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Abstract The paper aim is to show theoretically the feasibility and efficiency of a

passive exoskeleton for human walking and carrying a load. Human is modeled using a

planar bipedal anthropomorphic mechanism. This mechanism consists of a trunk and

two identical legs; each leg consists of a thigh, shin, and foot (massless). The exoskele-

ton is considered also as an anthropomorphic mechanism. The shape and the degrees

of freedom of the exoskeleton are identical to the biped (to human) - the topology of

the exoskeleton is the same as of the biped (human). Each of models of human and of

exoskeleton has seven links and six joints. The hip-joint connects the trunk and two

thighs of the two legs. If the biped is equipped with an exoskeleton, then the links

of this exoskeleton are attached to the corresponding links of the biped and the cor-

responding hip-, knee-, and ankle-joints coincide. We compare the walking gaits of a

biped alone (without exoskeleton) and of a biped equipped with exoskeleton; for both

cases the same load is transported. The problem is studied in the framework of ballistic

walking model. During the ballistic walking of the biped with exoskeleton the knee of

the support leg is locked, but the knee of the swing leg is unlocked. The locking and

unlocking can be realized in the knees of the exoskeleton by any mechanical brake

devices without energy consumption. There are not any actuators in the exoskeleton.

Therefore, we call it passive exoskeleton. The walking of the biped consists of alter-

nating single- and double-support phases. In our study, the double-support phase is

assumed as instantaneous. At the instant of this phase, the knee of the previous swing

leg is locked and the knee of the previous support leg is unlocked. Numerical results

show that during the load transport the human with the exoskeleton spends less energy

than human alone. For transportation of a load with mass 40 kg, the economy of the

energy is approximately 28%, if the length of the step and its duration are equal to
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0.5 m and 0.5 s respectively.

Keywords: Human, Bipedal model, Massless feet, Passive Exoskeleton, Ballistic walk-

ing, Single-support phase, Instantaneous double-support, Impulsive torque, Optimiza-

tion, Energy consumption.

1 Introduction

Exoskeleton robots are integrated mechanical devices (mechanisms), that can be wear-

able and attached to the human body. Among them there are external structures that

can support a human’s body. Research in powered human exoskeleton devices began in

the late 1960s for military purposes, [1]. There are currently two families of exoskeleton.

Those that are walking assistances and those dedicated to increasing the user’s carrying

capacity. Among wearable exoskeletons for the walking assistance, that are currently

commercially available in the market we can list several examples. HAL (Hybrid Assis-

tive Limb) defines a set of wearable exoskeletons, that are designed for rehabilitation,

rescue support and entertainment, [2]. It exists in several versions such as full body,

lower body and one leg versions, [3]. The actuation mechanism of HAL is based on sur-

face electromyography signals that provide the system the user’s intended movements.

Argo Medical Technologies Inc. designs a wearable motorized medical suit ReWalkTM

that are dedicated for therapeutic activities. Its knee- and hip-joints are actuated in

the sagittal plane, [4]. Ekso Bionics (earlier Berkeley Bionics) a US company has un-

veiled a rehabilitation exoskeleton named as EKSO. This company received US FDA

(United States Food and Drug Administration) approval to market the exoskeleton for

hospital use in 2012 in USA, see [5]. INDEGO exoskeleton is a prototype developed

in the University of Vanderbilt at Tennessee, United States, [6]. This lower limb ex-

oskeleton is proposed in to assist persons with paraplegia. For a given assistance device

with ballistic motions and impulsive impacts it is theoretically shown in [7] that an

assistance at the level of hips only is a good compromise.

Among the second family of exoskeletons let us remark, without being exhaus-

tive, several realizations. HARDIMAN, (Human Augmentation Research and Develop-

ment Investigation, MANipulation) was an enormous powered exoskeleton (with mass

680 kg). It was hydraulically powered. It can drastically increase the strength capa-

bilities of the wearer, (approximately 25:1, actual weight to perceived weight), see [8]

and [5]. However it presented balancing problems. Vukobratovic and his associates at

the Mihailo Pupin Institute in Belgrade in 1960s and 1970s started with a passive

device for measuring the kinematics of walking, see [9]. Then this work progressed to

the development of powered pneumatic exoskeletons. The design of the exoskeletons is

currently an important area of research in performance enhancement but also in reha-

bilitation robotics, injury prevention. They can enhance strength and endurance during

locomotion of for example military, firemen or life savers with heavy load. The Uni-

versity of California, Berkeley in collaboration with Schilling Robotics, developed the

exoskeleton BLEEX (Berkeley Lower Extremity Exoskeleton), see [10], [11], and [12].

A person who is equipped with a BLEEX can carry a rucksack of mass 75 kg while

walking at 0.9 m/s and can walk at speeds of up to 1.3 m/s. The mass of an exoskele-

ton depends on the actuators. For the second generation of the Berkeley exoskeleton,

in part due to the implementation of electric actuation with a hydraulic transmission

system, it is approximately 14 kg. Body Extender is a fully actuated body extender
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to amplify the force of a human operator. It has been designed, realized and tested at

Percro (Laboratory of Perceptual Robotics), see [13] and [14]. This exoskeleton allows

to lift a load that is equal to 100 kg. NAEIES (Naval Aeronautical Engineering Insti-

tute Exoskeleton Suit) was developed to walk in different terrains with a heavy load.

It is foreseen to be used in mountaineering, firefighting and disaster relief situations.

For each leg there are six degrees of freedom (DOF ), two revolute joints are at the hip,

one revolute joint at the knee and three revolute joints at the ankle, see [15]. The com-

pany Raytheon Sarcos, after the robotics suit XOS 1, proposes a second-generation

robotics suite XOS 2 for the US Army, [5]. This wearable robotic suit is powered with

rotary hydraulic actuators. It uses force sensing to control the motion and provides

autonomous power supply to the user. This very powerful exoskeleton is targeted for

military purposes to allow the wearer to lift heavy object at a ratio of 17:1 (actual

weight to perceived weight).

The relation between human and exoskeleton is also a complex task. Strausser and

Kazerooni [16] proposed a Humanoid Machine Interface (HMI) for a mobile medical

exoskeleton to allow the users to stand up, walk, and sit down independently. Current

trends and major challenges in the development of assistance devices are discussed

in [14].

Then the idea to limit the number of actuators is also explored. Through simulations

van den Bogert, see [17], proved that an exoskeleton with passive elastic devices can

reduce muscle force and metabolic cost of human in walking. As a consequence a

quasi-passive exoskeleton concept has been developed at the Massachusetts Institute of

Technology Media Laboratory, see [18]. The objective is to exploit the passive dynamics

of human walking in order to create lighter and more efficient exoskeleton devices.

There are not any actuators for adding power at the joints of the MIT exoskeleton. The

quasi-passive elements of the exoskeleton, that are springs and variable dampers, have

been chosen from an analysis of the kinetics and kinematics of human walking. Another

quasi-passive exoskeleton has been designed at University of Delaware, Newark, see [19]

and [20] for the leg of a human subject. This gravity balancing exoskeleton, also does not

use any motors, but through springs and a four bars mechanism is able to partially or

fully unload the hip- and knee-joints from the gravity throughout the range-of-motion of

the leg. Dariush, see [21] proposed a strategy for a partition between natural voluntary

control by the central nervous system of human and artificial assist by the exoskeleton

controller. In [22] a passive exoskeleton with artificial tendons is proposed. However,

authors showed that the effect of the artificial tendons on the energy expenditure while

walking is much lower than expected. A realistic 2D model is defined for the creation of

a quasi-passive energy-efficient power-assisted lower-limb exoskeleton in [23]. A novel

lower limb exoskeleton is presented in [24] to combine the body weight support function

provided to the user and the high portability of crutches and walkers.

