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Abstract. We study a second order BDF (Backward Dierentiation Formula) scheme for the numerical approximation of parabolic HJB (Hamilton-Jacobi-Bellman) equations. The scheme under consideration is implicit, non-monotone, and second order accurate in time and space. The lack of monotonicity prevents the use of well-known convergence results for solutions in the viscosity sense. In this work, we establish rigorous stability results in a general nonlinear setting as well as convergence results for some particular cases with additional regularity assumptions. While most results are presented for one-dimensional, linear parabolic and non-linear HJB equations, some results are also extended to multiple dimensions and to Isaacs equations. Numerical tests are included to validate the method.

1. Introduction. This paper provides stability and convergence results for a type of implicit nite dierence scheme for the approximation of nonlinear parabolic equations using backward dierentiation formulae (BDF).

In particular, we consider Hamilton-Jacobi-Bellman (HJB) equations of the following form:

v t (t, x) + sup a∈Λ L a [v](t, x) + r(t, x, a)v + (t, x, a) = 0, (1) 
where

(t, x) ∈ [0, T ] × R d , Λ ⊂ R m is a compact set and L a [v](t, x) = - 1 2
tr[Σ(t, x, a)D 2 x v(t, x)] + b(t, x, a)D x v(t, x)

is a second order dierential operator. Here, (Σ) ij is symmetric non-negative denite for all arguments. Linear parabolic equations, corresponding to the case |Λ| = 1, are a special case for which more comprehensive results are obtained in the paper.

It is well known that for nonlinear, possibly degenerate equations the appropriate notion of solutions to be considered is that of viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial dierential equations[END_REF]. We assume throughout the whole paper the well-posedness of the problem, namely the existence and uniqueness of a solution in the viscosity sense.

Under such weak assumptions, convergence of numerical schemes can only be guaranteed if they satisfy certain monotonicity properties, in addition to the more standard consistency and stability conditions for linear equations [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. This in turn reduces the obtainable consistency order to 1 in the general case [START_REF] Godunov | A dierence method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF].

On the other hand, in many cases especially in non-degenerate ones solutions exhibit higher regularity and are amenable to higher order approximations. The existence of classical solutions and their regularity properties under a strict ellipticity condition have been investigated, for instance, in [START_REF] Krylov | Boundedly nonhomogeneous elliptic and parabolic equations[END_REF][START_REF] Evans | The parabolic Bellman equation[END_REF].

The higher order of convergence in both space and time of discontinuous Galerkin approximations is demonstrated theoretically and empirically in [START_REF] Smears | Discontinuous Galerkin nite element methods for time-dependent HamiltonJacobiBellman equations with Cordes coecients[END_REF] for suciently regular solutions under a Cordes condition for the diusion matrix, a measure of the for some C 0 > 0 the functions φ ≡ σ, b, r, : [0, T ]×R×Λ → R and v 0 : R → R satisfy for any t, s ∈ [0, T ], x, y ∈ R, a ∈ Λ there exists a unique bounded continuous viscosity solution of (2).

We will make individual assumptions for each result as we go along, but in general assume a unique and continuous solution (e.g. to dene the classical truncation error).

2.1. The BDF2 scheme. For the approximation in the x variable, we will consider the PDE on a truncated domain Ω := (x min , x max ), where x min < x max .

Let N ∈ N * ≡ N\{0} the number of time steps, τ := T /N the time step size, and t n = nτ , n = 1, . . . , N . Let I ∈ N * the number of interior mesh points, and dene a uniform mesh (x i ) 1≤i≤I with mesh size h by x i := x min + ih, i ∈ I = {1, . . . , I}, where h :=

x max -x min I + 1 .

Hereafter, we denote by u a numerical approximation of v, the solution of (1), i.e.

u k i ∼ v(t k , x i ).
For each time step t k , the unkowns are the values u k i for i = 1, . . . , I.

Standard Dirichlet boundary conditions use the knowledge of the values at the boundary, v(t, x min ) and v(t, x max ). Here, as a consequence of the size of the stencil for the spatial BDF2 scheme below, we will assume that values at the two left-and rightmost mesh points are given, that is, v(t, x j ) for j ∈ {-1, 0} as well as j ∈ {I +1, I +2} are known (corresponding to the values at the points (x -1 , x 0 , x I+1 , x I+2 ) ≡ (x minh, x min , x max , x max + h)). 1We then consider the following scheme, for k ≥ 2, i ∈ I,

S (τ,h) (t k , x i , u k i , [u] k i ) = (3) 3u k i -4u k-1 i + u k-2 i 2τ + sup a∈Λ L a [u k ](t k , x i ) + r(t k , x i , a)u k i + (t k , x i , a) = 0,
where we denote as usual by [u] k i the numerical solution excluding at (t k , x i ), and

L a [u](t k , x i ) := - 1 2 σ 2 (t k , x i , a)D 2 u i + b + (t k , x i , a)D 1,-u i -b -(t k , x i , a)D 1,+ u i , D 2 u i := u i-1 -2u i + u i+1 h 2 ,
(the usual second order approximation of v xx ), b + := max(b, 0) and b -:= max(-b, 0) denote the positive and negative part of b, respectively, and where a second order leftor right-sided BDF approximation is used for the rst derivative in space:

D 1,-u i := 3u i -4u i-1 + u i-2 2h and D 1,+ u i := - 3u i -4u i+1 + u i+2 2h . (4) 
Note in particular the implicit form of the scheme (3). The existence of a unique solution of this nonlinear implicit scheme will be addressed later on.

We will also dene the numerical Hamiltonian associated with the scheme:

H[u](t k , x i ) := sup a∈Λ L a [u](t k , x i ) + r(t k , x i , a)u i + (t k , x i , a) .
As discussed above, the scheme is completed by the following boundary conditions:

u k i := v(t k , x i ), ∀i ∈ {-1, 0} ∪ {I + 1, I + 2}.
Since ( 3) is a two-step scheme, for the rst time step k = 1, i ∈ I, we use a backward Euler step,

S (τ,h) (t 1 , x i , u 1 i , [u] 1 i ) = (5) 
u 1 i -u 0 i τ + sup a∈Λ L a [u 1 ](t 1 , x i ) + r(t 1 , x i , a)u 1 i + (t 1 , x i , a) = 0,
and

u 0 i = v 0 (x i ), i ∈ I (6)
is given by the initial condition (2b).

Remark 1. As the backward Euler step is only used once, it does not aect the overall second order of the scheme.

Remark 2. Most of our results also apply to the scheme obtained by replacing the BDF approximation (4) of the drift term by a centred nite dierence approximation:

D 1,± u i := u i+1 -u i-1 2h . (7) 
However, numerical tests (see Section 7.1) show that the BDF upwind approximation as in (4) has a better behaviour in some extreme cases where the diusion vanishes.

We shall give a rigorous stability estimate for the BDF scheme in the linear case even for possibly vanishing diusion (Section 5.2).

Denitions and main results.

In the remainder of this paper, we prove various stability and convergence results for the scheme (3). We state in this section the rst main well-posedness and stability results.

