.

In order to discover sequence patterns, we impose usual
constraints such as the minimal frequency and the minimal
size constraints and other useful constraints expressing some
linguistic knowledge such as the item constraint. The goal is
to retain sequence patterns which convey linguistic regularities
(e.g., gene – rare disease relationships). Our method offers a
natural way to simultaneously combine in a same framework
these constraints coming from various origins. We briefly
sketch these constraints.
• The minimal frequency constraint. Three values of minimal
frequency have been experimented: 0, 5%, 1% and 2%.
• The size constraint. The aim of this constraint is to remove
sequence patterns that are too small with respect to the number
of items (number of words) to be relevant linguistic patterns
and to limit the length of extracted patterns. We tested this
constraint with min set to 3 and ` set to 20.
• The item constraint. This constraint enables to filter out
sequence patterns that do not contain some selected items. For
example, we express that the extracted patterns must contain at
least three items (expressing the linguistic relation): GENE,
DISEASE and noun or verb5.
Experimental protocol. We performed experiments on several
subsets of the PubMed dataset with different sizes ranging
from 500 to 4, 000 sentences. Such a choice of values is
explained by the fact that under 500, we seem to get results
within reasonable runtime. In fact, studying the behavior of
our CP model on datasets having more than 500 sequences be-
comes interesting as the size of instances are reasonably large:
up to 120, 020 variables (with 120, 000 boolean variables),
domain size ranging from 2 to 4, 197, and up to 6, 848, 002
constraints. To study the influence of the gap constraint on
the extraction process, we considered two cases: with gap(0,9)
and without gap constraint. In the last case, the number of
wildcards is limited by the length of patterns. We conducted
two kinds of experiments. In the first set of experiments, we
aim at evaluating the feasibility of our approach for mining
sequence patterns under constraints on local patterns described
previously, while in the second one we analyze the behavior
of our Dynamic CSP for mining the top-k sequence patterns.
Quantitative results. Figure 2 reports the number of extracted
sequence patterns and the CPU-times to extract them (in
seconds) with and without gap for each dataset we considered.
First, as expected, the lower minsup is, the larger the number
of extracted sequence patterns. For example, when minsup =

5For each word (i.e. item), its grammatical category is stored in a base.

No gap constraint gap(0,9)

Fig. 2: Number of patterns (bottom) and CPU-times (top)
according to the gap and minsup constraints.

1%, we extract all frequent patterns before reaching the
timeout. Second, CPU-times vary according to the size of the
datasets. When the number of frequent patterns is reasonably
small our CP approach succeeds to complete the extraction of
all frequent patterns whatever the size of the dataset. However,
when the number of solutions becomes huge (i.e. case of low
frequency thresholds), the CP approach does not succeed to
complete the extraction of all frequent sequence patterns within
the timeout. Finally, the gap constraint decreases the CPU-
times as well as the number of extracted patterns. Indeed,
without gap constraint, more patterns are extracted (i.e., we
obtain all patterns with a number of wildcards limited only
by the length of patterns) which substantially increases the
CPU-times.
Qualitative results. Our approach allowed to extract relevant
linguistic patterns which are useful to extract gene - RD
relationships from biomedical texts (see [26]). In addition,
and unlike statistical methods (e.g. Support Vector Machines)
which are popular in text mining, the patterns are readable and
manageable by an expert, see for instance these three patterns:

1) 〈(DISEASE) (be) (cause) (by) (mutation) (in) (the) (GENE)〉
2) 〈(GENE) (occur) (in) (DISEASE)〉
3) 〈(DISEASE) (be) (an) (mutation) (in) (GENE)〉

Mining top-k sequence patterns. In this second set of exper-
iments, we considered the problem of mining top-k frequent
sequence patterns having at least min solid items. We set the
value of min to 3, ` to 20, gap to (0, 9) and we varied the
value of k from 1 to 10, 000. The results are shown in Figure 3.

