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ABSTRACT 

This paper presents a method for real-time estimation of the kinematics and kinetics of a human 



body performing a sagittal symmetric motor task, which would minimize the impact of the 

stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional 

mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities 

and accelerations, and the segments lengths and inertial parameters) are estimated by a 

constrained extended Kalman filter (CEKF) that fuses input information made of both 

stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in 

order to obtain plausible state variables and the measurement covariance matrix of the filter 

accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of 

constraints and input redundant information would allow the method to attenuate the STA 

propagation to the end results. The method was evaluated in ten human subjects performing a 

squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS 

difference lower than 4 mm, thus in the range of STAs. The RMS differences between the 

measured ground reaction force and moment and those estimated using the proposed method (9 N 

and 10 Nm) were much lower than obtained using a classical inverse dynamics approach (22 N 

and 30 Nm). From the latter results it may be inferred that the presented method allows for a 

significant improvement of the accuracy with which kinematic variables and relevant time 

derivatives, model parameters and, therefore, intersegmental moments are estimated. 
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1 Introduction  

Stereophotogrammetric systems, which consist of multiple cameras able to track the location of 

markers placed on the body segments, allow the estimate of the instantaneous pose of bones and 

joint kinematics. Given a mechanical model of the locomotor apparatus, this kinematic 

information and measured external forces allow the estimate of joint kinetics through a bottom-up 

recursive Newton-Euler method. Alternatively, when the motion analysed is monopodalic or 

symmetric in the sagittal plane, a top-down recursive Newton-Euler method, which relies on 



kinematic data only, may be used. 

Whatever the method used, the estimate of joint kinetics suffers from the following major types 

of inaccuracies. One is related to the definition of the locomotor apparatus mechanical model. In 

particular, the geometric parameters, i.e. location of the joint centres and segment lengths, and 

body segment inertial parameters (BSIP: masses, positions of the centres of mass, and moments 

of inertia) are normally estimated using readily measurable anthropometric quantities and 

regression equations or geometric approximation, leading to limited accuracy (Robert et al., 

2007). The marker trajectories provided by stereophotogrammetric systems may be very accurate 

(Fohanno et al., 2014), however, the movement of the markers attached to the skin relative to the 

underlying bones, known as soft-tissue-artefact (STA), heavily degrades the estimation of bone 

pose (Stagni et al., 2000; Riemer et al., 2008; Lamberto et al., 2016). Lastly, the algorithms used 

to estimate first and second time derivatives of noisy position data also introduce errors.  

Cahouet et al. (2002) and Kuo (1998) have proposed a least-squares approach that adjusts the 

accelerations so that the error with which the Ground Reaction Forces and Moments (GRFM) are 

estimated using inverse dynamics is minimized. However, this approach may produce unrealistic 

accelerations since the algorithm, besides compensating for the differentiation error, concurrently 

compensates for the ensemble of the other above-mentioned error sources. 

Multi-body optimization is widely used to estimate instantaneous bone pose while reducing the 

impact of STA (Lu and O’Connor, 1999). This method controls joint movement but does not 

optimize time derivatives nor model parameters. The Extended Kalman Filter (EKF) has been 

proposed as an alternative for computing joint angles, velocities, and accelerations on-line 

(Cerveri et al., 2005; Ayusawa et al., 2013). Contrary to multi-body optimization, constraining 

variables in an EKF, for example ensuring that joint angles are within a plausible range, is not 

trivial (Simon, 2010). Regarding STA compensation, Cerveri et al. (2005) showed, although 

using simulated data only, that introducing the marker positions relative to the bone-embedded 

frames in the EKF’s state vector and an appropriate adjustment of the EKF parameters can reduce 

the STA impact on bone pose estimation by up to 50%. 

In this study, we propose a method to estimate the joint angles, velocities and accelerations, the 

segments lengths, local marker positions, and inertial parameters (state variables) by a 



constrained extended Kalman filter (CEKF) that fuses input information from both 

stereophotogrammetric skin-marker trajectories and dynamometric measurement data. The 

method, based on a bi-dimensional mechanical model of the locomotor apparatus, produces state 

variable values that are jointly constrained to be consistent with the kinetics of the movement as 

summarized by the ground reactions. The specific contributions of this paper are: 

- a new CEKF that saturates the filter gain in order to identify feasible joint kinematics and 

geometrical and inertial parameters of the mechanical model, 

- a systematic method for adjusting the measurement and process covariance matrices of the 

CEKF, 

- real-time estimates of the intersegmental moments characterized by an enhanced reliability. 