Let u denote the solution of (3) and let v be the solution of [START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF]. The error associated with the scheme is then dened by

E k i := u k i -v(t k , x i ).
For any function φ we will also use the notation

φ k i := φ(t k , x i ) as well as φ k := (φ k i ) 1≤i≤I and [φ] k i := (φ m j ) (j,m) =(i,k
) , and the error vector at time t k is dened by

E k := (E k 1 , . . . , E k I ) T = u k -v k .
The consistency error will be denoted by E k (φ) := (E k i (φ)) 1≤i≤I ∈ R I and is dened in the classical way as follows, for any smooth enough function φ:

E k i (φ) := S (τ,h) (t k , xi, φ k i , [φ] k i ) -φt + sup a∈Λ L a [φ](t k , xi) + r(t k , xi, a)φ + (t k , xi, a) . (8) 
By extension, for the exact solution v of (1), we will simply dene

E k i (v) := S (τ,h) (t k , x i , v k i , [v] k i ). (9) 
Note that ( 9) is well-dened for any continuous function.

In particular for the scheme (3) it is clear that we have second order consistency in space and time, that is,

|E k i (φ)| ≤ c 1 (φ)τ 2 + c 2 (φ)h 2 (10) 
for suciently regular data φ.

Throughout the paper, A will denote the nite dierence matrix associated to the second order derivative, i.e.

A := 1 h 2          2 -1 0 -1 2 -1 . . . . . . -1 . . . . . . 0 . . . . . . -1 -1 2          . ( 11 
)
Let x, y A := x, Ay . Then we consider the A-norm dened as follows:

|x| 2 A := x, Ax = 1≤i≤I+1 x i -x i-1 h 2 (12) 
(with the convention in (12) that x 0 = x I+1 = 0). Hence, √ h|x| A approximates the H 1 semi-norm in Ω. Similarly, we will consider later the standard Euclidean norm dened by x 2 := x, x , such that √ h x approximates the L 2 -norm. Our rst result concerns the solvability of the numerical scheme S (τ,h) (seen as an equation for u k , with [u] k given) and is the following. Assumption (A1). σ, b and r are bounded functions. Theorem 3. Let (A1) and the following CFL condition hold:

b ∞ τ h < C. (13) 
Then, for τ small enough and C = 3/2 (resp. C = 1) there exists a unique solution of the scheme (3) for k ≥ 2 (resp. k = 1, for scheme [START_REF] Bokanowski | High order nite dierence schemes for some nonlinear diusion equations with an obstacle term[END_REF]).

The scheme is hence well-dened even if σ vanishes. A uniform ellipticity condition for σ will be needed for proving the H 1 stability of the scheme.

Assumption (A2).

There exists η > 0 such that

inf t∈[0,T ] inf x∈Ω inf a∈Λ σ 2 (t, x, a) ≥ η.
We provide a relaxation of the ellipticity condition for stability in the Euclidean norm in Section 5.2.

Our main stability result is the following. Theorem 4. Assume (A1), (A2), as well as the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF]. Then there exists a constant C ≥ 0 (independent of τ and h) and τ 0 > 0 such that, for any τ ≤ τ 0 ,

max 2≤k≤N |E k | 2 A ≤ C |E 0 | 2 A + |E 1 | 2 A + τ 2≤k≤N |E k (v)| 2 A . (14) 
The proof of Theorem 4 will be the subject of Section 4.

Remark 5. As a consequence of the stability result and under further mild regularity assumptions on the boundary data, we can deduce that the scheme (3) is

A-norm bounded: max 2≤k≤N |u k | 2 A ≤ C, (15) 
where the constant C depends only on T and on the data but not on τ and h.

The analysis of the controlled case is made complicated by the fact that even if the solution to (2) is classical and the supremum is attained for each x and t (and similarly for each i and k in (3)), we cannot make any assumptions on the regularity of this optimal control as a function of x and t (or i and k, respectively). In certain circumstances, the previous bound holds with the A-norm replaced by the Euclidean norm. In particular, we consider the following assumption:

Assumption (A3). The diusion coecient is independent of the control, i.e.

σ ≡ σ(t, x) and there exists L ≥ 0 such that

|σ 2 (t, x) -σ 2 (t, y)| ≤ L|x -y| ∀x, y ∈ Ω, t ∈ [0, T ].
Theorem 6. Assume (A1), (A2), (A3), as well as the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF]. Then there exists C ≥ 0 (independent of τ and h) and τ 0 > 0 such that, for any τ ≤ τ 0 ,

max 2≤k≤N E k 2 ≤ C E 0 2 + E 1 2 + τ 2≤k≤N E k (v) 2 . ( 16 
)
As a consequence, error estimates will be obtained under the main assumptions (A1), (A2) and (A3) or under some specic assumptions, see Sections 5 and 6.

The extension of the presented results to other type of nonlinear operators (inf , sup inf or inf sup) and corresponding equations will also be discussed.

3. Proof of Theorem 3 (well-posedness of the scheme). The scheme (3) at time t k (for k ≥ 2) can be written in the following form:

sup a∈Λ (M k a X -q k a ) = 0,
where q k a ∈ R I and M k a ∈ R I×I with the following non-zero entries:

(M k a ) i,i := 3 2 + τ 2 σ 2 h 2 + 3b + 2h + 3b - 2h + r (17) (M k a ) i,i+1 := τ - σ 2 h 2 - 4b - 2h , (M k a ) i,i-1 := τ - σ 2 h 2 - 4b + 2h (18) (M k a ) i,i+2 := τ b - 2h (M k a ) i,i-2 := τ b + 2h (19) with σ ≡ σ(t k , x i , a), b ± ≡ b ± (t k , x i , a
) and r ≡ r(t k , x i , a). For k = 1, the terms are dierent but the form (and analysis) is similar. The fact that (M a ) i,i±2 are nonnegative breaks the monotonicity of the scheme and makes the analysis more dicult.

We will use the following lemma, whose proof is given in appendix A: Lemma 7. Asssume that Λ is some set, (q a ) a∈Λ is a family of vectors in R I , (M a ) a∈Λ is a family of matrices in R I×I such that:

(i) for all a ∈ Λ, (M a ) ii > 0;

(ii) (a form of diagonal dominance)

sup a∈Λ max i∈I j>i |(M a ) ij | |(M a ) ii | -j<i |(M a ) ij | < 1. (20) 
Then there exists a unique solution

X in R n of sup a∈Λ (M a X -q a ) = 0. (21) 
Remark 8. For a xed a ∈ Λ, we have

max i∈I j>i |(M a ) ij | |(M a ) ii | -j<i |(M a ) ij | < 1 ⇔ min i∈I |(M a ) ii | - j =i |(M a ) ij | > 0. Moreover, if Λ is compact and a → M a is continuous, then (20) is equivalent to inf a∈Λ min i∈I |(M a ) ii | - j =i |(M a ) ij | > 0.
Proof of Theorem 3. We are going to prove properties (i) and (ii) in Lemma 7.

Condition (i) is immediately veried, and we turn to proving (ii). We have

µ 1 := j>i |(M a ) ij | ≤ τ σ 2 i h 2 + 5b - i 2h
(omitting the dependency on k and a in σ, b ± , r) and

µ 2 := |(M a ) ii | - j<i |(M a ) ij | ≥ 3 2 + τ σ 2 i h 2 - 2b + i 2h + 3b - i 2h + r .
By the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF], there exists

> 0 such that τ b ∞ h ≤ 3 2 -. This implies 3 2 - 2 + τ - 2b + i 2h + 3b - i 2h ≥ 2 + τ 5b - i 2h
and therefore

µ 2 ≥ τ σ 2 i h 2 + 2 + τ r + τ 5b - i 2h + 2 .
Then by using

a 1 + a 2 c 1 + c 2 ≤ max a 1 c 1 , a 2 c 2 for numbers a i , c i ≥ 0, we obtain µ 1 µ 2 ≤ max τ σ 2 i h 2 τ σ 2 i h 2 + 2 + τ r , τ 5b - i 2h τ 5b - i 2h + 2 .
Taking τ small enough such that for instance 2 + τ r ≥ 4 , and since b(.) and σ(.) are bounded functions (by (A1)), we obtain the bound

sup a∈A max i∈I j>i |(M a ) ij | |(M a ) ii | -j<i |(M a ) ij | ≤ max τ σ 2 ∞ h 2 τ σ 2 ∞ h 2 + 4 , τ 5 b - ∞ 2h τ 5 b -∞ 2h + 2 < 1.
Since the last bound is a constant < 1, we can apply Lemma 7 to obtain the existence and uniqueness of the solution of the BDF2 scheme.