As expected, the CPU-time needed for computing the top-k
patterns increases with k. Our CP approach fails to compute
the top-k patterns for higher value of k ≥ 2, 000 in the time
limit. This figure clearly shows that finding the top-k sequence
patterns can be computed efficiently for small values of k (≤
500) and for datasets with size up to 2, 000 sequences. Thus,
the top-k constraint enables to control the size of the patterns

7

extracted and to get the most relevant ones.

Fig. 3: Results of top-k patterns extraction.

Effectiveness of our Dynamic CSP approach. In order to
evaluate the effectiveness of our Dynamic CSP approach,
we compared with a base-line method to extract top-k
patterns. It proceeds in two steps: first, all candidates satisfying
the local constraints are generated. Then, a filtering step
is applied enabling to remove all useless patterns (that are
not top-k patterns w.r.t. the frequency measure). Figure 3
compares the performance of the two methods according to
the value of k. Reported CPU-times include the two steps.
We can see clearly that our approach clearly outperforms the
base-line method on all the datasets. Thus, dynamic CSPs
enable to prune significantly the search space, but as additional
constraints are posted during search, this may increase the
CPU time for solving the resulting dynamic CSP. Let us note
however, that the time spent for solving the different dynamic
CSPs is not constant and can vary greatly.

TABLE II: Comparing CPU times: SPM-REG Vs SPM-REL.

seq. 50 100 150 200 250

M
in

s
u
p

SP
M

-R
E

G

SP
M

-R
E

L

SP
M

-R
E

G

SP
M

-R
E

L

SP
M

-R
E

G

SP
M

-R
E

L

SP
M

-R
E

G

SP
M

-R
E

L

SP
M

-R
E

G

SP
M

-R
E

L

10% 237 5 22 10 97 14 277 27 676 36

Comparing with the CP-based approach of [25]. To com-
pare our method (SPM-REL) with the one proposed in [25]
(SPM-REG), we have adapted the code of SPM-REG, provided
by the authors, to generate similar patterns as those generated
with our framework. For SPM-REG, we set the gap constraint
to Gap = (0, 0). Results are shown in Table II. CPU times
are measured in seconds. SPM-REG succeeds only when
minsup = 10% and only on small instances going from 50
to 250 sequences. When the number of instances is greater
than 250 or minsup lower than 10%, SPM-REG cannot process
these instances due to an excessive memory usage. For the
few instances where SPM-REG finishes, SPM-REL behaves
strictly better. This result can be explained by the fact that the
main sub-sequence constraint in SPM-REG is encoded with an
automaton who increases hugely with the size of sequences.
Our approach uses basic linear constraints which is efficient
for significant sequences size.

TABLE III: Results on datasets extracted from Zola and
Roman according to the gap constraint.

No gap constraint gap(0,0)

D
at

as
et

s

#
of

C
an

di
da

te
s

C
PU

-T
im

e
(s

.)

#
of

pa
tte

rn
s

#
of

C
an

di
da

te
s

C
PU

-T
im

e
(s

.)

#
of

pa
tte

rn
s

Z50-R50 18, 957 293 681 91 10 58
Z100-R100 44, 405 1,584 2271 198 29 133
Z200-R200 64, 779 3,761 4268 291 57 196
Z500-R500 172, 535 36,798 16811 526 285 382
Z1000-R1000 190, 272 − − 1, 221 1,263 918
Z5000-R5000 24,203 − − 6, 068 45,700 4,118

B. Subgroups for Textual Analysis
Problem. The goal of this application is to provide to the
linguist experts some prominent and relevant patterns which
can be characteristic of a specific type of text so that these
experts can carry out a stylistic analysis based on those patterns
(see [28] for details).
Settings. For corpus setting, we use two corpora in order
to discover some specific and emerging patterns of a type of
texts compared to the second one. The first one is the one to
be analyzed. It is compound of the fictions, ”The Rougon-
Macquart” a set of novels from Emile Zola (we call this
corpus ”ZOLA”). It contains 198913 sentences which are the
sequences of the first data class.The second corpus is a set of
fictions from several authors of the 1800-1900 era (we call this
corpus ”ROMANS”). ROMANS contains 189646 sentences
using as sequences of the second data class.