The performance of the proposed CEKF was assessed by determining the accuracy of the 

estimated GRFM components during the selected motor task. This was made possible by the fact 

that force-plate recordings were available and, for all practical purposes, could be assumed to be 

error-free. In addition, the accuracy with which GRFM components are estimated closely 

depends on the accuracies with which joint kinematics and model parameters are estimated and it 

is, therefore, a good indicator of the latter accuracies. It should also be emphasised that, due to 

the large dimension of the CEKF’s state vector, it is theoretically possible that accurate GRFM 

components are provided however accompanied by unrealistic solutions of the state vector. For 

this reason, the convergence of the kinematic variables estimated by the CEKF towards realistic 

values was also assessed.  

2 Material and methods 

2.1 The squat exercise 

The experiments involved ten young healthy volunteers (6 males, 4 females, age=33±5 years, 

mass=71±3 kg, height=1.72 ± 0.04 m). Fourteen reflective markers were located on the right 

lower and upper limbs and on the torso using a simplified Plug-in-Gait marker-set (Fig. 1). A 

force-plate (Bertec Inc, 1000 Hz) was used to record the GRFM (FM=[FX FY MZ]
T
), and a 

stereophotogrammetric system (9 Mx cameras, VICON, 100 frames/second) simultaneously 



recorded the marker trajectories. Volunteers were asked to perform ten consecutive squatting 

tasks at a self-selected pace and performing the movements in their sagittal plane, parallel to the 

global frame plane 
G
X

G
Y, and as symmetrically as possible with respect to it (Fig. 1). 

2.2 The mechanical model  

A mechanical model of the human locomotor system was created using a planar model composed 

of seven rigid segments (Fig.1). Segments were connected by seven cylindrical hinges θ=[θ1 θ2 θ3 

θ4 θ5 θ6 θ7]
T
. Toes were assumed to be stationary relative to the ground. The lower limb and 

shoulder joint centres were determined as in the Plug-in-Gait protocol. The lumbosacral and the 

abdominal-thoracic joint were determined as the midpoints between the PSI and ASI, and T10 

and STR markers, respectively. The elbow joint centre and the metatarsophalangeal joints were 

made to coincide with the ELB and TOE markers. The head was assumed rigidly attached to the 

thorax. Segment local frames had the Y axis joining their joint centres and the origin was the 

proximal joint centre. Their poses were expressed as a function of the segment lengths and joint 

angles. The positions of the markers in the global reference frame (
G
px, 

G
py) were expressed as a 

function of their local coordinates (
l
px, 

l
py), segment lengths, and the joint angles. The medio-

lateral coordinates resulting from the Plug-in-Gait protocol were disregarded. 

 

FIGURE 1 ABOUT HERE 

 

For each i
th

 segment of the mechanical model, a mass Mi, a moment of inertia around the z-axis 

ZZi, and two components of the first moment of mass (i.e., position of the centre of mass in its 

local frame multiplied by the corresponding segment mass, MXi, MYi) were defined. 

2.3  CEKF formulation 

The aim of the proposed CEKF is to real-time estimate the state vector composed of the seven (i= 

1 … 7) joint angles and derivatives, the segment geometric and inertial parameters, and the 

fourteen marker local positions (j=1 … 14): 



         ̇   ̈                                  
 ,     (1) 

given the artefact-affected marker trajectories in the global frame and the GRFM components as 

provided by a stereophotogrammetric system and a force-plate, respectively, by minimising the 

trace of the error covariance matrix P (Fig. 2).  

 

FIGURE 2 ABOUT HERE 

 

The next state estimate      and measurement update      (where k is the time index varying 

from k=1... number of samples) are defined as: 

      (  )     

      (  )              (2) 

where f is the process model and h is the measurement model. Vectors   and   represent the 

process and the measurement noise, assumed to be Gaussian with zero mean and covariance   

and  , respectively.  