Proof of Theorem 4 (stability in the A-norm)

. The proof consists of three main steps: rst, we show a linear recursion for the error (Lemma 9); second, we pass from such a recursion for the error in vector form to a scalar recursion (Lemma 10); nally, we show the stability estimate from this scalar recursion (Lemma 11).

4.1. Treatment of the nonlinearity. First, we have the following: Lemma 9. Let u be the solution of scheme [START_REF] Beale | Smoothing properties of implicit nite dierence methods for a diusion equation in maximum norm[END_REF] and v the solution of equation ( 2). There exist coecients σk i , ( b± ) k i , rk i , such that the error

E k = u k -v k satises 3E k i -4E k-1 i + E k-2 i 2τ - 1 2 (σ 2 ) k i D 2 E k i + ( b+ ) k i D 1,-E k i -( b-) k i D 1,+ E k i + rk i E k i = -E k i (22)
for any k ≥ 2 and i ∈ I, where

(σ 2 ) k i , ( b± ) k i , rk i belong, respectively, to the convex hulls co(σ 2 (t k , x i , Λ)), co(b ± (t k , x i , Λ)), co(r(t k , x i , Λ).
Proof. By denition of the consistency error ( 9), one has (for k ≥ 2, 1 ≤ i ≤ I)

3v k i -4v k-1 i + v k-2 i 2τ + H[v k ](t k , x i ) = E k i . (23) 
The scheme simply reads

3u k i -4u k-1 i + u k-2 i 2τ + H[u k ](t k , x i ) = 0. (24) 
Subtracting ( 23) from ( 24), denoting also

H[u k ] ≡ (H[u k ](t k , x i )) 1≤i≤I
, the following recursion is obtained for the error in R I :

3E k -4E k-1 + E k-2 2τ + H[u k ] -H[v k ] = -E k . ( 25 
)
For simplicity of presentation, we rst consider the case when b and r vanish, i.e. b(.) ≡ 0 and r(.) ≡ 0. In this case,

H[u k ] i = sup a∈Λ - 1 2 σ 2 (t k , x i , a)(D 2 u k ) i + (t k , x i , a) . (26) 
To simplify the presentation, we will assume that σ and are continuous functions of a so that the supremum is attained. 2 For each given k, i, let then āk i ∈ Λ denote an optimal control in (26).

In the same way, let bk i denote an optimal control for H[v k ] i . By using the optimality of āk i , it holds

H[u k ] i -H[v k ] i = - 1 2 σ 2 (t k , x i , āk i )(D 2 u k ) i + (t k , x i , āk i ) -sup a∈Λ - 1 2 σ 2 (t k , x i , a)(D 2 v k ) i + (t k , x i , a) ≤ - 1 2 σ 2 (t k , x i , āk i )(D 2 u k ) i -- 1 2 σ 2 (t k , x i , āk i )(D 2 v k ) i = - 1 2 σ 2 (t k , x i , āk i )(D 2 E k ) i (27)
2 The general case is obtained easily by considering sequences of -optimal controls and letting → 0, such that (30) below still holds for a suitably dened σ2 , b+ , b-, r.

and, in the same way,

H[u k ] i -H[v k ] i ≥ - 1 2 σ 2 (t k , x i , bk i )(D 2 E k ) i . (28) 
Therefore, combining ( 27) and ( 28),

H[u k ] i -H[v k ] i is a convex combination of -1 2 σ 2 (t k , x i , āk i )(D 2 E k ) i and -1 2 σ 2 (t k , x i , bk i )(D 2 E k ) i .
In particular, we can write

H[u k ] i -H[v k ] i = - 1 2 σ2 (t k , x i )(D 2 E k ) i , (29) 
where σ2 (t k , x i ) is a convex combination of σ 2 (t k , x i , āk i ) and σ 2 (t k , x i , bk i ). In the general case (i.e. b, r ≡ 0) one gets similarly

H[u k ] i -H[v k ] i = - 1 2 (σ 2 ) k i D 2 E k i + ( b+ ) k i D 1,-E k i -( b-) k i D 1,+ E k i + rk i E k i , (30) 
where, for φ = σ 2 , b, r,

φk i := γ k i φ(t k , x i , āk i ) + (1 -γ k i )φ(t k , x i , bk i ) for some γ k i ∈ [0, 1].

Isaacs equations.

The same technique used above to deal with the nonlinear operator applies also to Isaacs equations, i.e. equations of the following form:

v t + sup a∈Λ1 inf b∈Λ2 -L (a,b) [v](t, x) + r(t, x, a, b)v + (t, x, a, b) = 0, (31) 
where

(t, x) ∈ [0, T ] × R d , Λ 1 , Λ 2 ⊂ R m are compact sets and L (a,b) [v](t, x) = 1 2 σ 2 (t, x, a, b)v xx + b(t, x, a, b)v x .
To simplify the presentation, let us consider again b, r ≡ 0, and now also ≡ 0. By analogous denitions and reasoning to above, we get (25), where, for φ = u, v,

H[φ k ] i = sup a∈Λ1 inf b∈Λ2 - 1 2 σ 2 (t, x, a, b)(D 2 x φ k ) i . (32) 
Let (ā k i , bk i ) ∈ Λ 1 × Λ 2 denote an optimal control in (32). 3 One has

H[u k ] i = sup a∈Λ1 - 1 2 σ 2 (t, x, a, bk i )(D 2 x u k ) i = inf b∈Λ2 - 1 2 σ 2 (t, x, āk i , b)(D 2 x v k ) i . Therefore H[u k ] i -H[v k ] i = sup a∈Λ1 - 1 2 σ 2 (t, x, a, bk i )(D 2 x u k ) i -sup a∈Λ1 inf b∈Λ2 - 1 2 σ 2 (t k , x i , a, b)(D 2 v k ) i ≥ sup a∈Λ1 - 1 2 σ 2 (t, x, a, bk i )(D 2 x u k ) i -sup a∈Λ1 - 1 2 σ 2 (t k , x i , a, bk i )(D 2 v k ) i ≥ inf a∈Λ1 - 1 2 σ 2 (t, x, a, bk i )(D 2 x E k ) i . ( 33 
)
3 Or, if not attained, use an approximation argument.

Analogously, one can prove

H[u k ] i -H[v k ] i ≤ sup b∈Λ2 - 1 2 σ 2 (t, x, āk i , b)(D 2 x E k ) i (34) 
(here, we also use inf(a) -inf(b) ≤ sup(a -b) and sup(a) -sup(b) ≥ inf(a -b)). At this point, it is sucient to take for âk i ∈ Λ 1 and bk i ∈ Λ 2 optimal controls in (33) and (34), respectively, to be able to write

H[u k ] i -H[v k ] i as a convex combination of -1 2 σ 2 (t, x, âk i , bk i )(D 2 x E k ) i and -1 2 σ 2 (t, x, āk i , bk i )(D 2 x E k ) i .
From this, an equation exactly as in ( 22) can be derived, with a suitable convex combination ( σ2 ) k i of diusion coecients, and similar for the drift and other terms.