Despite all these remarkable contributions, devices are still relatively heavy wear-

able versus the weight of a human. They are efficient to balance a static payload, but

some progresses are necessary to balance the dynamic effects of the payload. It is not

yet demonstrated that an exoskeleton is more efficient to reduce the metabolic cost

of transport than the load-carriage with a standard rucksack. The location and the

number of actuators of an exoskeleton and its autonomy remain a difficult challenge.

The paper aim is to prove theoretically the feasibility and the efficiency of the

passive exoskeleton with locked knee of its support leg. The advantages of the passive

exoskeleton are autonomy, lightness, and robustness. Such exoskeleton is autonomous

and light because it does not contain any actuators and sources of energy. In the
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paper [25], we have investigated a similar passive exoskeleton, but without feet (with

pointed feet). Here we take into account the feet - massless feet. From human data the

assumption of massless feet is reasonable because its scaling factor for mass is almost

equal to 1% [26].

If we take into account the feet (instead of the pointed feet as in [25]), our model

of human walking becomes more realistic (but also much more complex). Using this

model with feet, we confirm the result of the paper [25] that during the load transport

the human with exoskeleton spends less energy than human alone.We also see in our

calculations that the energy consumption of the biped with the feet is more than of

the biped without feet (with pointed feet).

In this paper, the proposed study is based on the ballistic movements in the single-

support and impulsive torques in the instantaneous double-support. The walking in

the sagittal plane is studied. We consider the locking of the swing leg knee of the

exoskeleton (and as a consequence of the biped) at the instant when this leg touches

the bearing surface (becomes support leg) and the unlocking of the knee of the support

leg at the instant when it leaves the bearing surface (becomes swing leg). The energy

consumption of the impulses is calculated to explore the possibilities to reduce the

energy consumption of a biped (human) using an exoskeleton.

Human motions comprise alternating periods of muscle activity and relaxation. The

double-support phase is relatively short with respect to the single-support phase and

most efforts of the person during walking focused in this double-support phase. Then

it is logical to consider the problem of purely ballistic swing phases and instantaneous

double-support phases with impulsive inter-link torques. A similar statement of the

problem is proposed by Formalskii [27], [28], [29], [30], Mochon and McMahon [31],

McGeer [32], and Aoustin and Formalskii [33]. This statement of the problem is math-

ematically reduced to the boundary value problem with given boundary configurations

of the biped.

We consider a 2D model of human to focus the attention to the transport of the

payload during a walking. It is a planar anthropomorphic bipedal model with a torso,

two identical legs with feet. Similar models are studied in [34] and [35]. The main

dynamic effects involved in the motion process of human seems to be based on two

important points: the role of gravity and the limited torque available at the ankle.

Thus a simplified inverted pendulum model has been used since long time to study

walking [36], running [37] and [38], dynamic balance [39]. While a concentrated mass is

used to include the role of gravity, the tip of the pendulum corresponds to the punctual

contact with the ground or the zero moment point (ZMP ) when a flat-footed contact is

modeled. Model of human with massless feet has in the single-support phase five DOF

and it is described by essentially nonlinear differential equations of tenth order. The

mathematical model for the double-support phase is quite different. Thus, the structure

of the mathematical model changes during the alternating single- and double-support

phases. The exoskeleton has the same DOF , the same size and shape as the biped. The

torso, thighs and shins of the exoskeleton are assumed strongly strapped respectively

to the torso, thighs and shins of human. In our study, the mass of the exoskeleton is

also taken into account.

In this paper, initially we find a ballistic walking of the biped alone (without ex-

oskeleton) for the transport of a payload. The energy consumption of the biped is

calculated. After, the biped equipped with the exoskeleton is studied. We find for this

biped ballistic walking with the locked knee of the support leg. Then we show that
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the energy consumption for the transport of the same payload is less for the biped

equipped with the exoskeleton than for the biped alone.

The impulsive control torques, that are applied in the inter-link joints between

the neighboring single-support phases are described by delta-functions of Dirac. Our

approach can be considered as asymptotic because it is not possible to carry out these

purely impulsive control torques.

The rest of the paper is organized as follows. Section 2 is devoted to the math-

ematical model of the biped alone and with its walking assist device. The physical

parameters of the system are presented here. Also the influence of the massless feet is

discussed. The problem definition of the ballistic swing motion is given in Section 3.

The boundary configurations and mathematical model of the single-support motion

are described in this section. The excursion of the centre of pressure is discussed. The

boundary value problem to design ballistic swing motion is also presented here. The

instantaneous double-support phase is described through algebraic equations in Sec-

tion 3. In Section 4, the chosen effort cost functional for the control is described. In

Section 5, the results of simulation are shown. Our conclusion and perspectives are

offered in Section 6. Appendix contains explicit derivation of the formulas to evaluate

the energy consumption with the applied impulsive torques.

2 Mathematical model of biped alone or equipped with exoskeleton

Here, we present mechanical model of the biped with feet. Also physical parameters of

the biped and the exoskeleton are provided. Mathematical models of the biped alone

and with exoskeleton are developed. The influence of the massless feet is described.

2.1 Physical parameters of the biped and exoskeleton

For the bipedal model, shown in Figs. 1, we use the physical parameters from [28]. The

whole mass of the biped is 75 kg, its height is 1.75 m. The distance between the knee-

joint and the centre of mass of the shin is: ss = 0.324 m, between the hip-joint and

the centre of mass of the trunk: sT = 0.386 m (see Fig. 1 (b)). The distance between

the hip-joint and the centre of mass of the thigh is: st = 0.18 m. The head mass is

included in the trunk that its length is lT . The shape and the degrees of freedom of

the exoskeleton are identical to human.

Table 1 gathers the masses, the lengths and the inertia moments for the links of

the bipedal model and the walking assist device. Inertia moments are defined with

respect to the hip-joint for the trunk and thighs and to the knee-joint for the shins.

The parameters are based on the wearable assist device Honda [40].

2.2 Mathematical model of biped with feet

Vector x of the generalized coordinates for the biped with massless feet is such as

x = [q1, q2, q3, q4, q5, x, y]
⊤. (1)

Here angles q1, q2, q3, q4 define the absolute orientation of the shin and thigh for both

legs, see Fig. 1 (a). The absolute orientation of the trunk is defined through angular
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mp

q1

q2

q3
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Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

a)

sT

sP

st
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b)

Fig. 1 a) The kinematic model, generalized coordinates, and inter-link torques of human
(alone or equipped by exoskeleton); notation mp means mass of the payload. b) Positions of
the centres of mass of the links; sP is the distance between the hip-joint and the payload. In
our calculations we use the payload with mass mp = 40 kg and distance sP = 0.1 m.

Mass (kg) Length (m) Inertia moment centre of
(kg.m2) mass (m)

Human shin ms = 4.6 ls = 0.55 Is = 0.0521 ss = 0.324

Human thigh mt = 8.6 lt = 0.45 It = 0.75 st = 0.18

Human trunk mT = 48.6 lp = 0.75 IT = 11.3 sT = 0.386

Exoskeleton shin m1 = 1.0 l1 = 0.55 I1 = 0.0260 s1 = 0.27

Exoskeleton thigh m2 = 2.0 l2 = 0.45 I2 = 0.0354 s2 = 0.225

Exoskeleton trunk m3 = 8.0 l3 = 0.75 I3 = 0.3817 s3 = 0.375

Table 1 Physical parameters of the biped and of the exoskeleton.

variable q5. Cartesian hip-joint coordinates are indicated as x and y. Superscript ⊤

means transposition.

