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Introduction

Stereophotogrammetric systems, which consist of multiple cameras able to track the location of markers placed on the body segments, allow the estimate of the instantaneous pose of bones and joint kinematics. Given a mechanical model of the locomotor apparatus, this kinematic information and measured external forces allow the estimate of joint kinetics through a bottom-up recursive Newton-Euler method. Alternatively, when the motion analysed is monopodalic or symmetric in the sagittal plane, a top-down recursive Newton-Euler method, which relies on kinematic data only, may be used.

Whatever the method used, the estimate of joint kinetics suffers from the following major types of inaccuracies. One is related to the definition of the locomotor apparatus mechanical model. In particular, the geometric parameters, i.e. location of the joint centres and segment lengths, and body segment inertial parameters (BSIP: masses, positions of the centres of mass, and moments of inertia) are normally estimated using readily measurable anthropometric quantities and regression equations or geometric approximation, leading to limited accuracy [START_REF] Robert | Validation of net joint loads calculated by inverse dynamics in case of complex movements: Application to balance recovery movements[END_REF]. The marker trajectories provided by stereophotogrammetric systems may be very accurate [START_REF] Fohanno | Estimating joint kinematics of a whole body chain model with a closed-loop constraints[END_REF], however, the movement of the markers attached to the skin relative to the underlying bones, known as soft-tissue-artefact (STA), heavily degrades the estimation of bone pose [START_REF] Stagni | Effects of hip joint centre mislocation on gait analysis results[END_REF][START_REF] Riemer | Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait[END_REF][START_REF] Lamberto | To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts?[END_REF]. Lastly, the algorithms used to estimate first and second time derivatives of noisy position data also introduce errors. [START_REF] Cahouet | Static optimal estimation of joint accelerations for inverse dynamics problem solution[END_REF] and [START_REF] Kuo | A least-squares estimation approach to improving the precision of inverse dynamics computations[END_REF] have proposed a least-squares approach that adjusts the accelerations so that the error with which the Ground Reaction Forces and Moments (GRFM) are estimated using inverse dynamics is minimized. However, this approach may produce unrealistic accelerations since the algorithm, besides compensating for the differentiation error, concurrently compensates for the ensemble of the other above-mentioned error sources.

Multi-body optimization is widely used to estimate instantaneous bone pose while reducing the impact of STA [START_REF] Lu | Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints[END_REF]. This method controls joint movement but does not optimize time derivatives nor model parameters. The Extended Kalman Filter (EKF) has been proposed as an alternative for computing joint angles, velocities, and accelerations on-line [START_REF] Cerveri | Kinematical models to reduce the effect of skin artifacts on marker based human motion estimation[END_REF][START_REF] Ayusawa | Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems[END_REF]. Contrary to multi-body optimization, constraining variables in an EKF, for example ensuring that joint angles are within a plausible range, is not trivial [START_REF] Simon | Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[END_REF]. Regarding STA compensation, [START_REF] Cerveri | Kinematical models to reduce the effect of skin artifacts on marker based human motion estimation[END_REF] showed, although using simulated data only, that introducing the marker positions relative to the bone-embedded frames in the EKF's state vector and an appropriate adjustment of the EKF parameters can reduce the STA impact on bone pose estimation by up to 50%.

In this study, we propose a method to estimate the joint angles, velocities and accelerations, the segments lengths, local marker positions, and inertial parameters (state variables) by a constrained extended Kalman filter (CEKF) that fuses input information from both stereophotogrammetric skin-marker trajectories and dynamometric measurement data. The method, based on a bi-dimensional mechanical model of the locomotor apparatus, produces state variable values that are jointly constrained to be consistent with the kinetics of the movement as summarized by the ground reactions. The specific contributions of this paper are:

-a new CEKF that saturates the filter gain in order to identify feasible joint kinematics and geometrical and inertial parameters of the mechanical model, -a systematic method for adjusting the measurement and process covariance matrices of the CEKF, -real-time estimates of the intersegmental moments characterized by an enhanced reliability.

The performance of the proposed CEKF was assessed by determining the accuracy of the estimated GRFM components during the selected motor task. This was made possible by the fact that force-plate recordings were available and, for all practical purposes, could be assumed to be error-free. In addition, the accuracy with which GRFM components are estimated closely depends on the accuracies with which joint kinematics and model parameters are estimated and it is, therefore, a good indicator of the latter accuracies. It should also be emphasised that, due to the large dimension of the CEKF's state vector, it is theoretically possible that accurate GRFM components are provided however accompanied by unrealistic solutions of the state vector. For this reason, the convergence of the kinematic variables estimated by the CEKF towards realistic values was also assessed.