4.3.

A scalar error recursion. From ( 22), we can derive the following:

Lemma 10. Let assumptions (A1) and (A2) in Theorem 4 be satised. Then there exists a constant C ≥ 0 such that

1 2 (3 -Cτ )|E k | 2 A -4|E k-1 | 2 A + |E k-2 | 2 A + |E k -E k-1 | 2 A -|E k-1 -E k-2 | 2 A ≤ 2τ |E k | A |E k | A . ( 35 
)
Proof. For simplicity of presentation we will assume that b has constant positive sign. The terms coming from the negative part of b can be treated in a similar way. We remark that for E ∈ R I , -D 2 E = AE, where A is the nite dierence matrix dened in [START_REF] Godunov | A dierence method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF]. By (22), we get the following:

3E k -4E k-1 + E k-2 2τ + ∆ k AE k + F k BE k + R k E k = -E k , (36) 
where

∆ k := 1 2 diag((σ 2 ) k i ), F k = diag( bk i ), R k = diag(r k i ) and B = 1 2h          3 0 -4 3 0 1 -4 . . . . . . 0 . . . . . . . . . 0 . . . . . . 1 -4 3         
.

We form the scalar product of (36) with AE k . By using the identity 2 a -b, a

A = |a| 2 A + |a -b| 2 A -|b| 2 A , one has: 3E k -4E k-1 + E k-2 , E k A = 4 E k -E k-1 , E k A -E k -E k-2 , E k A = 1 2 4|E k | 2 A + 4|E k -E k-1 | 2 A -4|E k-1 | 2 A - 1 2 |E k | 2 A + |E k -E k-2 | 2 A -|E k-2 | 2 A ≥ 1 2 3|E k | 2 A -4|E k-1 | 2 A + |E k-2 | 2 A + |E k -E k-1 | 2 A -|E k-1 -E k-2 | 2 A , (37) 
where we have also used |a + b| 2 ≤ 2|a| 2 + 2|b| 2 . From (σ 2 ) k i ≥ η > 0 for all k, i:

∆ k AE k , AE k ≥ η 2 AE k 2 , ( 38 
)
where

• denotes the canonical Euclidean norm in R I .

In order to estimate the drift component, let us introduce the notation

δE := (E i -E i-1 ) 1≤i≤I (39) 
with the convention that E i = 0 for all indices i which are not in I. It holds:

| F k BE k , AE k | = 1 2h F k (3E k i -4E k i-1 + E k i-2 ) i∈I , AE k = 1 2h F k 3δE k -δ 2 E k , AE k ≤ 1 2h 3 F k δE k AE k + F k δ 2 E k AE k .
By using the boundedness of the drift term, and

δE k , δ 2 E k ≤ h|E k | A , | F k BE k , AE k | ≤ b ∞ 2h 3 AE k δE k + AE k δ 2 E k ≤ 2 b ∞ AE k |E k | A . ( 40 
)
For the last term, using the boundedness of r and the Cauchy-Schwarz inequality,

| R k E k , AE k | ≤ r ∞ E k AE k . (41) 
Therefore, putting (38), ( 40) and (41) together,

∆ k AE k + F k BE k + R k E k , AE k ≥ η 2 AE k 2 -2 b ∞ AE k |E k | A -r ∞ AE k E k . (42) 
Easy calculus shows that the minimal eigenvalue of A is λ min (A) = 4 h 2 sin 2 ( πh 2 ) ≥ 4. Hence X, AX ≥ 4 X, X and therefore X ≤ 1 2 |X| A . In the same way, we have also |X| A ≤ 1 2 AX . Hence it holds

∆ k AE k + F k BE k + R k E k , AE k ≥ η 2 AE k 2 -C 1 AE k |E k | A (43) with C 1 := 2 b ∞ + 1 2 r ∞ . By using C 1 AE k |E k | A ≤ η 2 AE k 2 + 1 2η C 2 1 |E k | 2 A , ∆ k AE k + F k BE k + R k E k , AE k ≥ - 1 2η C 2 1 |E k | 2 A . (44) 
Then, combining (37) and (44), we obtain the desired inequality with C := 2 η C 2 1 .

4.4.

A universal stability lemma. In the following, it is assumed that | • | is any vectorial norm. We will use the result for the canonical Euclidean norm

| • | ≡ • and the A-norm | • | ≡ | • | A .
In order to prove the following Lemma 11, we will exploit properties of the matrix

M τ :=          (3 -Cτ ) -4 1 0 0 (3 -Cτ ) -4 . . . . . . 0 . . . . . . 1 . . . . . . -4 0 (3 -Cτ )          , ( 45 
)
in particular the fact that (M τ ) -1 ≥ 0 for τ small enough (which we prove).

Lemma 11. Assume that there exists a constant C ≥ 0 such that ∀k = 2, . . . , N :

1 2 (3 -Cτ )|E k | 2 -4|E k-1 | 2 + |E k-2 | 2 + |E k -E k-1 | 2 -|E k-1 -E k-2 | 2 ≤ 2τ |E k | |E k |. (46) 
Then there exists a constant C 1 ≥ 0 and τ 0 > 0 such that ∀0 < τ ≤ τ 0 , ∀n ≤ N :

max 2≤k≤n |E k | 2 ≤ C 1 |E 0 | 2 + |E 1 | 2 + τ 2≤j≤n |E j | 2 . ( 47 
)
Proof. Let us denote

x k := |E k | 2
and

y k := |E k -E k-1 | 2 ,
so that (46) reads

(3 -Cτ )x k -4x k-1 + x k-2 ≤ 2(y k-1 -y k ) + 4τ |E k | |E k |. ( 48 
)
For a given τ > 0 and given k, let M τ ∈ R (k-1)×(k-1) as dened in (45). Let z, w ∈ R k-1 be dened by

z := (x k , x k-1 , . . . , x 2 ) T and w := (2(y j-1 -y j ) + 4τ |E j | |E j |) j=k,...,2 .
By (48), we have

M τ z ≤ w. (49) 
We notice that M τ = (3 -Cτ )I -4J + J 2 with J := tridiag(0, 0, 1).

Hence, with

λ 1 = 2 + √ 1 + Cτ and λ 2 = 2 - √ 1 + Cτ , the roots of λ 2 -4λ + (3 -Cτ ) = 0 for 3 -Cτ ≥ 0, we can write M τ = (λ 1 I -J)(λ 2 I -J) = λ 1 λ 2 I - J λ 1 I - J λ 2 .
Furthermore, since J k-1 = 0, it holds It is possible to prove that there exists τ 0 > 0 and a constant C 0 ≥ 0 (depending only on T ) such that ∀0 < τ ≤ τ 0 and ∀p ≥ 0: 0 ≤ a p ≤ C 0 and a p -a p-1 ≥ 0.