The state vector that minimises the least-square difference between the measured and estimated   

vector is generated through the two-step prediction-update procedure described in figure 2. 

The state update equation assumes that the joint angles and velocities evolve linearly and that 

joint accelerations and the other parameters are constant. Thus for each segment i and each 

marker j, the state update vector is 
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where    is the time difference between samples, 0 and I are the null and identity matrices, 

respectively. 

The measurement vector at each time step k is composed of the measured global marker 

trajectories, GRFM components, and the subject total mass used as a “soft” constraint. 
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By adding inequality constraints to the original EKF formulation, the CEKF is created so that it 

ensures feasible values of the state vector elements. Using a method similar to that proposed by 

Gupta and Hauser (2007), the following constraints can be implemented: 

 {
    ̂     

    ̂     
               (5) 

where b and d are equality and inequality constraint vectors, respectively.  

At each time step, the Kalman gain and state update were computed and the element of the 

updated state vector were checked to be within their constraint limits. Then, if one element of the 

state vector was not within its limits, the vector  , initially set to zero, was updated with the 

corresponding limit value, the Kalman gain and the state vector were then re-computed as  

  
        

 (      
 )  (    ̂     )(  

   
    )

    
   

  
  (6) 

 ̂   
   ̂      

             (7) 



Constraints on the segment lengths and BSIP values were set using anthropometric tables 

(Dumas et al., 2007) and a threshold of +/-20 %, the maximal and minimal local markers 

positions (   ,   ) were constrained to lie within the segment maximal length and width: 
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where the subscript AT denotes parameters estimated using an anthropometric table,     and     

are lower and upper joint angle boundary values. 

2.4  CEKF parameter adjustment 

The parameters governing the CEKF behaviour are embodied in the process covariance matrix Q, 

the measurement covariance matrix R, and the initial values of the state vector x1 and state 

covariance matrix P. Parameter adjustment of the CEKF is of crucial importance since the noise 

parameters influence the filter stability and its convergence rate. The measurement covariance 

matrix R for the stereophotogrammetric system is usually set using the system’s noise. However, 

this is not appropriate as it fails to consider the additional noise introduced by the STA. 

Accordingly, the elements of R were given values describing the STA taken from the literature 

(Table 1). For the force-plate data the measurement noise provided by the manufacturer was 

used. 

Since the segment lengths, local positions of the markers, and BSIP are independent they should 

converge to a constant value. Conveniently, the error covariance matrix P will converge to zero 

for constant terms if elements of Q are set to zero (Southall et al., 1998). Process covariance 

values related to the evolution of the joint angles and derivatives (  ,   ̇   ̈) should be much 

larger to reflect the errors due to the constant acceleration assumption (eq.3). Therefore the 

process noise given by De Groote et al. (2008) can be used to determine Q: 
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The value    can be set up a priori if the maximal frequency content of the signal,     , the 

power spectral amplitude  , and the sampling frequency are known (Cerveri et al., 2003): 
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During a squat,      1 Hz can be assumed, and the maximal power spectral amplitude can be 

approximated from the fast Fourier transform of a representative joint angle curve of the knee 

calculated with the marker method. Finally,    was set to 1.10
3 

for all the joints. The proposed 

CEKF receives as input both kinematic and kinetic data, thus it is crucial to normalize the data: 

the rows of R, that correspond to marker data were scaled with a parameter   and the ones 

corresponding to the measured GRFM with a parameter  . The best threshold value of the RMSD 

between estimated and measured marker trajectories and components of the GRFM was 

determined iteratively. The coefficients were varied from 0 to 5.10
-3

 using a Monte-Carlo 

simulation with 10
3
 different combinations. 

For all the analyses, CEKF initial state vector values were set using the marker positions at the 

first sample of time to define an initial segment orientation and length. From the pose of the local 

frames, a first guess on the local marker positions was extrapolated. Finally, initial joint 

velocities and accelerations were assumed to be null at the first time step, and anthropometric 

table values (Dumas et al., 2007) were used to set the initial BSIP values.  