Material and methods

The squat exercise

The experiments involved ten young healthy volunteers (6 males, 4 females, age=33±5 years, mass=71±3 kg, height=1.72 ± 0.04 m). Fourteen reflective markers were located on the right lower and upper limbs and on the torso using a simplified Plug-in-Gait marker-set (Fig. 1). A force-plate (Bertec Inc, 1000 Hz) was used to record the GRFM (FM=[F X F Y M Z ] T ), and a stereophotogrammetric system (9 Mx cameras, VICON, 100 frames/second) simultaneously recorded the marker trajectories. Volunteers were asked to perform ten consecutive squatting tasks at a self-selected pace and performing the movements in their sagittal plane, parallel to the global frame plane G X G Y, and as symmetrically as possible with respect to it (Fig. 1).

The mechanical model

A mechanical model of the human locomotor system was created using a planar model composed of seven rigid segments (Fig. 1). Segments were connected by seven cylindrical hinges θ=[θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 ] T . Toes were assumed to be stationary relative to the ground. The lower limb and shoulder joint centres were determined as in the Plug-in-Gait protocol. The lumbosacral and the abdominal-thoracic joint were determined as the midpoints between the PSI and ASI, and T10 and STR markers, respectively. The elbow joint centre and the metatarsophalangeal joints were made to coincide with the ELB and TOE markers. The head was assumed rigidly attached to the thorax. Segment local frames had the Y axis joining their joint centres and the origin was the proximal joint centre. Their poses were expressed as a function of the segment lengths and joint angles. The positions of the markers in the global reference frame ( G p x , G p y ) were expressed as a function of their local coordinates ( l p x , l p y ), segment lengths, and the joint angles. The mediolateral coordinates resulting from the Plug-in-Gait protocol were disregarded.

FIGURE 1 ABOUT HERE

For each i th segment of the mechanical model, a mass M i , a moment of inertia around the z-axis ZZ i , and two components of the first moment of mass (i.e., position of the centre of mass in its local frame multiplied by the corresponding segment mass, MX i , MY i ) were defined.

CEKF formulation

The aim of the proposed CEKF is to real-time estimate the state vector composed of the seven (i= 1 … 7) joint angles and derivatives, the segment geometric and inertial parameters, and the fourteen marker local positions (j=1 … 14):

̇ ̈ , (1) 
given the artefact-affected marker trajectories in the global frame and the GRFM components as provided by a stereophotogrammetric system and a force-plate, respectively, by minimising the trace of the error covariance matrix P (Fig. 2).

FIGURE 2 ABOUT HERE

The next state estimate and measurement update (where k is the time index varying from k=1... number of samples) are defined as:

( ) ( ) (2) 
where f is the process model and h is the measurement model. Vectors and represent the process and the measurement noise, assumed to be Gaussian with zero mean and covariance and , respectively.

The state vector that minimises the least-square difference between the measured and estimated vector is generated through the two-step prediction-update procedure described in figure 2.

The state update equation assumes that the joint angles and velocities evolve linearly and that joint accelerations and the other parameters are constant. Thus for each segment i and each marker j, the state update vector is

[ ̇ ̈ ] [ [ ] ] [ ̇ ̈ ] , (3) 
where is the time difference between samples, 0 and I are the null and identity matrices, respectively.

The measurement vector at each time step k is composed of the measured global marker trajectories, GRFM components, and the subject total mass used as a "soft" constraint.

∑ (4)

By adding inequality constraints to the original EKF formulation, the CEKF is created so that it ensures feasible values of the state vector elements. Using a method similar to that proposed by [START_REF] Gupta | Kalman filtering with equality and inequality state constraints[END_REF], the following constraints can be implemented:

{ ̂ ̂ (5) 
where b and d are equality and inequality constraint vectors, respectively.