The mathematical model of the biped alone or with its walking assist device is:

A(x)ẍ+ h(x, ẋ) = DΓ+ J
⊤
r1
r1 + J

⊤
r2
r2, (2)
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Here A(x) is 7× 7 symmetric positive definite inertia matrix, h(x, ẋ) is 7 × 1 vector,

which groups the centrifugal, Coriolis, and gravity forces. Γ is 6× 1 vector of the joint

torques applied by human or by the brake devices of the exoskeleton. We consider

six torques applied in the hip-, knee- and ankle-joints. Vectors ri, with i = 1, 2, are

the wrench ground reactions applied to the massless feet (and consequently to the

ankle-joints). Vector ri = (rix, riy)
⊤ is composed of the horizontal rix and vertical riy

components of the ground reaction.

The following constraint equations are correct when the front or/and rear leg is/are

on the bearing surface.

Jri ẍ+ J̇ri ẋ = 0 for i = 1 or/and 2. (3)

We apply the principle of virtual work to calculate matrix D in equation (2), see

[41]. The joint variables θi for i = (1, · · · , 6) as functions of the generalized coordinates

are as follows:

θ1 = q2 − q1, θ2 = q5 − q2, θ3 = q5 − q3,

θ4 = q3 − q4, θ5 = q1, θ6 = q4.

(4)

Variables θi (i = 1, 2, 3, 4) are calculated up to value π.

The virtual work δWi of each torque Γi, applied to the corresponding joint with

virtual variable δθi, (i = 1, · · · , 6) is described by equation:

δWi = Γiδθi = ΓiD
⊤
i δx (5)

Then matrix D of the torques is: D = [D1,D2,D3,D4,D5,D6] with the following

columns,

Di =
∂

∂Γi

(

∂δW

∂δx

)

. (6)

If the torques Γi, (i =, 1, · · · , 6) from human or exoskeleton are applied in these

six joints, matrix D is as follows:

D =





















−1 0 0 0 1 0

1 −1 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 0 1

0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















(7)

The principle of virtual work can be also used to obtain matrices Jr1 and Jr2 .

2.3 Influence of the massless feet

The orientation of the massless foot of the transferred leg (in the single-support) can

be instantaneously changed and this foot does not influence the dynamics of the biped

(alone or with exoskeleton) in the single-support.

During the single-support motion, the flat massless foot of the support leg i is

in the equilibrium on the ground. In Fig. 2, applied to the foot the ground reaction
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with horizontal rix and vertical riy components is shown; lx and ly are respectively

horizontal and vertical components of the distance between the ankle-joint and the

point of ground reaction application - centre of pressure COP . The moment around the

axis passing through this point orthogonally to the sagittal plane is null. Furthermore,

this point remains inside the bearing surface, with the foot flat on the floor, and there

is no tipping of the support foot [42]. We do not take into account the weight of the

foot because according to our assumption the feet are massless. The momentM around

the ankle-joint of the ground reaction force applied to the foot is the following:

M = riylx + rixly. (8)

Γ

riy

rix

A

A′

P

ly

lx

Fig. 2 Horizontal rix and vertical riy components of the ground reaction; horizontal lx and
vertical ly components of the distance between the ankle-joint and COP ; moment Γ applied
by the human to the shin in the ankle-joint A of the support leg.

The conditions of the equilibrium of the flat massless foot of the support leg are

conditions of its static balance. According to these conditions, the force −ri with

horizontal −rix and vertical −riy components and also moment

−M = −riylx − rixly (9)

have to be applied (in the clockwise direction) in the ankle-joint to the massless support

foot. Consequently the force ri is applied to the shin of the support leg in the ankle-joint

A. Also the torque:

Γ = riylx + rixly (10)

has to be applied (in the counterclockwise direction) by human in the ankle-joint A to

the shin of the support leg (see Fig. 2).

In paper [25], we used the same (as for the biped with massless feet) vector (1) of

the generalized coordinates to describe the biped without feet (with pointed feet). The

mathematical model is also the same (see matrix equation (2)). But the size of vector
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Γ are 4× 1, because with pointed feet the torques in the ankle-joints are Γ5 = Γ6 = 0.

And in double-support for a biped with pointed feet it is possible to apply torques only

in the hip- and knee-joints of both legs.

3 Ballistic swing motion in single-support phase: problem definition

The biped walking consists of the alternating phases of single- and double- support.

In the single-support motion, one of the legs is support leg; it is placed on the bearing

surface - on the ground. But the other leg is the swing one. The single-support motion

of the biped is modeled in this paper by a ballistic (passive) one. The problem of design

of the ballistic motion is reduced mathematically to the boundary-value problem for

the system of nonlinear differential equations with given initial, final configurations

and the duration of the step. In this section, we describe way to design ballistic swing

motion. The ways to design ballistic motion are similar for the biped alone and for the

biped equipped by the exoskeleton.

3.1 Boundary configurations, mathematical model

It is assumed that in the single-support phase, there are no sliding motion and no

take-off of the support leg (leg 1) of the biped alone and equipped by exoskeleton.

Furthermore, with a torque Γ1, the exoskeleton carries out the locking of the knee of

this support leg by any mechanical brake (without any motor).

Let x(0) be the initial configuration of the biped at time t = 0. The final con-

figuration of the biped in the single-support phase at the given time t = T is noted

x(T ). In Fig. 3, both boundary configurations x(0) and x(T ) are shown as side view.

The left pose in Fig. 3 is the initial configuration x(0), the right pose is the terminal

configuration x(T ). Our biped is walking from left to right. The final configuration is

similar to the initial configuration with the legs swapped. Both legs are straightened in

these boundary configurations, the torso is slightly inclined forward (q5(0) = −3◦). We

assume, the front and hind legs in the initial configuration are respectively the support

and swing legs. The support leg is shown by solid line, the swing leg - by dashed line.

In real human walking, the double-support motion is distributed in time, and con-

sequently the configuration of the human at the beginning of the double-support (at

the end of previous single-support motion) differs from the configuration at the end

of this double-support (at the beginning of the next single-support motion). Conse-

quently for the human walking the configurations at the beginning and at the end of

the single-support motion are different. We consider model with instantaneous double-

support phase, and in our model, the configuration of the biped at the end of the

double-support has to be the same as at the start of this phase. We have chosen the

boundary configurations with straightened legs. In our opinion, the boundary config-

urations with straightened legs are not far from the human-like configurations at the

beginning and at the end of single-support motion.

It appears, that the human with passive exoskeleton (without any drives) tries to

walk with its usual gate. Therefore, we use in our investigations the same boundary

configurations for the biped alone and equipped with the exoskeleton.

Let L be the length of the step corresponding to a single-support.
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Γ1

Γ5

Fig. 3 Initial x(0) and final x(T ) configurations of the biped (side view).

We consider a ballistic motion during the single-support phase on the support leg 1.