The initial error covariance matrix can be adjusted to improve EKF convergence rate. A low 

value of P will indicate that the corresponding state variable value can be trusted. Thus, the initial 

values of the state covariance matrix P were set using an approximate percentage of the 

uncertainties on the estimate of each parameter. For the joint kinematics variables, segment 

lengths and local marker positions, the initial state covariance matrix was set assuming an error 

of 20% of their initial value. The rows of the initial state covariance matrix P corresponding to 

each BSIP were set according to the findings of Riemer et al. (2008), who have compared the 

BSIP of several anthropomorphic tables.  



2.5 Analysis 

Using the CEKF optimized joint angular positions, velocities, and accelerations, segment lengths, 

and BSIP and a top-down recursive Newton-Euler method, the GRFM (FMf =[FfX FfY MfZ]
T
) and 

the lower limb and lumbosacral joint intersegmental moments (Γf) were estimated. 

For comparison purposes the above-mentioned variables were also estimated using a classical 

method. The joint angles θc, were calculated using the pose of the segment local frames 

determined using the raw stereophotogrammetric data. These angles were differentiated and 

filtered (Butterworth-5
th

 order, 10Hz) using a first order centred method. BSIPs were estimated 

using an anthropometric table (Dumas et al., 2007). Using these variables and parameters and a 

classical top-down approach, the GRFM (FMc) were estimated. The lower limb and lumbosacral 

joint intersegmental moments (Γc) were estimated using a bottom-up approach and the measured 

GRFM. 

The root mean square (RMSD) and the normalised root mean square differences (NRMSD), and 

the correlation coefficient (r) between the raw global marker positions and those estimated using 

the kinematic variables estimated by the CEKF, were calculated in order to determine the ability 

of the algorithm to converge to a realistic solution. 

The ability of the proposed method to attenuate the effects of experimental errors and artefacts, 

and the model parameter estimation errors was assessed by analysing the RMSD and the NRMSD 

between the CEKF estimated (FMf) and the measured values of the GRFM (FM); the latter were 

regarded as the true values. The RMSDs and the NRMSDs between the GRFM estimates (FMc) 

obtained using the classical method and the corresponding measured values (FM), and between 

the intersegmental moments at the lower limb and lumbosacral joints (Γf) based on CEKF output 

and those obtained using the classical method (Γc), were also computed. 

3 Results 

3.1  CEKF parameter adjustment 

Figure 3 presents the sensitivity analysis of the weighting between the kinematic and kinetic 

measured quantities. Out of 10
3
 weight combinations, 159 were not displayed since they led to 



filter instabilities. An L-shaped curve can be observed in figure 3a that describes the RMSD 

between the measured and estimated marker trajectories and components of the GRFM for all   

and β combinations. The inflection point of the L-curve shows the existence of an optimal trade-

off between the tracking of kinematic and kinetic data. When the error in both quantities 

increases a linear tendency is observable. This can be explained by the fact that the kinematic and 

dynamic models are intrinsically linked through the joint angles and segment lengths.  Figures 3b 

and 3c show the evolution of each of the RMSD depending on   and β.  The sum of the RMSD 

between estimated and measured GRFM is unitless. In order to find a less subject specific tuning 

of the   and β weights the following normalization is proposed: 

  (    )  

  (  )             (11) 

where   ,   , and   are the number of markers, and body height [m] and mass [kg], 

respectively. For the subject used for the sensitivity analysis,         are set at 635 and 4900, 

respectively, as indicated in figure 3 by the black cross. Even though these values do not match 

the inflection point of the L-curve exactly, the RMSD values given by this choice were very low 

(RMSD GRFM = 1.8; RMSD markers = 2.7 mm). The differences between the marker tracking 

RMSD calculated at the black cross point and at the exact curve inflexion point (1.9 mm) are 

within the accuracy of the stereophotogrammetric system and can be neglected. Consequently, 

for the subsequent analyses   and β were adjusted using the   , and    of each subject. 

 

3.2 Assessment 

Table 2 summarizes the differences between the CEKF estimated and measured global 

coordinates of the markers. It is shown that CEKF is able to track the marker trajectories with an 

average RMSD of 3±2mm, with the maximal NRMSD value observed for the heel and shoulder 

markers. 