M -1 τ = 1 λ 1 λ 2 I - J λ 1 -1 I - J λ 2 -1 = 1 λ 1 λ 2   0≤q≤k-2 J λ 1 q     0≤q≤k-2 J λ 2 q   = k-2 p=0 a p J p ,
(50)

We postpone the proof of (50) to the end. For the rst component of z, we deduce

x k ≤ k-2 j=0 a j w j+1 ≤ 2 k-2 j=0 a j (y k-j-1 -y k-j ) + 4C 0 τ k j=2 |E j | |E j | (51) = -2a 0 y k + 2 k-3 j=0 (a j -a j+1 )y k-j+1 + 2a k-2 y 1 + 4C 0 τ k j=2 |E j | |E j |,
for all k ≥ 2, where, for (51), we have used the fact that a p ≤ C 0 . Since y j ≥ 0, ∀j, by denition, a k-2 ≤ C 0 , a 0 = 1 λ1λ2 ≥ 0 and a j -a j-1 0, ∀j, we obtain

x k ≤ 2C 0 y 1 + 4C 0 τ k j=2 |E j | |E j |. (52) 
Recalling the denition of x k and y k , for any 2 ≤ k ≤ n one has:

|E k | 2 ≤ 2C 0 |E 1 -E 0 | 2 + 4C 0 τ k j=2 |E j | |E j | ≤ 4C 0 (|E 0 | 2 + |E 1 | 2 ) + 4C 0 τ max 2≤k≤n |E k | n j=2 |E j | ≤ 4C 0 (|E 0 | 2 + |E 1 | 2 ) + 1 2 max 2≤k≤n |E k | 2 + 8C 2 0 τ 2 n j=2 |E j | 2 
(where we made use of 2ab ≤ a 2 K + Kb 2 for any a, b ≥ 0 and K > 0). Hence, we obtain

max 2≤k≤n |E k | 2 ≤ C 1 |E 0 | 2 + |E 1 | 2 + τ n j=2 |E j | 2 with C 1 := max(8C 0 , 16C 2 0 T ) (we used n j=2 |E j | 2 ≤ n n j=2 |E j | 2
and nτ ≤ T ). It remains to prove (50). From the denition of a p one has

a p = 1 λ p+2 2 p j=0 λ 2 λ 1 j+1 ≤ 1 λ p+2 2 1 - λ 2 λ 1 -1 for p = 0, . . . , k -2. Observing that λ2 λ1 ≤ 1 3 , it follows that a p ≤ 3 2λ p+2 2 ≤ 3 2(2 - √ 1 + Cτ ) n .
Notice that √ 1 + Cτ ≤ 1 + Cτ , and also that e

-x ≤ 1 -x/2, ∀x ∈ [0, 1]. Hence (2 - √ 1 + Cτ ) n ≥ (2 -(1 + Cτ )) n = (1 -Cτ ) n ≥ (e -2Cτ
) n = e -2Ctn for Cτ ≤ 1 2 , and therefore a p ≤ 3 2 e 2Ctn . The desired result follows with C 0 := 3 2 e 2CT and τ 0 := 1 2C .

Moreover, one has

a p -a p-1 = 1 λ p+1 2   1 λ 2 p j=0 λ 2 λ 1 j+1 - p-1 j=0 λ 2 λ 1 j+1   ,
which is nonnegative for τ small enough thanks to the fact that λ 1 , λ 2 ≥ 0 and λ 2 ≤ 1.

Stability in the Euclidean norm. The fundamental stability result given

by Lemma 11 applies to any vectorial norm. In this section, we discuss some special cases where (46) can be obtained for the Euclidean norm | • | = • .

We rst prove the stability result for this norm under the extra assumption (A3),

i.e., the control may appear except in the diusion term, which must also be Lipschitz continuous in the following proof.

5.1. Proof of Theorem 6 (stability in the Euclidean norm) . We consider the scalar product of (36) directly with E k (instead of AE k previously used), again in the situation where b ≥ 0 to simplify the argument. We obtain:

E k , 3E k -4E k-1 + E k-2 + 2τ E k , ∆ k AE k + F k BE k + R k E k = -2τ E k , E k . (53) 
As in Section 4.3, we have

E k , 3E k -4E k-1 + E k-2 (54) ≥ 1 2 3 E k 2 -4 E k-1 2 + E k-2 2 + E k -E k-1 2 -E k-1 -E k-2 2 .
We now focus on bounding the other terms on the left-hand side of (53).

By using the Lipschitz continuity of σ 2 one has

E k , ∆ k AE k = i∈I (σ k i ) 2 2h 2 (-E k i+1 + 2E k i -E k i-1 )E k i = i∈I (σ k i-1 ) 2 2h 2 (E k i-1 -E k i ) 2 + i∈I (σ k i-1 ) 2 2h 2 - (σ k i ) 2 2h 2 (E k i-1 -E k i )E k i ≥ η 2h 2 i∈I (E k i-1 -E k i ) 2 - L 2h i∈I |E k i-1 -E k i ||E k i |.
Therefore, by the Cauchy-Schwarz inequality, one obtains

E k , ∆ k AE k ≥ η 2h 2 δE k 2 - L 2h δE k E k , ( 55 
)
where δE k is dened by (39). Moreover, for the rst order term one has

E k , F k BE k = i∈I b i 2h (3E k i -4E k i-1 + E k i-2 )E k i ≥ - 3 b ∞ 2h i∈I |E k i -E k i-1 ||E k i | - b ∞ 2h i∈I |E k i-1 -E k i-2 ||E k i | ≥ - 2 b ∞ h δE k E k , ( 56 
)
where for the last equality we have used that δ 2 E k ≤ δE k . Putting together estimates (55) and (56), using the fact that

E k , R k E k ≥ -r ∞ E k 2 , we get E k , ∆ k AE k + F k BE k + R k E k ≥ η 2h 2 δE k 2 - C 1 2h δE k E k -r ∞ E k 2 ≥ η 4h 2 δE k 2 - C 2 1 4η + r ∞ E k 2 ,
where we have denoted assumptions on the drift and diusion terms, and we shall assume that there is no control here. Indeed, in this case, one cannot count on the positive term coming from the non-degenerate diusion which, in the proof of Theorem 6, is used to compensate the negative correction terms coming from the drift term. This leads us to consider the following assumptions:

Assumption (A4). r is bounded. The drift and diusion coecients are independent of the control, i.e. b ≡ b(t, x) and σ ≡ σ(t, x), and there exist L 1 , L 2 ≥ 0 such that, for all t, x, h:

|b(t, x) -b(t, y)| ≤ L 1 |x -y|, (57) σ 2 (t, x -h) -2σ 2 (t, x) + σ 2 (t, x + h) h 2 ≥ -L 2 . ( 58 
)
(The last condition is equivalent to (σ 2 ) xx ≥ -L 2 in the dierentiable case.) Proposition 12. Let assumption (A4) be satised. Then (46) holds for

|•| = • .
Proof. We consider again the scalar recursion (53). For any vector E = (E i ) 1≤i≤I

(with E j = 0 for j ∈ {-1, 0, I + 1, I + 2}), it holds:

E i (2E i -E i-1 -E i+1 ) ≥ 2|E i | 2 - 1 2 (|E i | 2 + |E i-1 | 2 ) - 1 2 (|E i | 2 + |E i+1 | 2 ) ≥ 1 2 (2|E i | 2 -|E i-1 | 2 -|E i+1 | 2 ).
Hence, by the semi-concavity assumption (58) on σ 2 ,

E k , ∆ k AE k = 1≤i≤I σ 2 i 2h 2 E k i (2E k i -E k i-1 -E k i+1 ) ≥ 1≤i≤I σ 2 i 4h 2 (-|E k i-1 | 2 + 2|E k i | 2 -|E k i+1 | 2 ) ≥ 1≤i≤I -σ 2 i-1 + 2σ 2 i -σ 2 i+1 4h 2 |E k i | 2 . ≥ - L 2 4 E k 2 . ( 59 
)
Now we focus on a lower bound for