The torques provided by the biped (human) are null except at the ankle of the support

leg, then Γ5 6= 0 and Γi = 0, with i = 2, 3, 4, and 6. As a consequence, the matrix

equation (2) for the ballistic motion becomes:

A(x)ẍ+ h(x, ẋ) = D









Γ1
03×1

Γ5
0









+ J
⊤
r1
r1, (11)

with the constraint equation (3) for the support leg foot fixed on the ground:

Jr1 ẍ+ J̇r1 ẋ = 0 (12)

When we consider the motion of the biped alone (without exoskeleton), then also

equation

Γ1 ≡ 0 (13)

has to be added because the support leg of the biped alone is not locked. But when

the motion of the biped equipped by exoskeleton is considered, then the constraint

equation for the knee of the support leg locked (in the swing phase) has to be added

(instead of equation (13)):

θ1 = q2 − q1 ≡ 0 (14)

and torque Γ1 becomes unknown variable. Notation 03×1 in equation (11) means the

column with three zero-elements. Each of systems (11), (12), (13) and (11), (12), (14)

contains 10 scalar equations but with 11 unknown variables: q1, q2, q3, q4, q5, x, y, Γ1,

Γ5, r1x, and r1y. In both cases, we consider a supplementary equation (10) for torque

Γ5 in the ankle-joint of the massless support foot.
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3.2 Excursion of centre of pressure (COP)

Equation (10) can be used if the progression lx of the COP along the sole during the

single-support phase is prescribed as function of time lx = lx(t/T ) (T is the last instant

of the single-support motion). Previous researches have modeled lx as linear function

of time, [28]; [43]. However, experiments [44]; [45] reveal that this function is a more

complex one, involving at least polynomial expressions of higher order. Furthermore,

Lugade and Kaufman [45] demonstrated that the COP excursion was from the heel,

but not exactly to the toe. Therefore, the chosen progression of the COP is defined

from the heel defined by abscissa lx(0) = −lf to a point that is defined by abscissa

lx(1) = Lf such as (see Figure 4 for the foot on support):

lx = −lf + ψ(t/T )
(

Lf + lf
)

, (15)

with ψ(0) = 0, ψ(1) = 1.

x

y

lf
Lf

ly

A

A′

Fig. 4 Size characteristics of the foot: lf is the distance between the heel and the projection
on the sole of the ankle-joint A, Lf is the distance between this projection and COP at the
last instant of the single-support motion t = T .

Value Lf is less than the distance between the projection on the sole of the ankle-

joint and the toe (see Fig. 4). We use the numerical data lf = 0.04 m, Lf = 0.07 m

and ly = 0.07 m for all our numerical tests. With these values there is no take-off in

the single-support nor at the impact of the support legs. According to observations of

Lugade and Kaufman [45] function ψ(t/T ) is chosen as a polynomial function of fourth

order as follows:

ψ(t/T ) = a0 + a1
t

T
+ a2

(

t

T

)2

+ a3

(

t

T

)3

+ a4

(

t

T

)4

. (16)

The five coefficients ai, i = 0, · · · , 4 are calculated such that ψ(0) = 0, ψ(1) = 1,

ψ̇(0) = ψ̇(1) = 0, and ψ(1/2) = 1/2. Figure 5 represents this polynomial function (16).

Function ψ(t/T ), along with the formula (15), defines the distance lx as function of

time lx = lx(t/T ). Using functions (15), (16) we can define the torque Γ5 at the ankle

of the support leg 1 as follows:

Γ5 = lxr1y + lyr1x (17)
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Fig. 5 Profil of function ψ(t/T ).

3.3 Boundary value problem

The dynamic behavior of the biped is defined through equations (11) - (17). Substitut-

ing expression (17) into equation (11), we can write the following matrix equation:

A(x)ẍ+ h(x, ẋ) = D

[

Γ1
05×1

]

+
[

D5ly + J⊤
r11

D5lx + J⊤
r12

]

r1, (18)

where J⊤
r11

and J⊤
r12

are sub-matrices such that J⊤
r1

=
[

J⊤
r11

(7× 1), J⊤
r12

(7× 1)
]

.

The ballistic single-support motion of the biped alone (without exoskeleton) is

described by matrix equations (12), (13), (15) - (18). The numerical values of the pa-

rameters in matrices A(x), h(x, ẋ), and Jr1 of course are different for the mathematical

models of the biped with exoskeleton and without exoskeleton.

To design the ballistic motion of the biped alone in the single-support phase, it is

necessary to find solution x(t) of the equations (12), (13), (15) - (18) with the given

boundary conditions x(0) and x(T ) and time T . To design the ballistic motion of the

biped with the exoskeleton it is necessary to find solution x(t) of matrix equations

(12), (14)−(18) with the same given boundary conditions and time T . In each case, we

have to find the initial velocity vector ẋ(0) such that solution x(t), starting from the

given initial configuration x(0) with the velocity vector ẋ(0), reaches the given final

configuration x(T ) at the given time T . Unknown velocity vector ẋ(0) for the biped

with the exoskeleton must satisfy condition θ̇1(0) = q̇2(0)− q̇1(0) = 0 (see also identity

(14)).

The given boundary conditions x(0) and x(T ) are chosen such that the positions

of the biped with its exoskeleton are similar to human configurations. The formulated

above boundary value problem can be numerically solved using a Newton method with

vector ẋ(0) unknown. The motion of the biped is admissible, if the vertical component

of the ground reaction in the support leg is positive (directed upwards), if the swing leg

moves over the ground for 0 < t < T , and if the swing leg bends the knee forward. We

check these constraints after solving the boundary value problem - a posteriori. The
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ground reaction r1 and the torque Γ1 developed by the brake device are calculated

during solving this boundary value problem with matrix equations (12)−(18).

In the single-support motion, the Cartesian coordinates x and y of the hip-joint

depend on the interlink angles of the stance leg. Therefore, in fact, in our boundary

value problem for biped alone, we search five initial unknown angular velocities in

five interlink joints to reach the five given angles in theses five interlink joints. Due

to identity (14), for the biped with exoskeleton we have to find four initial unknown

angular velocities in four interlink joints to reach the four given angles in theses four

interlink joints. So, the number of unknown variables is equal to the number of the

equations. The existence of the solution of the boundary value problem is analytically

proved ( [27] - [30]) for linearized mathematical models of the biped. But it is possible

also to find numerically solutions of the nonlinear boundary value problem for many

realistic parameters of biped walking − time, length of the step etc ( [27] - [30]). In

this paper, we also numerically find the solution of nonlinear boundary value problem

for biped alone and equipped with exoskeleton. For the biped alone this solution is

such that the transferred leg moves above the support and bends the knee forward,

the stance leg bends slightly in the knee and remains almost straight all the time, the

torso makes just one oscillation close to the vertical axis with small amplitude, and the

reaction force is directed upwards. We do not prescribe all these features beforehand

in the statement of the problem, but observe them after solving the boundary value

problem. So, the ballistic locomotion of our biped looks human-like gait. To get this

solution of the boundary value problem numerically we use the fsolve function based

on the Newton-Raphson Algorithm of Matlab R©.

After solving the boundary value problem, the vector of the initial velocities ẋ(0)

becomes known. We denote it by ẋa. If the initial conditions x(0), ẋa are known, then

by integration of the system (12), (13), (15) - (18) (for biped alone) or of the system

(12), (14)−(18) (for biped with exoskeleton) the vector of the terminal velocities ẋ(T )

can also be found. We denote it by ẋb.

During described above single-support motion of the biped alone, the torque in

each joint is null except at the ankle of the support leg. In this ankle-joint, torque

(17) is applied to the shin. But, we call this motion as ballistic because there are no

torques in the other five joints (remember that the feet are massless). During single-

support motion of the biped with the exoskeleton there is also a torque to lock the

knee of the support leg. But, we also call this motion as ballistic because this knee is

locked by mechanical brake and there are no torques in the knee- and ankle-joint of

the transferred leg and in the hip-joints.