At each time step, the Kalman gain and state update were computed and the element of the updated state vector were checked to be within their constraint limits. Then, if one element of the state vector was not within its limits, the vector , initially set to zero, was updated with the corresponding limit value, the Kalman gain and the state vector were then re-computed as

( ) ( ̂ )( ) (6) ̂ ̂ (7)
Constraints on the segment lengths and BSIP values were set using anthropometric tables [START_REF] Dumas | Adjustments to McConville et al. and Young et al. body segment inertial parameters[END_REF] and a threshold of +/-20 %, the maximal and minimal local markers positions ( , ) were constrained to lie within the segment maximal length and width:

{ (8)
where the subscript AT denotes parameters estimated using an anthropometric table, and are lower and upper joint angle boundary values.

CEKF parameter adjustment

The parameters governing the CEKF behaviour are embodied in the process covariance matrix Q, the measurement covariance matrix R, and the initial values of the state vector x 1 and state covariance matrix P. Parameter adjustment of the CEKF is of crucial importance since the noise parameters influence the filter stability and its convergence rate. The measurement covariance matrix R for the stereophotogrammetric system is usually set using the system's noise. However, this is not appropriate as it fails to consider the additional noise introduced by the STA.

Accordingly, the elements of R were given values describing the STA taken from the literature (Table 1). For the force-plate data the measurement noise provided by the manufacturer was used.

Since the segment lengths, local positions of the markers, and BSIP are independent they should converge to a constant value. Conveniently, the error covariance matrix P will converge to zero for constant terms if elements of Q are set to zero [START_REF] Southall | Controllability and observability: Tools for Kalman filter design[END_REF]. Process covariance values related to the evolution of the joint angles and derivatives ( , ̇ ̈) should be much larger to reflect the errors due to the constant acceleration assumption (eq.3). Therefore the process noise given by De Groote et al. ( 2008) can be used to determine Q:

with

[ ] (9) 
The value can be set up a priori if the maximal frequency content of the signal, , the power spectral amplitude , and the sampling frequency are known [START_REF] Cerveri | Robust recovery of human motion from video using Kalman filters and virtual humans[END_REF]:

( ) (10) 
During a squat, 1 Hz can be assumed, and the maximal power spectral amplitude can be approximated from the fast Fourier transform of a representative joint angle curve of the knee calculated with the marker method. Finally, was set to 1.10 3 for all the joints. The proposed CEKF receives as input both kinematic and kinetic data, thus it is crucial to normalize the data:

the rows of R, that correspond to marker data were scaled with a parameter and the ones corresponding to the measured GRFM with a parameter . The best threshold value of the RMSD between estimated and measured marker trajectories and components of the GRFM was determined iteratively. The coefficients were varied from 0 to 5.10 -3 using a Monte-Carlo simulation with 10 3 different combinations.

For all the analyses, CEKF initial state vector values were set using the marker positions at the first sample of time to define an initial segment orientation and length. From the pose of the local frames, a first guess on the local marker positions was extrapolated. Finally, initial joint velocities and accelerations were assumed to be null at the first time step, and anthropometric table values [START_REF] Dumas | Adjustments to McConville et al. and Young et al. body segment inertial parameters[END_REF] were used to set the initial BSIP values.

The initial error covariance matrix can be adjusted to improve EKF convergence rate. A low value of P will indicate that the corresponding state variable value can be trusted. Thus, the initial values of the state covariance matrix P were set using an approximate percentage of the uncertainties on the estimate of each parameter. For the joint kinematics variables, segment lengths and local marker positions, the initial state covariance matrix was set assuming an error of 20% of their initial value. The rows of the initial state covariance matrix P corresponding to each BSIP were set according to the findings of [START_REF] Riemer | Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait[END_REF], who have compared the BSIP of several anthropomorphic tables.

Analysis

Using the CEKF optimized joint angular positions, velocities, and accelerations, segment lengths, and BSIP and a top-down recursive Newton-Euler method, the GRFM (FM f =[F fX F fY M fZ ] T ) and the lower limb and lumbosacral joint intersegmental moments (Γ f ) were estimated.

For comparison purposes the above-mentioned variables were also estimated using a classical method. The joint angles θ c , were calculated using the pose of the segment local frames determined using the raw stereophotogrammetric data. These angles were differentiated and filtered (Butterworth-5 th order, 10Hz) using a first order centred method. BSIPs were estimated using an anthropometric table [START_REF] Dumas | Adjustments to McConville et al. and Young et al. body segment inertial parameters[END_REF]. Using these variables and parameters and a classical top-down approach, the GRFM (FM c ) were estimated. The lower limb and lumbosacral joint intersegmental moments (Γ c ) were estimated using a bottom-up approach and the measured GRFM.