E k , F k BE k . Let y k i = |E k i -E k i-1 | 2 . First, (3E k i -4E k i-1 + E k i-2 )E k i = 1 2 (3|E k i | 2 -4|E k i-1 | 2 + |E k i-2 | 2 ) + 1 2 (4|E k i -E k i-1 | 2 -|E k i -E k i-2 | 2 ) ≥ 1 2 (3|E k i | 2 -4|E k i-1 | 2 + |E k i-2 | 2 ) + 1 2 (2y k i -2y k i-1 ).
We assume again b i ≥ 0 for all i to simplify the presentation. The case where b i ≤ 0 for some i is similar. Then, the following bound holds:

E k , F k BE k = I i=1 b i 2h (3E k i -4E k i-1 + E k i-2 )E k i = I+2 i=1 b i 2h (3E k i -4E k i-1 + E k i-2 )E k i ≥ I+2 i=1 b i 4h (3|E k i | 2 -4|E k i-1 | 2 + |E k i-2 | 2 ) + I+2 i=1 b i h (y k i -y k i-1 ) ≥ I i=1 3b i -4b i+1 + b i+2 4h |E k i | 2 + I+1 i=1 b i -b i+1 h y k i (where we have used y k 0 = y k I+2 = 0 and 1≤i≤I+2 b i (E k i-2 ) 2 = 1≤i≤I b i+2 (E k i ) 2 as well as 1≤i≤I+2 b i (E k i-1 ) 2 = 0≤i≤I+1 b i+1 (E k i ) 2 = 1≤i≤I b i+1 (E k i ) 2 ).
Then, by the Lipschitz continuity of b(.) and the bound

y k i ≤ 2(E k i ) 2 + 2(E k i-1 ) 2 , we have E k , F k BE k ≥ -L 1 I i=1 |E k i | 2 -L 1 I+1 i=1 y k i ≥ -3L 1 E k 2 . ( 60 
)
By combining the bounds (59) and (60), we obtain

E k , ∆ k AE k + E k , F k BE k + E k , R k E k ≥ -( L 2 4 + 3L 1 + r ∞ ) E k 2 .
Therefore, inequality (46) is obtained with C := 4( L2 4 + 3L 1 + r ∞ ), which leads to the desired stability estimate.

5.3. Extension to a two-dimensional case. Under suitable assumptions, the result of Theorem 6 can be extended to multi-dimensional equations. The nonlinearity can be treated exactly as in Section 4.1 (or 4.2), so that we can focus on the linear case

v t - 1 2 tr[Σ(t, x)D 2 x v] + b(t, x)D x v + r(t, x)v + (t, x) = 0
for a positive denite matrix Σ and a drift vector b. For simplicity, we furthermore consider the two-dimensional case d = 2, with r, ≡ 0, and omit the dependence of the coecients on the time variable, then with

Σ(x, y) := σ 2 1 (x, y) ρσ 1 σ 2 (x, y) ρσ 1 σ 2 (x, y) σ 2 2 (x, y) and b(x, y) := b 1 (x, y) b 2 (x, y) ,
where σ 1 , σ 2 ≥ 0 and ρ ∈ [-1, 1] is the correlation parameter, the equation reads (ii) Observe that assumption (A2') is equivalent to requiring strong diagonal dominance of the covariance matrix.

v t - 1 2 σ 2 1 (x, y)v xx -ρσ 1 σ 2 (x, y)v xy - 1 2 σ 2 2 (x, y)v yy + b 1 (x, y)v x + b 2 (x, y)v y = 0.
(iii) When the strong diagonal dominance of the matrix Σ is not guaranteed, one can consider the generalized nite dierence scheme in [START_REF] Bonnans | Consistency of generalized nite dierence schemes for the stochastic HJB equation[END_REF]. However, determining the precise set of assumptions on the coecients needed to apply the previous arguments does not seem easy from the construction in [START_REF] Bonnans | Consistency of generalized nite dierence schemes for the stochastic HJB equation[END_REF].

6. Error estimates. In this section, we give detailed error estimates for the implicit BDF2 scheme (3). We consider the following rescaled norms on R I :

|u| 0 := i∈I u 2 i h 1/2 = u √ h, |u| 1 := i∈I u i -u i-1 h 2 h 1/2 = |u| A √ h,
corresponding to discrete approximations of L 2 (Ω)and H 1 (Ω) norms, respectively.

Both these norms will be used in the forthcoming numerical section.

In addition, we dene the following semi-norm on some interval I = (a, b):

|w| C 0,α (I) := sup |w(x) -w(y)| |x -y| α , x = y, x, y ∈ I .
For a given open subset Ω * T of (0, T )×Ω, we dene C k, (Ω * T ) as the set of functions v : Ω * T → R which admit continuous derivatives

( ∂ i v ∂t i ) 0≤i≤k and ( ∂ j v ∂x j ) 0≤j≤ on Ω * T .
We also denote by C k, b (Ω * T ) the subset of functions with bounded derivatives on Ω * T .

Assumption (A5). v ∈ C 1,2 ((0, T ) × Ω) and for some constant C ≥ 0:

sup x∈Ω v t (., x) C 0,δ ([0,T ]) ≤ C, sup t∈(0,T ) v xx (t, .) C 0,δ ( Ω) ≤ C. (63) 
Remark 15. By results in [START_REF] Evans | The parabolic Bellman equation[END_REF] and [START_REF] Krylov | Boundedly nonhomogeneous elliptic and parabolic equations[END_REF], assumption (A5) is satised for suciently smooth data and given a uniform ellipticity condition.

We have the following error estimates: Theorem 16. We assume (A1), (A2), (A3), and the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF].

(i) If v ∈ C 3,4 b ((0, T ) × Ω), then max 0≤k≤N |v k -u k | 0 ≤ Ch 2 ,
where C is a constant which depends on the derivatives of v of order 3 and 4 in t and x, respectively. (ii) If (A5) holds for some δ ∈ (0, 1], then the numerical solution u of (3), [START_REF] Bokanowski | High order nite dierence schemes for some nonlinear diusion equations with an obstacle term[END_REF] converges to v in the L 2 -norm with

max 0≤k≤N |v k -u k | 0 ≤ Ch δ ,
for some constant C (possibly dierent from the one in (A5)).

Theorem 18. We assume (A1), (A2), (A3) and the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF]. Let (A5) and (A6) hold for some δ ∈ (0, 1], then the numerical solution u of (3), [START_REF] Bokanowski | High order nite dierence schemes for some nonlinear diusion equations with an obstacle term[END_REF] converges to v in the L 2 -norm with

max 2≤k≤N |v k -u k | 0 ≤ Ch 1/2+δ ,
where C is a constant independent of h.

Proof. Let I k be the (nite) set of indices i such that v is not regular in {t k } ×

(x i -2h, x i + 2h) ∪ (t k -2τ, t k ) × {x i }. Then |E k | 2 0 = i∈I |E k i | 2 h = i∈I k |E k i | 2 h + i∈I\I k |E k i | 2 h ≤ C|I k |(τ δ + h δ ) 2 h + C(τ 2 + h 2 ) 2 .
We then use the fact that |I k | ≤ C for some (dierent) constant C by Lemma 17 and that (τ 2 + h 2 ) 2 = O(h 4 ) = O(h 2+δ ), τ δ + h δ = O(h δ ) by the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF], in order to obtain the desired result.