3.4 Instantaneous double-support phase with impulses

In the human gait the time of the double-support is less than 20% of the whole step

period. Some researchers (see for example Mochon and McMahon [31]) suppose that

during human walking, most of the efforts take place in the double-support phase.

Taking into account just these considerations, we study locomotion with ballistic swing

phases and instantaneous double-support phases. It means that at the instant of the

double-support, the ground reaction forces and the torques applied in the joints of

our biped with and without exoskeleton should be impulsive efforts and described by

Dirac delta-functions. This approach can be considered as an asymptotic one because

the impulsive efforts, describing by delta-functions, cannot be realized. At the instant
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of double-support phase the configuration of the biped does not change. It means

particularly that there is no sliding of the legs at this phase. In the case where the

ground reaction force applied to the leg has finite values, there is no sliding of this leg,

only if the ground reaction vector is situated in the cone of friction [46]. Therefore, we

have adopted the assumption that the impulsive ground reaction force should be in the

cone of friction. The critical value of the friction coefficient (angle of friction cone) can

be found after calculation of the magnitudes of the impulsive horizontal and vertical

components of the ground reaction.

During the biped’s gait, an impact occurs at the end of the single-support phase,

when the swing leg touches the ground. If we assume that there are not any active

torques applied in the joints and after impact this leg remains on the support, then

we have to conclude that the inelastic passive impact occurs. At the instant of such an

impact, the biped looses energy. Therefore, the velocity vector after the impact will not

be the desired one, if the bearing surface is horizontal. Then for the next ballistic step

the desired initial velocity vector will not be reached. As a consequence, a complete

walking cyclic gait of the biped alone or with its assist device cannot be realized on a

horizontal surface without active torques.

At the instant of impact, denoted by T , the double-support phase is assumed

instantaneous. However, theoretically, ”around” the instantaneous double-support it

is possible to define impulsive torques in order to ensure the desired velocity jump;

see Formalskii [28], [29], [30], Hurmuzlu, and Chang [47]. These torques have to be

developed by the biped.

The relations to find control impulsive torques in the double-support phase are

obtained from the general mathematical model (2), (3).

Similarly to [29, 30, 48] or [33] let us consider the current ballistic motion on the

support leg 1 and the following ballistic motion on the support leg 2. The swing leg

2 touches the ground just after the end of the ballistic single-support motion on the

support leg 1, and an impact occurs. The initial and final velocity vectors ẋa and ẋb of

the ballistic swing motion are known from the solution of the boundary value problem

for the biped alone and with the exoskeleton. Let us consider the instantaneous double-

support phase with impulsive forces between two neighboring single-support phases (see

Fig. 6). Recall that the role of both legs exchanges after the end of the single-support

motion on the support leg 1. In the next single-support motion, support leg 1 becomes

the transferring leg and the transferring leg 2 becomes the support leg.

Passive impact with the ground

Fig. 6 Decomposition of the instantaneous double-support phase; see [48], [30], or [33].
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At this instantaneous double-support phase simultaneously the leg 2 lands on the

ground and the leg 1 takes off. We divide this instantaneous double-support phase into

three instantaneous sub-phases and investigate them. Just before the passive impact

with the ground (at the first sub-phase), let us apply the impulsive torques in the joints

Γ(t) = I
−δ(t− T−) (19)

with the vector of the magnitudes I−( I−
1
, I−

2
, I−

3
, I−

4
, I−

5
, 0). In formula (19), δ(t−T−)

is Dirac delta-function which is not zero at the instant t = T− of the first sub-phase.

Just after the passive impact with the ground (at the time-instant t = T+ of the third

sub-phase), let us apply the following impulsive torques in the joints

Γ(t) = I
+δ(t− T+) (20)

with the vector of the magnitudes I+(I+
1
, I+

2
, I+

3
, I+

4
, 0, I+

6
).

Now we will consider each sub-phase in more details.

– The first sub-phase is the time-instant just after the end of the ballistic single-

support motion on the support massless foot 1 and just before contact with the

ground of the swing massless foot 2 (before passive impact). In the first sub-phase

(we denote time-instant of this sub-phase as T−), impulsive torques (19) are ap-

plied. All torques are developed by the human, if there is no exoskeleton. If the

human is equipped with the exoskeleton, the knee of the leg 1 (hind leg) is kept

locked through an impulsive torque Γ1(t) = I−
1
δ(t − T−) developed by the brake

device mounted in this knee of the exoskeleton. At the same instant T−, the im-

pulsive ground reaction r1(t) = I−r1δ(t− T−) is applied in the stance leg tip. Here

I−r1(I
−
r1x
, I−r1y ) is the vector of the magnitudes of the impulsive ground reaction in

the stance leg 1. Under the impulsive torques, the velocity vector ẋ of the biped

changes instantaneously from the value ẋb to some value ẋ− (unknown). The cor-

responding equations for the jump of velocities can be obtained through the inte-

gration of the general equations of motion (2) for the infinitesimal time from T−

to T such as:

A[x(T )](ẋ− − ẋb) =
[

D1 D2 D3 D4 D5 D6

]

I− + J⊤
r1
I−r1 . (21)

The torques provided by the Coriolis and gravity forces have finite values. Thus,

they do not influence the velocity jump. Vector x(T ) describes in matrix equation

(21) the configuration of human at the instant of impulsive actions. This configu-

ration x(T ) does not change at the double-support phase i.e. at the instants of the

first, second, and third sub-phases. Vector ẋ− describes the velocities of the biped

after the first sub-phase.

Torque Γ5(t) = I−
5
δ(t−T−) (see expression (19)) with magnitude I−

5
is applied

in the ankle of the stance leg (hind leg) at the instant t = T−. It ensures that the

COP is located at abscissa Lf under the sole of the massless foot 1 as follows:

I−
5

= I−r1yLf + I−r1x ly. (22)

The velocity of the stance leg (hind leg) foot remains zero after the first sub-

phase. Therefore, we have to take into account the following matrix constraint

equation:

Jr1 ẋ
− = 02×1. (23)
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For the human with exoskeleton, the velocity of the inter-link angle in the knee

of the stance leg (hind leg) after first sub-phase remains zero through the impulsive

brake effort Γ1(t) = I−
1
δ(t− T−) (see expression (19)), therefore:

D
⊤
1 ẋ

− = 0. (24)

Just after first sub-phase the tip of the leg 2 (front leg) is not on the ground

still and the velocity vector of this tip has to be directed downwards to the ground.

We have to take into account this condition in our calculations.

– At the second sub-phase, human without exoskeleton does not apply any torques

in the joints. But if human is equipped with exoskeleton, then the knee of the leg 2

(front leg) is mechanically locked by the brake device and the knee of the leg 1 (hind

leg) is unlocked. We call this second sub-phase ”passive impact”, because at the

instant of this sub-phase, there are no torques applied by the human. We assume

this passive impact as absolutely inelastic. The time-instant of this passive impact

is t = T . Given these conditions, the locking torque provided by the exoskeleton can

be considered as impulsive Γ4(t) = I4δ(t− T ); the ground reaction at this instant

of an impact also can be defined by the delta-function r2(t) = Ir2δ(t − T ). Here

I4 is the magnitude of the impulsive locking torque in the knee of leg 2 (front leg)

and Ir2(Ir2x , Ir2y ) is the vector of the magnitudes of the impulsive ground reaction

in this leg 2. The corresponding equations for the velocities jump can be obtained

through the integration of the matrix equation (2) for the infinitesimal time:

A[x(T )]
(

ẋ+ − ẋ−
)

=
[

D1 D2 D3 D4 D5 D6

]





03×1

I4
02×1



+ J⊤
r2Ir2 . (25)

Here ẋ+ is the velocity vector (unknown) just after an inelastic passive impact.