 

The discrepancy between the components of the GRFM estimated using the proposed method 



(FMf) and the classical method (FMc) and the corresponding measured values is illustrated in 

figure 4 and Table 3. An average RMSD between FMf and FM of 3.4 N, 8.6 N and 9.5 Nm, for 

FX, FY, and MZ, respectively, was found. These values were at least 2.5 times smaller than the 

FMc components, obtained using the classical method. Differences were larger for FX and MZ.  

The correlation coefficients were on average higher than 0.92 for all variables with the lowest 

value of 0.77 for FX. In figure 4 it can be observed that after a short period of time 

(approximately 2 s) the CEKF successfully converged toward the measured values. 

 

Figure 4 and Table 3 also report the results of the comparison between the lower limb and 

lumbosacral intersegmental moments estimated using the CEKF outputs and the top-down 

method (Γf) and the bottom-up classical method (Γc).  

Figure 5 depicts the joint angles as estimated by the CEKF and as calculated using raw 

stereophotogrammetric data (classical method). The corresponding RMSD, NRMSD and r 

between CM and CEKF estimates were for   : 0.01 rad, 10 %, and 0.99; for   : 0.05, 2%, 0.97; 

for   : 0.19, 28%, and 0.99; for   : 0.08, 9 %, and 0.98; for   : 0.33, 56%, and 0.32; for   : 0.07, 

21%, and 0.26; and for   : 0.05, 21%, and 0.93. 

 

Figures 6 and 7 show how the model parameters vary during the first four squats of the series of 

ten for a randomly chosen subject. It can be seen that the BSIP are only slightly modified within 

the CEKF procedure. On the other hand, some lower limb segment lengths are modified 

substantially by cause of the inaccuracy of the initial values. Nevertheless all parameters 

converge towards a constant value after approximately 5 s. This is expected since the 

corresponding elements of the process covariance matrix Q were set to zero (Table 1). 

4 Discussion 

The estimation of joint kinematics and intersegmental moments using conventional motion 

analysis techniques is prone to experimental and modelling errors, typically associated with the 

STAs and the estimated BSIP. In the literature, both multi-body optimization and EKF have been 



proposed to compensate for the STA. In the proposed CEKF, all the state variables can be 

modified together to optimally track the STA-affected marker trajectories. Therefore, the RMSD 

can be further minimised because the segment lengths and the local positions of the markers were 

not strictly constant. Nevertheless, by setting to 0 the corresponding Q lines of the segment 

lengths, of the local marker positions, and of the BSIP, these parameters globally converge 

toward constant values. It was expected that, thanks to the model mechanical constraints and the 

introduction of kinetic input data, the STA would have had a reduced influence. However, since 

no model of the STA is embedded in the proposed CEKF, STA is not completely compensated 

for. This is reflected in the 3±2 mm RMSD on the marker trajectories as well as in the oscillations 

of the segment lengths. The total lower-limb length varies by 3 cm and after a few seconds 

converges toward a constant value. This can be due to the inaccuracy of the initial values of the 

geometrical parameters. Nevertheless, this variation is lower than the variation of the segment 

lengths that might be caused by the STA and by the incorrect estimate of the hip joint centre. One 

possible solution to further limit the impact of the STA on the identification of the segment 

lengths and BSIP could be to allow for the alteration of the local positions of the markers by 

setting the corresponding Q values not to be null.  

Further investigations should be carried out to compare our method with more advanced multi-

body optimization methods (Andersen et al., 2010a, Reinbolt et al., 2005). However, there is a 

serious gap in the literature regarding the tuning of the weights introduced to reflect the error 

distribution among the markers. For multi-body optimization methods that do not identify the 

geometrical parameters, the reported RMS errors affecting knee kinematics range between 1 and 

23 degrees (Andersen et al. 2010b, Li et al. 2012, Gasparutto et al., 2015, Clément et al., 2015, 

Richard et al., 2016, Clément et al., 2017). The maximal errors were obtained for subjects 

performing squatting activities as in the present study. 