Remark 19. (i) Similar results can be derived for errors in the A-norm, however derivatives of one order higher are required due to the derivative in the denition of the norm.

(ii) The estimates in Theorem 16 are not always sharp, as symmetries and the smoothing behaviour of the scheme can result in higher order convergence. We discuss such special cases for Examples 1 and 2 in Section 7, Remarks 21 and 22, respectively.

(iii) These error estimates can be compared with [START_REF] Bokanowski | High order nite dierence schemes for some nonlinear diusion equations with an obstacle term[END_REF], where an error bound of order h 1/2 was obtained for diusion problems with an obstacle term, under the main assumption that v xx is a.e. bounded with a nite number of singularities (instead of (A5)) . In the present context it seems natural to assume the Hölder regularity of u t and u xx coming from the ellipticity assumption (see Remark 15). 7. Numerical tests. We now compare the performance of the BDF2 scheme with other second order nite dierence schemes on two examples. 7.1. Test 1: Eikonal equation. The rst example is based on a deterministic control problem (σ ≡ 0) and motivates the choice of the BDF2 approximation for the drift term in (4), compared to the more classical centered scheme [START_REF] Bonnans | Consistency of generalized nite dierence schemes for the stochastic HJB equation[END_REF]. We consider

v t + |v x | = 0, x ∈ (-2, 2), t ∈ (0, T ), v(0, x) = v 0 (x), x ∈ (-2, 2),
with v 0 (x) = max(0, 1 -x 2 ) 4 and T = 0.2. The initial datum is shown in Figure 1 (dashed line). The exact solution is v(t, x) = min(v 0 (x -t), v 0 (x + t)).

Remark 20. The Eikonal equation can be written as v t +max a∈{-1,1} (av x ) = 0 in HJB form. Note that our theoretical analysis does not cover this example, however, since in the degenerate case assumption (A4) is required, which is not satised here. In Figure 1, we show the results obtained at the terminal time T = 0.2 using schemes ( 3)-( 7) (left) and ( 3)-( 4) (right) with τ /h = 0.5. We numerically observe that the centered approximation generates undesirable oscillations, whereas the BDF2 scheme is stable.

As stated in Theorem 3, in case of a degenerate diusion, a CFL condition of the form τ ≤ Ch has to be satised for well-posedness of the BDF2 scheme. Table 1 shows numerical convergence of order 2 in both time and space, although the solution is globally only Lipschitz.

N

I + 1 Test 1. Error and convergence rate to the exact solution for the BDF2 scheme with τ /h = 0.1 and initial data v 0 (x) = max(0, 1 -x 2 ) 4 .

H 1 norm L 2 -norm L ∞
Remark 21. The full convergence order here is due to the particular symmetry of the solution. To conrm this, we report in Table 2 the results obtained for the same equation with initial data v(0, x) = -max(0, 1 -x 2 ) 4 (see also Figure 2). In this case, there is no such symmetry around the two singular points and as a result the full convergence order is lost: the scheme is globally only of order 1 in the H 1 norm and roughly 1.5 in the L 2 and L ∞ norm. Fig. 2. Test 1: Initial data (dashed line) v 0 (x) = -max(0, 1-x 2 ) 4 and numerical solution at time T = 0.2 computed for I + 1 = 200 and N = 20 (τ/h = 0.5) using the BDF2 scheme. The convergence rates for this example are reported in Table 2. Test 1. Error and convergence rate to the exact solution for the BDF2 scheme with τ /h = 0.1 and initial data v 0 (x) = -max(0, 1 -x 2 ) 4 .

N I + 1 H 1 norm L 2 norm L ∞ norm CPU ( 

Test 2:

A simple controlled diusion model equation. The second test we propose is a problem with controlled diusion. We consider

v t + sup σ∈{σ1,σ2} -1 2 σ 2 v xx = 0, x ∈ (-1, 1), t ∈ (0, T ), v(0, x) = sin(πx),
x ∈ (-1, 1), with parameters σ 1 = 0.1, σ 2 = 0.5, T = 0.5.

In spite of the apparent simplicity of the equation under consideration, in [START_REF] Pooley | Numerical convergence properties of option pricing pdes with uncertain volatility[END_REF] an example of non-convergence of the Crank-Nicolson scheme is given for a similar optimal control problem. The BDF2 scheme, in contrast, has shown good performance for that same problem in [START_REF] Bokanowski | High-order ltered schemes for time-dependent second order HJB equations[END_REF].

Figure 3 (top row) shows the initial data and the value function at terminal time computed using the BDF2 scheme. The error and convergence rate in dierent norms are reported in Table 3. Here an accurate numerical solution computed by an implicit Euler scheme (in order to ensure convergence) is used for comparison.

Taking τ ∼ h the BDF2 scheme gives clear second order convergence, see Table 3. This is not the case for CN as shown in Table 4. The CN scheme also exhibits some instability in the second order derivative for high CFL number, i.e. τ /h, see Figure 3 (this is analogous to the nding in [START_REF] Pooley | Numerical convergence properties of option pricing pdes with uncertain volatility[END_REF]). One can verify that for a small CFL number, i.e. τ ∼ h 2 , the CN scheme shows second order of convergence.

Remark 22. In this example, due to the strict ellipticity, Assumption (A5) is guaranteed for some δ > 0 (see Remark 15). Then Theorem 16 gives convergence Test 2. Error and convergence rate for the BDF2 scheme with high CFL number τ = 5h. A reference solution computed by the implicit Euler scheme [START_REF] Bokanowski | High-order ltered schemes for time-dependent second order HJB equations[END_REF] with I + 1 = 20 × 2 9 , N = 2 22 is used.

with order δ. Furthermore, Fig. 3, bottom row, suggests Hölder continuity of u xx in x, which is expected by virtue of the control being piecewise constant. Therefore, we conjecture that Assumption (A6) is satised, such that Theorem 18 would give the higher order 1/2 + δ. In the test, in fact the full order 2 is observed (see Table 3).

Conclusion.

We have proved the well-posedness and stability in L 2 and H 1 norms of a second order BDF scheme for HJB equations with enough regularity of the coecients. The signicance of the results is that this was achieved for a second Test 2. Error and convergence rate for the CN scheme with high CFL number τ = 5h. A reference solution computed by the implicit Euler scheme [START_REF] Bokanowski | High-order ltered schemes for time-dependent second order HJB equations[END_REF] with I + 1 = 20 × 2 9 , N = 2 22 is used.

order (and hence) non-monotone scheme. For smooth or piecewise smooth solutions, as is often the case, one can use the recursion we derived to bound the error of the numerical solution in terms of the truncation error of the scheme. The latter depends on the regularity of the solution and has to be estimated for individual examples.

The numerical tests demonstrate convergence at least as good as predicted by the theoretical results, and often better, due to symmetries of the solution or smoothing properties of the equation and the scheme. This is in contrast to some alternative second order schemes, such as the central spatial dierence in the case of a rst order equation, or the Crank-Nicolson time stepping scheme for a second order equation, which can show poor or no convergence.

Appendix A. Proof of Lemma 7. In order to prove the existence and uniqueness of a solution to (21), we consider a xed-point approach. The initial problem (21) can be written as follows: sup a∈Λ (L a X -(q a -U a X)) = 0, (64) where L a and U a are two matrices such that M a ≡ L a + U a . We consider in particular L a to be the lower triangular part of M a including the diagonal terms, (L a ) ij := (M a ) ij 1 i≥j , and U a the remaining upper triangular part, (U a ) ij := (M a ) ij 1 i<j .