The velocity of the inter-link angle in the knee of the stance leg (front leg)

after the second sub-phase remains zero through the impulsive brake effort Γ4(t) =

I4δ(t− T ), therefore

D
⊤
4 ẋ

+ = 0. (26)

The swing leg 2 (front leg) after the impact becomes a stance leg. Therefore,

its tip velocity becomes zero after the impact,

Jr2 ẋ
+ = 02×1. (27)

The velocity of the stance leg tip 1 (hind leg) before an impact is equal to

zero. After the instantaneous passive impact the ground reaction in leg 1 has to be

zero and the velocity vector of the leg 1 tip has to be directed upwards - from the

ground. We have to take into account this condition in our calculations.

– Now let us consider the third sub-phase. The swing leg 1 (hind leg) takes off the

ground at the second sub-phase, which is the passive impact. Then, the next ballistic

single-support motion on leg 2 (front leg) starts. However, before the next ballistic

swing motion (just after the take-off of the leg 1), in the third sub-phase at time-

instant t = T+, impulsive torques (20) are applied. If there is no exoskeleton, then

all torques are applied by human. If the human is equipped with the exoskeleton,

then the torque in the knee of the front leg (leg 2) is developed by the brake device

of the exoskeleton and the locking of this knee is kept through the impulsive torque

Γ4(t) = I+
4
δ(t−T+) (see expression (20)). The goal of the impulsive torques in the
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third sub-phase is to change the velocity vector of the biped instantaneously from

the value ẋ+ (which takes place just after passive impact) to the known velocity

vector ẋa (which has to be at the start of the next single-support phase).

Integrating the differential equations (2) for the infinitesimal time from T to

T+ we come to the following matrix relation:

A[x(T )]
(

ẋa − ẋ+
)

=
[

D1 D2 D3 D4 D5 D6

]





I+
4×1

0

I+
6



+ J⊤
r2
I+r2 . (28)

Here (see expression (20)) Γi(t) = I+i δ(t − T+) (i = 1, 2, 3, and 6) are the four

impulsive torques applied by the human.

The impulsive torque Γ6(t) = I+
6
δ(t − T+), which is applied in the ankle of

the front leg at the instant t = T+, ensures that the COP is located at abscissa

−lf under the sole of the massless foot 2 (front leg).

I+
6

= −I+r2y lf + I+r2x ly. (29)

Equations (21) − (29) are composed of 29 scalar equations to find 31 unknown

variables:

ẋ−, I−
1
, I−

2
, I−

3
, I−

4
, I−

6
, I−r1x , I−r1x , I−r1y , ẋ+,

I4, Ir2x , Ir2y , I+
1
, I+

2
, I+

3
, I+

4
, I+r2x , I+r2y .

(30)

(Remark: With (22) and (29) the impulsive torques I−
5

and I+
6

respectively depend on

(I−r1x , I−r1y) and (I+r2x , I+r2y )). Then the problem of impulsive control has an infinite

number of solutions. But if the number of equations is less than the number of unknown

variables, it is possible to extract a unique solution minimizing some cost functional.

The components of the above-mentioned vectors are the subjects of the minimization.

Among this set of components, 31− 29 = 2 can be defined as optimization variable to

minimize a cost functional.

Equations (21) − (29), that are used to calculate the impulsive torques at the in-

stantaneous double-support phase for the biped with exoskeleton, are valid also for the

biped (human) alone, except equations (24) and (26). Indeed human without exoskele-

ton does not have any brake devices. We assume that the human without exoskeleton

applies himself the impulsive torques in the ankle-, knee-, and hip-joints. Then simi-

larly to the case of the biped with exoskeleton matrix equations (21) − (23), (25), (27)

− (29) contains also 27 scalar equations to find 30 unknown variables. These unknown

variables are the same as in (30) except variable I4.

4 Criteria to evaluate energy consumption

The choice of a criterion is difficult and subjective. Furthermore it is not sure if some

criterion is optimized during a human walking. Nevertheless for the numerical tests,

from a physical point of view we consider the following criterion, proposed in [49]. To
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evaluate the energy costs Wss (index ”ss” means ”single-support”) of the biped with

massless feet we use the following integral:

Wss =

T
∫

0

∣

∣Γ5(t)θ̇5(t)
∣

∣dt (31)

Product Γ5(t)θ̇5(t) in expression (31) is the power of torque Γ5(t) (see (17)). This

criterion is based on the mechanical energy provided by human. But we assume that

the actuated joints are not regenerative - energy cannot be restored. Therefore, absolute

value
∣

∣Γ5(t)θ̇5(t)
∣

∣ is used as integrand in expression (31).

Now let us consider the biped alone in the double-support phase. To evaluate the

energy consumptionWds (index ”ds” means ”double-support”) of the impulsive torques

that are applied at the first and third sub-phases the criterion can be expressed as:

Wds =
∑

i=1−5

T
∫

T−

∣

∣Γi(t)θ̇i(t)
∣

∣dt+
∑

i=1−4,6

T+
∫

T

∣

∣Γi(t)θ̇i(t)
∣

∣dt. (32)

In expression (32) six torques developed by the human in ankle-, knee-, and hip-

joints are taken into account. Expression (32) can be written in the following form:

Wds =
∑

i=1−5

W−

i +
∑

i=1−4,6

W+
i . (33)

Values W−

i (i = 1, 2, 3, 4, 5) are calculated as follows, [28] (for more details see also

Appendix 6):

W−

i =

∣

∣

∣

∣

∣

I−i
θ̇bi + θ̇−i

2

∣

∣

∣

∣

∣

if θ̇bi θ̇
−

i ≥ 0 i = 1, 2, 3, 4, 5 (34)

W−

i =

∣

∣

∣

∣

∣

I−i
2

(θ̇bi )
2 + (θ̇−i )2

θ̇−i − θ̇bi

∣

∣

∣

∣

∣

if θ̇bi θ̇
−

i < 0 i = 1, 2, 3, 4, 5. (35)

Values θ̇bi (i = 1, 2, 3, 4, 5) are the inter-link angular velocities just before the first

sub-phase. Values θ̇−i (i = 1, 2, 3, 4, 5) are the inter-link angular velocities just after

the first sub-phase (before the second sub-phase). These velocities are calculated using

expressions (36):

θ̇b1 = q̇b2 − q̇b1, θ̇
b
2 = q̇b5 − q̇b2, θ̇

b
3 = q̇b5 − q̇b3, θ̇

b
4 = q̇b3 − q̇b4, θ̇

b
5 = q̇b1,

θ̇−
1

= q̇−
2

− q̇−
1
, θ̇−

2
= q̇−

5
− q̇−

2
, θ̇−

3
= q̇−

5
− q̇−

3
, θ̇−

4
= q̇−

3
− q̇−

4
, θ̇−

5
= q̇−

1
.