The root mean square (RMSD) and the normalised root mean square differences (NRMSD), and the correlation coefficient (r) between the raw global marker positions and those estimated using the kinematic variables estimated by the CEKF, were calculated in order to determine the ability of the algorithm to converge to a realistic solution.

The ability of the proposed method to attenuate the effects of experimental errors and artefacts, and the model parameter estimation errors was assessed by analysing the RMSD and the NRMSD between the CEKF estimated (FM f ) and the measured values of the GRFM (FM); the latter were regarded as the true values. The RMSDs and the NRMSDs between the GRFM estimates (FM c ) obtained using the classical method and the corresponding measured values (FM), and between the intersegmental moments at the lower limb and lumbosacral joints (Γ f ) based on CEKF output and those obtained using the classical method (Γ c ), were also computed.

Results

CEKF parameter adjustment

Figure 3 presents the sensitivity analysis of the weighting between the kinematic and kinetic measured quantities. Out of 10 3 weight combinations, 159 were not displayed since they led to filter instabilities. An L-shaped curve can be observed in figure 3a that describes the RMSD between the measured and estimated marker trajectories and components of the GRFM for all and β combinations. The inflection point of the L-curve shows the existence of an optimal tradeoff between the tracking of kinematic and kinetic data. When the error in both quantities increases a linear tendency is observable. This can be explained by the fact that the kinematic and dynamic models are intrinsically linked through the joint angles and segment lengths. Figures 3b and3c show the evolution of each of the RMSD depending on and β. The sum of the RMSD between estimated and measured GRFM is unitless. In order to find a less subject specific tuning of the and β weights the following normalization is proposed:

( ) ( ) (11) 
where , , and are the number of markers, and body height [m] and mass [kg],

respectively. For the subject used for the sensitivity analysis, are set at 635 and 4900, respectively, as indicated in figure 3 by the black cross. Even though these values do not match the inflection point of the L-curve exactly, the RMSD values given by this choice were very low (RMSD GRFM = 1.8; RMSD markers = 2.7 mm). The differences between the marker tracking RMSD calculated at the black cross point and at the exact curve inflexion point (1.9 mm) are within the accuracy of the stereophotogrammetric system and can be neglected. Consequently, for the subsequent analyses and β were adjusted using the , and of each subject.

Assessment

Table 2 summarizes the differences between the CEKF estimated and measured global coordinates of the markers. It is shown that CEKF is able to track the marker trajectories with an average RMSD of 3±2mm, with the maximal NRMSD value observed for the heel and shoulder markers.

The discrepancy between the components of the GRFM estimated using the proposed method (FM f ) and the classical method (FM c ) and the corresponding measured values is illustrated in figure 4 and Table 3. An average RMSD between FM f and FM of 3.4 N, 8.6 N and 9.5 Nm, for F X , F Y , and M Z , respectively, was found. These values were at least 2.5 times smaller than the FM c components, obtained using the classical method. Differences were larger for F X and M Z .

The correlation coefficients were on average higher than 0.92 for all variables with the lowest value of 0.77 for F X . In figure 4 it can be observed that after a short period of time (approximately 2 s) the CEKF successfully converged toward the measured values.

Figure 4 and Table 3 also report the results of the comparison between the lower limb and lumbosacral intersegmental moments estimated using the CEKF outputs and the top-down method (Γ f ) and the bottom-up classical method (Γ c ).

Figure 5 depicts the joint angles as estimated by the CEKF and as calculated using raw stereophotogrammetric data (classical method). The corresponding RMSD, NRMSD and r between CM and CEKF estimates were for : 0.01 rad, 10 %, and 0.99; for : 0.05, 2%, 0.97; for : 0.19, 28%, and 0.99; for : 0.08, 9 %, and 0.98; for : 0.33, 56%, and 0.32; for : 0.07, 21%, and 0.26; and for : 0.05, 21%, and 0.93.

Figures 6 and7 show how the model parameters vary during the first four squats of the series of ten for a randomly chosen subject. It can be seen that the BSIP are only slightly modified within the CEKF procedure. On the other hand, some lower limb segment lengths are modified substantially by cause of the inaccuracy of the initial values. Nevertheless all parameters converge towards a constant value after approximately 5 s. This is expected since the corresponding elements of the process covariance matrix Q were set to zero (Table 1).