For a given vector c ∈ R I , let g(c) := X denote the (unique) solution of the following simplied problem: sup a∈Λ (L a X -(q a -U a c)) = 0. Therefore, solving (64) amounts to solving g(X) = X. By elementary compuations one can show that g is δ-Lipschitz for the . ∞ norm, with δ := sup a (L a ) -1 U a ∞ .

For a diagonally dominant matrix, the following classical estimate holds

(L a ) -1 U a ∞ ≤ sup i∈I j>i |(M a ) ij | |(M a ) ii | -j<i |(M a ) ij |
(this is related to the Gauss-Seidel relaxation method; see for instance, Th. 8.2.12 in [START_REF] Stoer | Introduction to Numerical Analysis[END_REF]). By using the assumptions on the matrices M a , we have δ < 1. Hence, g is a contraction mapping on R I and therefore we obtain the existence and uniqueness of a solution of (64) as desired. 2

|v 0

 0 (x)| + |φ(t, x, a)| ≤ C 0 , |v 0 (t, x) -v 0 (s, y)| + |φ(t, x, a) -φ(s, y, a)| ≤ C 0 (|x -y| + |t -s| 1/2 ),

Therefore M - 1 τ

 1 ≥ 0 componentwise (for τ < 3/C), and using (49) it holds z ≤ M -1 τ w.

C 1 : 2 1 2 5. 2 .

 1222 = L + 4 b ∞ and have used again the Cauchy-Schwarz inequality. Hence, together with (54), this gives (46) with | • | = • and the constant C := 4( C 4η + r ∞ ). By using Lemma 11, this concludes the proof of Theorem 6. Linear equation with degenerate diusion term. The next result concerns the case of a possibly degenerate diusion term. It will require more restrictive

Proposition 13 .

 13 Let assumptions (A1'),(A2') and (A3') be satised. Then the stability estimate (47) holds for | • | = • . Remark 14. (i) If h x = h y and for instance h y = Ch x for some C ≥ 1, (A2') has to hold with σ 2 replaced by σ 2 /C as a result of the scaling properties of the scheme.

Fig. 1 .

 1 Fig. 1. Test 1: Initial data (dashed line) and numerical solution at time T = 0.2 computed for I + 1 = 200 and N = 20 (τ/h = 0.5) using BDF in time and centred approximation of the drift (left), BDF in time and space (right).

Fig. 3 .

 3 Fig. 3. Test 2: Initial data (top, left), numerical solution at time T = 0.5 (top, right) computed by the BDF2 scheme, second order derivative computed with CN scheme (bottom, left) and BDF2 (bottom, right) for N = 256 and I + 1 = 5120.

  (L a ) ii = (M a ) ii > 0, denoting v a := q a -U a c, it is easy to see by recursion in i that the unique solution of sup a∈Λ (L a X -v a ) = 0 is given byx i := inf a∈Λ (v a ) i -i-1 k=1 (L a ) ik x k /(L a ) ii .

Table 1

 1 

	norm	CPU (s)

Table 2

 2 

Table 3

 3 

Table 4

 4 

	N	I + 1	H 1 norm	L 2 norm	L ∞ norm	CPU (s)
			error	order	error	order	error	order	
	1	20	4.11E-02	-	7.01E-03	-	9.44E-03	-	0.149
	2	40	7.82E-03	2.39	1.45E-03	2.27	2.29E-03	2.04	0.113
	4	80	1.97E-03	1.99	3.87E-04	1.91	5.62E-04	2.03	0.111
	8	160	5.16E-04	1.94	1.02E-04	1.92	1.45E-04	1.95	0.128
	16	320	1.09E-04	2.24	2.67E-05	1.94	3.77E-05	1.95	0.166
	32	640	2.96E-05	1.88	7.15E-06	1.90	9.87E-06	1.93	0.188
	64	1280	7.64E-06	1.96	2.03E-06	1.82	2.61E-06	1.92	0.310
	128	2560	9.50E-05	-3.64	1.98E-05	-3.29	3.49E-05	-3.74	0.992
	256	5120	7.18E-04	-2.92	8.40E-05	-2.08	1.62E-04	-2.22	4.251

In practice, this means that a suciently accurate approximation of these boundary values has to be available. Boundary approximations with modied schemes are commonly used and are not the focus of this paper; it is seen in[START_REF] Picarelli | Error bounds for monotone schemes for parabolic Hamilton-Jacobi-Bellman equations in bounded domains[END_REF] that the use of a lower order scheme in the vicinity of the boundary does not aect the global provable convergence order.

The computational domain is given by Ω := (x min , x max ) × (y min , y max ). We introduce the discretization in space dened by the steps h x , h y > 0 and we denote by G (hx,hy) the associated mesh. In what follows, given any function φ of (x, y) ∈ Ω, we will denote φ ij = φ(x i , y j ) for (i, j) ∈ I := I 1 × I 2 , where I 1 = {1, . . . , I 1 }, I 2 = {1, . . . , I 2 }.

Assuming that ρ ≥ 0 everywhere (the case when ρ ≤ 0 is similar), we consider a 7-point stencil for the second order derivatives (see [START_REF] Hackbusch | Elliptic Dierential Equations: Theory and Numerical Treatment[END_REF]Section 5.1.4]):

and the BDF approximation of the rst order derivatives

The scheme is therefore dened, for k ≥ 2, by

A straightforward calculation shows that the second order term also reads

with

The scheme is completed with the following boundary conditions:

For simplicity, assume h x = h y =: h. We consider the following assumptions:

We then have the following result. The proof is similar to the one of Theorem 6, using (62) with α ij , β ij , γ ij ≥ 0 by assumption (A2'), and is therefore omitted.

Proof. We rst prove (ii). By Taylor expansion, we can write for instance, for some θ 1 , θ 2 ∈ [0, 1],

Similarly, using the higher spatial regularity, there exists a constant C 0 ≥ 0 such that

The result (ii) now follows directly by inserting the obtained truncation error into the stability estimate of Theorem 6.

For the proof of (i) (smooth case), expansion up to order 3 and 4 gives the truncation error of higher order for k ≥ 2, and we use the fact that the error from the rst backward Euler step is bounded by E 1 ≤ Cτ (τ + h 2 ); in particular, we use that (E

), E 0 = 0 and the bound is otherwise similar and simpler than that for k ≥ 2.

The previous arguments can also be used to derive error estimates for piecewise smooth solutions. In this case, we will need to limit the number of non-regular points that may appear in the exact solution (assumption (A6)(i) is similar to [START_REF] Bokanowski | High order nite dierence schemes for some nonlinear diusion equations with an obstacle term[END_REF]).

Assumption (A6

). There exists an integer p ≥ 1 and functions (x * j (t)) 1≤j≤p for t ∈ [0, T ], such that, with Ω * T := (Ω × (0, T ))\ 1≤j≤p {(t, x * j (t)), t ∈ (0, T )}, the following holds:

We give the following straightforward preliminary result without proof: Lemma 17. Assume (A6) and the CFL condition [START_REF] Hill | Approximation of the global attractor for the incompressible NavierStokes equations[END_REF]. Then for all t Card{j, x → v(t, x) not regular in [x j-2 , x j+2 ]} ≤ 5p and Card{j, θ → v(θ, x j ) not regular in [t -2τ, t]} ≤ Cp. for some constant C ≥ 0 independent of τ, h ("not regular" meaning not C 4 in the rst case and not C 3 in the second one).

Such a situation will be illustrated in the numerical example of Section 7.2.