(36)

Values W+
i (i = 1, 2, 3, 4, and 6) are calculated using analogous formulas:

W+
i =

∣

∣

∣

∣

∣

I+i
θ̇+i + θ̇ai

2

∣

∣

∣

∣

∣

if θ̇+i θ̇
a
i ≥ 0 i = 1, 2, 3, 4, and 6, (37)

W+
i =

∣

∣

∣

∣

∣

I+i
2

(θ̇+i )2 + (θ̇ai )
2

θ̇ai − θ̇+i

∣

∣

∣

∣

∣

if θ̇+i θ̇
a
i < 0 i = 1, 2, 3, 4, and 6. (38)
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Values θ̇+i (i = 1, 2, 3, 4, and 6) are the inter-link angular velocities just after the

second sub-phase. Values θ̇ai (i = 1, 2, 3, 4, and 6) are inter-link angular velocities

just after the third sub-phase (at the start of the next swing phase). These velocities

are calculated using expressions (39):

θ̇+
1

= q̇+
2

− q̇+
1
, θ̇+

2
= q̇+

5
− q̇+

2
, θ̇+

3
= q̇+

5
− q̇+

3
, θ̇+

4
= q̇+

3
− q̇+

4
, θ̇+

6
= q̇+

4
,

θ̇a1 = q̇a2 − q̇a1 , θ̇
a
2 = q̇a5 − q̇a2 , θ̇

a
3 = q̇−

5
− q̇a3 , θ̇

a
4 = q̇+

3
− q̇a4 , θ̇

a
6 = q̇a4 .

(39)

Now let us consider the biped with exoskeleton in the double-support phase. In

this phase, the torque developed by the human is applied in the leg 1 (hind leg), but

the torque developed by the brake device is applied in the knee of leg 2 (front leg). To

evaluate the energy consumption Wds of the impulsive torques applied at the first and

third sub-phases instead of (32) we consider:

Wds =
∑

i=2−5

T
∫

T−

∣

∣Γi(t)θ̇i(t)
∣

∣dt+
∑

i=1−3,6

T+
∫

T

∣

∣Γi(t)θ̇i(t)
∣

∣dt. (40)

We took into account in expression (40) the torques developed by the human only.

Expression (40) can be written in the following form:

Wds =
∑

i=2−5

W−

i +
∑

i=1−3,6

W+
i . (41)

The sum

W = Wss +Wds (42)

is used to evaluate the energy consumption in both phases.

In simulation, with given time period T and length L of the step, we choose a

unique solution of the system (21) − (29) by minimizing the quantity respectively (33)

for the biped alone and (41) for the biped with the exoskeleton. We take into account

the following constraints:

I−r1y ≥ 0, V −

2y
≤ 0, Ir2y ≥ 0, V1y ≥ 0, I+r2y ≥ 0, (43)

Constraint V −

2y
≤ 0 means that the vector of the linear velocity of the swing leg (leg

2) tip just after the first sub-phase is directed to the ground (downwards). Constraint

V1y ≥ 0 means that just after the passive impact the vector of the linear velocity of

the hind leg (leg 1) tip has to be directed from the ground (upwards). For the biped

alone we have also to take into account the four following inequalities:

θ̇−1 ≥ 0, θ̇−4 ≥ 0, θ̇+1 ≥ 0, θ̇+4 ≥ 0 (44)

Therefore, our minimization problem is the problem of parametric minimization with

constraints. We used the SQP method (Sequential Quadratic Programming); see [50]

and [51] with the fmincon function or fgoalattain function of Matlab R© to solve this

problem numerically. These algorithms based on the gradient of the objective with

respect to the optimization variables allow to take into account linear and non-linear

constraints. Numerical results are quasi similar with both SQP methods.

The minimal quantity (33) or (41) corresponding to this solution is considered in

the ensuing section as the energy costs of impulsive torques in double-support phase

for the biped walking with given data L and T . After we calculate the sum (42) which

is the energy consumption in both phases.
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5 Simulation results

In Subsection 5.1, we show the stick-diagrams of the walking gait for the biped alone

and with exoskeleton. Also the graphs of the ground reaction in the single-support

motion are presented. In Subsection 5.2, we compare the energy consumption of the

biped with exoskeleton carrying a payload with the energy consumption of the biped

alone carrying the same payload.

5.1 Stick figures and ground reaction

The stick figures of the walking gaits are shown for the biped alone in Fig 7 and for

the biped with the exoskeleton in Fig 8 respectively. For both cases the step length

and step duration of the walking gait are L = 0.50 m and T = 0.45 s respectively.

t = 0 s t = 0.09 s t = 0.18 s t = 0.27 s t = 0.36 s t = 0.45 s

Fig. 7 Biped alone, walking ballistic gait as a sequence of stick figures.

t = 0 s t = 0.09 s t = 0.18 s t = 0.27 s t = 0.36 s t = 0.45 s

Fig. 8 Biped with exoskeleton, walking ballistic gait as a sequence of stick figures.

For the biped alone, we can observe a slight bending in the knee joint of the support

leg at t = 0.27 s and t = 0.36 s. It is never the case for the biped with the exoskeleton,

that is consistent with condition (14). This condition means that the knee of the support

leg is locked with the brake device and remains straight one during the single-support.

The trunk of the biped with and without exoskeleton performs the oscillation with a

”small” amplitude.
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The ground reaction components following x−axis and y−axis are shown for biped

alone and with exoskeleton in Fig. 9 (L = 0.50 m, T = 0.45 s). At any time of the

single-support motion the vertical component of the ground reaction for the biped

with exoskeleton is positive and more than this component for the biped alone. The

same thing takes place for the horizontal components: almost at any time of the single-

support motion the horizontal component for the biped with exoskeleton is more, in

absolute value, than this component for the biped alone. This is due to the exoskeleton,

that its mass is 14 kg. The difference in the shapes of the ground reaction is apparently

due to the locking of the knee of the support leg of the biped with the exoskeleton.

These observations are also validated by other combinations of parameters L and T .
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Fig. 9 Ground reactions for biped alone (dashed lines) and for biped with exoskeleton (solid
lines): a) horizontal components, b) vertical components.

We see from both stick diagrams (Figs 7 and 8) that the swing leg bends the

knee forward and moves over the ground for 0 < t < T . From Figure 9 we see that

the vertical component of the ground reaction in the support leg is positive (directed

upwards), the sign of the horizontal component changes one time as in walking gait of

human, see [52] where the anterior-posterior force has a similar behavior. Considering

these figures we can conclude that the motion obtained in the simulation is natural

and consequently admissible.

5.2 Consumption of energy

The consumption of energy is studied as a function of the step duration T and of the

step length L for the biped alone and with the exoskeleton to transport the payload

with mass mc = 40 kg. First, time T varies from 0.4 s to 0.52 s while the length L is

fixed at 0.5 m. Then L varies from 0.40 m to 0.52 m while the time T is fixed at 0.45 s.



22

0.4 0.42 0.44 0.46 0.48 0.5 0.52
14

15

16

17

18

19

20

21

22

23

24

W
s
s
(N
.m

)

T

a)

0.4 0.42 0.44 0.46 0.48 0.5 0.52
14

15

16

17

18

19

20

21

22

23

24

W
s
s
(N
.m

)

L

b)

Fig. 10 a) Wss as function of T , L = 0.5 m. b) Wss as function of L, T = 0.45 s. Dashed
lines are used for biped alone, solid lines − for biped with exoskeleton.