We carry out a POS tagging of the sentences thanks to the
TreeTagger tool [27]. From a linguistic point of view, because
we want to focus on syntactical patterns, we replace each non-
grammatical word (verb, noun and adjective) by its respective
category (V for verb, NC for common name, NP for proper
name and ADJ for adjective), and for each other category we
keep the lemma of the word.
Experimental protocol. We extracted from the two classes
ZOLA and ROMANS several subsets with different sizes
ranging from 50 to 5, 000 sentences. Zn (resp. Rn) will
denote the subset from ZOLA (resp. ROMANS) with a size
n. The length was fixed to 20 and the minimum one to 3 to
eliminate uninteresting patterns. To study the influence of the
gap constraint, we considered two cases: with and without gap.
Table III reports, for each dataset: (i) the number of candidates,
(ii) the required CPU-times to complete the extraction and (iii)
the number of relevant subgroup patterns extracted. Reported
CPU-times include the two steps6. When the gap constraint is
disabled, our approach succeeds to extract all relevant patterns
until n = 500. Table III also shows that the gap constraint has
a great influence on the number of the extracted patterns. For
instance, with gap(0,0), our approach performs very well and
enables to extract all relevant patterns until n = 5, 000.

We have also compared our Dynamic CSP approach with
the base-line method. Results are given in Figure 4. Our

6The time of the post-processing step remains negligible compared to the
first step.

8

Fig. 4: Comparing the two approaches according to the number
of sequences.

approach clearly dominates the base-line method in terms
of CPU-times. Moreover, the number of candidates generated
by our approach remains small compared to the number of
candidate patterns computed by the base-line method. This
confirms the interest of adding constraint dynamically during
the solving process, thus allowing to reduce drastically the
search space as well as the CPU-times.

If we consider the application from a linguistic point of
view, several extracted patterns are relevant because they are
characteristic of a type of text. For example, the pattern de le
NC de le NC7 is frequent in Zola’s fiction, not in other authors
of the same period, thus interesting for stylistics study.

VIII. CONCLUSION

We have proposed a unified framework for modelling and
mining sequence patterns in a sequence database under a large
set of constraints. We addressed both constraints dealing with
local patterns (e.g. frequency, size, gap, regular expressions)
and constraints defining more complex patterns such as rele-
vant subgroups and top-k patterns. Our approach enables to
combine simultaneously different types of constraints. To the
best of our knowledge, it is the first CP-based model for
discovering sequence patterns under various constraints. Ex-
periments performed on two case studies, biomedical informa-
tion extraction and stylistic analysis in linguistics, showed the
interest of our approach. We intend to extend our framework to
handle other mining tasks such as skypatterns. We also intend
to compare our approach with the state-of-the-art methodes.
Acknowledgments. This work is partly supported by the ANR
(French Research National Agency) funded projects FiCoLoFo
ANR-10-BLA-0214 and Hybride ANR-11-BS002-002.

REFERENCES

[1] Agrawal, R., Srikant, R.: Mining sequential patterns. In Yu, P.S., Chen,
A.L.P., eds.: ICDE, IEEE Computer Society (1995) 3–14

[2] Dong, G., Pei, J.: Sequence Data Mining. Volume 33 of Advances in
Database Systems. Kluwer (2007)

[3] Zaki, M.J.: Sequence mining in categorical domains: Incorporating
constraints. In: CIKM, ACM (2000) 422–429

7This pattern is extracted from sentences such as ” venu des profondeurs
de la nuit (come from the depth of the night) ”, ” prise du vertige de la faim
(feel the hunger dizziness) ”

[4] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Prefixspan: Mining sequential patterns by prefix-projected growth.
In: ICDE, IEEE Computer Society (2001) 215–224

[5] Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns
in large databases. In Barbará, D., Kamath, C., eds.: SDM, SIAM (2003)