Our method allows also to simultaneously identify the BSIPs that have a non-negligible influence 

on the accuracy of inverse dynamics outcome. The BSIP values estimated in this study do not 

strongly evolve from their initial values, set from anthropometric tables. This may be due to the 

fact that our subjects fit the population used to produce that table or to the fact that the solution of 

the CEKF procedure is not unique. In addition, the oversimplified model might degrade the 

estimate of the BSIP. However, for small relative motions it has been shown that some of the 



BSIPs, and typically head and trunk BSIPs during squat, regroup themselves in the so-called 

base-parameters (Bonnet et al., 2015). In the case of the analysed squat exercise, the motion may 

not have excited all of the BSIP. The intersegmental moments were modified by about 20Nm, 

i.e., up to 60%, at the hip joint. This difference is comparable to the results of the sensitivity 

analyses reported in the literature that altered both BSIPs and segment lengths (Riemer et al. 

2008). 

In conclusion, from the results presented herein it may be inferred that the proposed CEKF 

allows for a significant improvement of the accuracy with which kinematic variables and relevant 

time derivatives, model parameters and, therefore, intersegmental moments are estimated. This 

has been shown with reference to a sagittal symmetric exercise and using a 2D model. However, 

the CEKF is, in principle, applicable to a 3D model as well although this would entail 

considerably more parameters in the procedure and may exhibit a redundancy problem.  
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FIGURE LEGENDS 

Fig. 1. Seven-degree-of-freedom model of the human body used to analyse a squat exercise. Joint angles   

and segment lengths   are represented in (a) and (b), respectively. Figure c shows the segment definitions 

and the marker set. 

Fig. 2. Overview of the proposed constrained extended Kalman filter (CEKF).  ̂k|𝑘,     and   are the 

predicted mean and covariance of the state vector and the CEKF gain matrix, respectively. H and F are the 

Jacobian matrices of f and h calculated symbolically relative to the state vector. 

Fig. 3. Results of the sensitivity analysis performed to determine the weights trade-off between the 

kinematic and kinetic measured data. The black cross indicates the weight values chosen accounting for 

subject body mass and height. (a) Each grey dot indicates an α and β combination with corresponding 

RMSD between measured and estimated marker trajectories and GRFM. (b and c) Evolution of the RMSD 

between measured and estimated marker trajectories and GRFM as a function of α and β. 

Fig. 4. Results for a randomly chosen participant showing the GRFM components estimated using the 

proposed CEKF (FMf), estimated using the classical top-down method (CM) (FMc), and measured using a 

force-plate (FM). The lower limb and lumbosacral intersegmental moments (ankle: Γ2; knee: Γ3; hip: Γ4; 

lumbosacral joint: Γ5) estimated using the CEKF (Γf) and the bottom-up classical method (Γc) are also 

illustrated. The first four squats of the series of ten are shown. 

Fig. 5. Results relative to a randomly chosen volunteer showing the joint angles (Fig.1) estimated using 

the proposed filter (CEKF) and estimated using the classical method (CM). The first four squats of the 

series of ten are shown. 

Fig. 6. Results for a randomly chosen participant showing the time evolution of the segment mass and 

length estimates. The first four squats of the series of ten are shown. 

Fig. 7. Results for a randomly chosen participant showing the time evolution of the segment first and 

second moment of inertia estimates. The first four squats of the series of ten are shown. 

 

 

 

 

 

 



Table 1 Gain values of the measurement (R) and process (Q) covariance matrices used to adjust 

the CEKF behaviour. Expected soft tissue artefact (STA) influence for each marker and the force-

plate measurement noise used to fill the measurement matrix are taken from the quoted 

publications. The elements of the process covariance matrix relative to the joint kinematics are 

determined using equation 9 and set to zero if relative to the constant geometrical and inertial 

parameters. 