Figure 10 shows that the energy consumption in the single-support motion is higher

for the biped with exoskeleton than alone. It is logical from the physical point of view

because the inertia moment with respect to the ankle of the support leg of the biped

with exoskeleton is more (due to its mass 14 kg) than of the biped alone.
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Fig. 11 a) Wds as function of T , L = 0.5 m. b) Wds as function of L, T = 0.45 s. Dashed
lines for biped alone, solid lines for biped with exoskeleton.

The energy consumption of the biped at the instantaneous double-support is much

more than during the single-support motion. It is true for the biped alone and for

the biped equipped with exoskeleton, see Figs 10, 11. This result corresponds to the

opinion of some researchers that most of the efforts during human walking take place

in the double-support (see Mochon and McMahon [31]).
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Fig. 12 a) W as function of T , L = 0.5 m. b) W as function of L, T = 0.45 s. Dashed lines
for biped alone, solid lines for biped with exoskeleton.

Figures 12 show the energy value which is equal to the sum (42) of the energies pro-

vided by the biped (human) during the single-support motion and in the instantaneous

double-support phase. The biped with the exoskeleton is more efficient from the point

of view of the energy consumption than the biped alone. The same property is observed

when the duration T of the step increases (with fixed step length L) or the step length

L increases (with fixed step time T ). This means that the exoskeleton is useful in the

corresponding ranges of the step lengths and durations. The economy of the energy is

approximately 28%, if the length of the step and its duration are respectively equal to

0.5 m and 0.5 s.

6 Conclusion

Planar anthropomorphic bipedal mechanism with massless feet is considered as me-

chanical model of a human walking. An exoskeleton to assist human is also considered

as a bipedal mechanism (massive, but with massless feet) with the same shape and

degrees of freedom as mechanical model of the human alone. The links of the exoskele-

ton are strongly strapped to the corresponding links of the biped. We study passive

exoskeleton without any sources of energy and actuators; the knee of the support leg

of our exoskeleton (and as consequence of the human) is locked using mechanical brake

device, but the knee of the swing leg is unlocked. For the biped (with or without ex-

oskeleton) the progression of the COP of the support leg is prescribed as a polynomial

function of time. An actuation torque is applied in the ankle-joint of the support leg.

It is theoretically shown the efficiency of mentioned above passive exoskeleton for

human carrying a load. The human equipped with the exoskeleton spends less energy

than human alone, despite the fact that the mass of the exoskeleton is taken into ac-

count. In our study, this mass is near 11 % of mass of human with load and exoskeleton.

The study is done in the framework of the ballistic walking problem. Mathematically

this problem is reduced to the solving the boundary value problem for the motion

equations of the single-support and to design the impulsive torques for the instanta-

neous double-support. Many theoretical problems are still open, and an investigation in
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3D is necessary. However, the concept of the passive exoskeleton seems very interesting.
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Appendix: Energy consumption at the instantaneous double-support phase

If the impulsive torques described by Dirac delta-functions are applied at the inter-

link joints of the biped, then each interlink angular velocity undergoes a discontinuous

change.

For a sake of clarity and without loss of generality we consider only one actuated

joint of the biped. The joint variable is defined with θ. An impulsive torque Γ applied

at this joint is defined to be as follows:

Γ (t) = Iδ(t− T ). (45)

Expression (45) describes the Dirac delta-function; the magnitude I describes the in-

tensity of the torque Γ such that:

T+
∫

T−

Iδ(t− T )dt = I.

We want to evaluate the energy expended during the operation of the impulsive

torque (45). The chosen energy criterion is as follows:

W =

T+
∫

T−

∣

∣Iδ(t− T )(t)θ̇(t)
∣

∣dt (46)

Now instead of delta-function (45) let us consider the following distributed in time

piecewise constant function:

Γ∆(t) =











I

2∆
if t ∈ [T −∆,T +∆]

0 if t /∈ [T −∆,T +∆]

(47)

Here ∆ = const > 0; function (47) is shown in Fig. 13. If ∆→ 0, then function Γ∆(t)

”tends” to Dirac delta-function (45).

Let us assume that in each interlink joint the distributed in time torque (similar

to (47)) is applied. And let value ∆ be the same for each joint.

Γ∆(t)
I

2∆

T +∆T −∆ T t

Fig. 13 Function Γ∆(t).
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The joint velocity θ̇ undergoes discontinuity at the instant T (as in each joint),

when the impulsive torques (similar to torque (45)) are applied in the joints of our

biped. Let equality θ̇ = θ̇− be just before the applying of the impulsive torques and

equality θ̇ = θ̇+ be just after the applying of these impulsive torques.

If interval [T − ∆, T + ∆] is ”small”, then velocity θ̇(t) can be distributed in

this interval by the following way (function O(∆) is magnitude of the first order with

respect to magnitude ∆)

θ̇∆(t) = θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆) +O(∆). (48)

If ∆ → 0, then according to expression (48) O(∆) → 0 and θ̇∆(T −∆) → θ̇−, θ̇(T +

∆) → θ̇+.

Now let us consider instead of (46) the following integral using expressions (47)

and (48):

W∆ =

T+∆
∫

T−∆

∣

∣Γ∆(t)θ̇∆(t)
∣

∣dt =

∣

∣

∣

∣

I

2∆

∣

∣

∣

∣

T+∆
∫

T−∆

∣

∣

∣

∣

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆) +O(∆)

∣

∣

∣

∣

dt.

(49)

To calculate integral (49) we consider two cases. First case is as follows:

θ̇−θ̇ > 0 and θ̇− 6= 0 or θ̇+ 6= 0 (50)

It is possible to show that under condition (50)

lim
∆→0

W∆ = lim
∆→0

∣

∣

∣

∣

I

2∆

∣

∣

∣

∣

T+∆
∫

T−∆

∣

∣

∣

∣

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆) +O(∆)

∣

∣

∣

∣

dt

=

∣

∣

∣

∣

I

2∆

∣

∣

∣

∣

T+∆
∫

T−∆

∣

∣

∣

∣

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆)

∣

∣

∣

∣

dt =

∣

∣

∣

∣

I
θ̇+ + θ̇−

2

∣

∣

∣

∣

.

(51)

The expression of the last integral in (51) contains value ∆. However, the result of its

calculation does not depend on this value and this result looks like (34) or (37) for the

joint i.

Let us consider now the second case, when

θ̇−θ̇+ < 0 (52)

Function (48) becomes zero at the instant

t0 = T −∆+
2θ̇−

θ̇− − θ̇+
∆+O(∆2). (53)



27

Function (48) has different signs in intervals [T − ∆, t0) and (t0, T + ∆]. Therefore,

integral (49) can be written as follows:

W∆ =

∣

∣

∣

∣

I

2∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t0
∫

T−∆

[

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆) +O(∆)

]

dt

−

T+∆
∫

t0

[

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆) +O(∆)

]

dt

∣

∣

∣

∣

∣

∣

.

(54)

Straightforward calculations show that

lim
∆→0

W∆ =

∣

∣

∣

∣

I

2∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t∗0
∫

T−∆

[

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆)

]

dt

−

T+∆
∫

t∗
0

[

θ̇− +
θ̇+ − θ̇−

2∆
(t− T +∆)

]

dt

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

I

2

(θ̇+)2 + (θ̇−)2

θ̇+ − θ̇−

∣

∣

∣

∣

.

(55)

Here t∗0 = T −∆+
2θ̇−

θ̇− − θ̇+
∆. The expression of each integral in (55) contains value

∆, but the calculations show that the difference between these two integrals does not

depend on this value. The result of these calculations looks like (35) and (38) for the

joint i.
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