[6] Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences.
In: ICDE. (2004) 79–90

[7] Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming
for mining n-ary patterns. In: CP. (2010) 552–567

[8] Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset
mining. In Li, Y., Liu, B., Sarawagi, S., eds.: KDD’08, ACM (2008)

[9] Jabbour, S., Sais, L., Salhi, Y.: Boolean satisfiability for sequence
mining. In: CIKM. (2013) 649–658

[10] Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.F.: Bases of motifs
for generating repeated patterns with wild cards. IEEE/ACM Trans.
Comput. Biology Bioinform. 2(1) (2005) 40–50

[11] Garofalakis, M.N., Rastogi, R., Shim, K.: Mining sequential patterns
with regular expression constraints. IEEE Trans. Knowl. Data Eng.
14(3) (2002) 530–552

[12] Raedt, L.D., Zimmermann, A.: Constraint-based pattern set mining.
In: Proceedings of the Seventh SIAM International Conference on Data
Mining. (2007)

[13] Crémilleux, B., Soulet, A.: Discovering knowledge from local patterns
with global constraints. In: ICCSA (2). (2008) 1242–1257

[14] Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining. Journal of Machine Learning Research 10 (2009)

[15] Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic
environments: A survey. Constraints 10(3) (2005) 253–281

[16] Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP.
Journal of Mathematical and Computer Modelling 20(12) (1994) 97–
123

[17] Pesant, G.: A regular language membership constraint for finite
sequences of variables. In Wallace, M., ed.: CP’04. Volume 2239 of
LNCS., Springer (2004) 482–495

[18] Tzvetkov, P., Yan, X., Han, J.: Tsp: Mining top-k closed sequential
patterns. In: ICDM. (2003) 347–354

[19] Ji, X., Bailey, J., Dong, G.: Mining minimal distinguishing subsequence
patterns with gap constraints. Knowl. Inf. Syst. 11(3) (2007) 259–286

[20] Albert-Lorincz, H., Boulicaut, J.F.: Mining frequent sequential patterns
under regular expressions: A highly adaptive strategy for pushing
contraints. In: Third SIAM Intern.Conf. on Data Mining, SIAM (2003)

[21] Guns, T., Nijssen, S., Raedt, L.D.: k-pattern set mining under con-
straints. IEEE Trans. Knowl. Data Eng. 25(2) (2013) 402–418

[22] Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance program-
ming for itemset mining. In: ICDM. (2013)

[23] Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.:
Mining (soft-) skypatterns using dynamic CSP. In: CPAIOR. (2014)

[24] Coquery, E., Jabbour, S., Saı̈s, L., Salhi, Y.: A sat-based approach for
discovering frequent, closed and maximal patterns in a sequence. In:
ECAI. (2012) 258–263

[25] Métivier, J.P., Loudni, S., Charnois, T.: A constraint programming
approach for mining sequential patterns in a sequence database. In:
ECML/PKDD Workshop on Languages for Data Mining and Machine
Learning. (2013)

[26] Béchet, N., Cellier, P., Charnois, T., Crémilleux, B.: Sequential pattern
mining to discover relations between genes and rare diseases. In:
CBMS. (2012)

[27] Schmid, H.: Probabilistic part-of-speech tagging using decision trees.
In: Intern. Conf. on New Methods in Language Processing. (1994)

[28] Quiniou, S., Cellier, P., Charnois, T., Legallois, D.: What About
Sequential Data Mining Techniques to Identify Linguistic Patterns for
Stylistics? In: CiCLing. (2012)

	Introduction
	Preliminaries
	Mining Sequence Patterns with Constraints
	Constraints on local patterns
	Constraints on sets of local patterns

	Constraint Programming
	Our CP Model for Sequence Patterns
	Sequence pattern encoding
	Reformulating constraints on local patterns
	Dynamic CSP for Mining richer Sequence Patterns

	Related Work
	Experimentations
	Mining Sequence Patterns from Biomedical Texts
	Subgroups for Textual Analysis

	Conclusion
	References