 Value Description Data Source 

     1.10
-3 

 Toe marker   Peters et al., 2010 

     2.7.10
-3 

 Heel marker   Peters et al., 2010 

     10.10
-3

  Ankle marker   Peters et al., 2010 

     15.10
-3 

 Shank marker    Peters et al., 2010 

     30.10
-3 

 Knee marker   Peters et al., 2010 

     11.10
-3 

 Thigh marker   Peters et al., 2010 

     1.10
-3 

 Posterior pelvis marker   Hara et al., 2014 

     17.10
-3 

 Anterior pelvis marker   Hara et al., 2014 

     10.7.10
-3 

 T10 marker   Zemp et al., 2014 

     15.10
-3 

 Sternum marker   Zemp et al., 2014 

    15.10
-3 

 C7 marker   Zemp et al., 2014 

     9.10
-3 

 Clavicle marker   Zemp et al., 2014 

     27.10
-3 

 Acromion marker   Zemp et al., 2014 

     10.10
-3 

 Elbow marker   empirical 

    0.1  Horizontal GRF  manufacturer 

    0.1  Vertical GRF manufacturer 

    0.1  Ground resultant moment  manufacturer 

      1.10
-4 

 Mass soft constraint  empirical  

      ̇    ̈ 1.10
3
 Joint, velocity and 

acceleration  

Cerveri et al., 2003 

   0 Lengths and inertial 

parameters 

Southall et al., 1998 

   0 Local marker coordinates  Southall et al., 1998 

 

  



Table 2 Results of the comparison between the measured and CEKF estimated global X and Y 

marker coordinates. Results have been reported as mean±SD over all the analysed squat trials and 

volunteers. 

 RMSD [mm] NRMSD [%] r 

X Y X Y X Y 

TOE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 1.0±0.0 

HEE 5.3±2.1 3.7±1.4 46.0±28.1 4.7±2.3 0.83±0.12 0.93±0.11 

ANK 0.6±0.2 0.7±0.6 0.4±0.1 2.0±1.6 0.92±0.24 0.76±0.26 

SHA 3.6±1.9 2.5±1.4 2.6±1.5 0.9±0.5 0.94±0.19 0.93±0.21 

KNE 5.0±2.3 2.5±1.2 4.7±2.3 0.5±0.2 0.95±0.18 0.95±0.16 

THI 0.9±0.6 1.9±1.8 6.2±4.9 0.5±0.2 0.94±0.19 0.98±0.01 

PSI 4.1±2.9 4.0±1.2 1.8±1.3 0.4±0.1 0.96±0.05 0.95±0.18 

ASI 4.7±3.3 4.6±2.3 10.1±7.5 0.5±0.2 0.97±0.04 0.99±0.02 

T10 3.9±3.2 2.6±1.4 1.9±1.7 0.2±0.1 0.92±0.09 0.95±0.17 

STR 5.8±3.5 2.3±0.6 12.7±8.2 0.2±0.0 0.88±0.11 0.96±0.11 

C7 5.4±3.2 2.2±1.2 3.7±3.3 0.2±0.0 0.94±0.13 0.92±0.31 

CLA 5.5±4.3 1.9±0.6 17.0±0.0 0.1±0.0 0.93±0.11 0.97±0.09 

SHO 5.1±3.9 2.5±1.1 17.2±8.8 0.1±0.0 0.93±0.12 0.98±0.03 

ELB 5.2±3.9 4.2±2.1 6.7±4.7 0.2±0.0 0.87±0.18 0.87±0.18 

 

  



Table 3 Root mean square (RMSD) and normalized root mean square difference (NRMSD) 

between ground reaction force and moment components (FX, FY, MZ) estimated using the CEKF 

and a classical top-down recursive Newton-Euler method (CM) and the corresponding measured 

values. The difference between the lower limb and lumbosacral intersegmental moments 

estimated using the CEKF (Γf) and the bottom-up classical method (Γc) is also illustrated. Results 

have been reported as mean±SD over all the analysed squat trials and volunteers. 

   RMSD NRMSD [%]        r 

FX 
CEKF 3.4±4.4 [N] 33±8 0.77±0.13 

CM 10.5±6.4 [N] 44±27 0.12±0.09 

FY 
CEKF 8.6±9.31 [N] 1.19±2.98 0.99±0.01 

CM 21.6±20 [N] 3.0±2.4 0.96±0.02 

MZ 
CEKF 9.5±12.4 [Nm] 12.6±10.7 0.85±0.02 

CM 29.2±25.3 [Nm] 26.7±15.0 0.62±0.19 

  (Ankle)  17.3±11.9 [Nm] 33.9±17.2 0.74±0.14 

  (Knee)  24.5±1.47 [Nm] 39.0±19.7 0.94±0.07 

  (Hip)  21.4±11.9 [Nm] 59.6±28.5 0.77±0.24 

  (Lumbosacral)  11.0±7.6 [Nm] 56.3±37.6 0.78±0.23 
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Figure 5 
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Figure 6 
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Figure 7 
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