Discussion

The estimation of joint kinematics and intersegmental moments using conventional motion analysis techniques is prone to experimental and modelling errors, typically associated with the STAs and the estimated BSIP. In the literature, both multi-body optimization and EKF have been proposed to compensate for the STA. In the proposed CEKF, all the state variables can be modified together to optimally track the STA-affected marker trajectories. Therefore, the RMSD can be further minimised because the segment lengths and the local positions of the markers were not strictly constant. Nevertheless, by setting to 0 the corresponding Q lines of the segment lengths, of the local marker positions, and of the BSIP, these parameters globally converge toward constant values. It was expected that, thanks to the model mechanical constraints and the introduction of kinetic input data, the STA would have had a reduced influence. However, since no model of the STA is embedded in the proposed CEKF, STA is not completely compensated for. This is reflected in the 3±2 mm RMSD on the marker trajectories as well as in the oscillations of the segment lengths. The total lower-limb length varies by 3 cm and after a few seconds converges toward a constant value. This can be due to the inaccuracy of the initial values of the geometrical parameters. Nevertheless, this variation is lower than the variation of the segment lengths that might be caused by the STA and by the incorrect estimate of the hip joint centre. One possible solution to further limit the impact of the STA on the identification of the segment lengths and BSIP could be to allow for the alteration of the local positions of the markers by setting the corresponding Q values not to be null.

Further investigations should be carried out to compare our method with more advanced multibody optimization methods (Andersen et al., 2010a[START_REF] Reinbolt | Determination of patient-specific multi-joint kinematic models through two-level optimization[END_REF]. However, there is a serious gap in the literature regarding the tuning of the weights introduced to reflect the error distribution among the markers. For multi-body optimization methods that do not identify the geometrical parameters, the reported RMS errors affecting knee kinematics range between 1 and 23 degrees (Andersen et al. 2010b[START_REF] Li | The inaccuracy of surface-measured modelderived tibiofemoral kinematics[END_REF][START_REF] Gasparutto | Validation of a multi-body optimization with knee kinematics models including ligament constraints[END_REF][START_REF] Clément | Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models[END_REF][START_REF] Richard | Knees kinematics estimation using multi-body optimisation embedding a knee joint stiffness matrix: a feasibility study[END_REF][START_REF] Clément | Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?[END_REF]. The maximal errors were obtained for subjects performing squatting activities as in the present study.

Our method allows also to simultaneously identify the BSIPs that have a non-negligible influence on the accuracy of inverse dynamics outcome. The BSIP values estimated in this study do not strongly evolve from their initial values, set from anthropometric tables. This may be due to the fact that our subjects fit the population used to produce that table or to the fact that the solution of the CEKF procedure is not unique. In addition, the oversimplified model might degrade the estimate of the BSIP. However, for small relative motions it has been shown that some of the BSIPs, and typically head and trunk BSIPs during squat, regroup themselves in the so-called base-parameters [START_REF] Bonnet | Fast determination of the planar body segment inertial parameters using affordable sensors[END_REF]. In the case of the analysed squat exercise, the motion may not have excited all of the BSIP. The intersegmental moments were modified by about 20Nm, i.e., up to 60%, at the hip joint. This difference is comparable to the results of the sensitivity analyses reported in the literature that altered both BSIPs and segment lengths [START_REF] Riemer | Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait[END_REF].

In conclusion, from the results presented herein it may be inferred that the proposed CEKF allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. This has been shown with reference to a sagittal symmetric exercise and using a 2D model. However, the CEKF is, in principle, applicable to a 3D model as well although this would entail considerably more parameters in the procedure and may exhibit a redundancy problem. Fig. 2. Overview of the proposed constrained extended Kalman filter (CEKF). ̂k|𝑘 , and are the predicted mean and covariance of the state vector and the CEKF gain matrix, respectively. H and F are the Jacobian matrices of f and h calculated symbolically relative to the state vector. Fig. 4. Results for a randomly chosen participant showing the GRFM components estimated using the proposed CEKF (FM f ), estimated using the classical top-down method (CM) (FM c ), and measured using a force-plate (FM). The lower limb and lumbosacral intersegmental moments (ankle: Γ 2; knee: Γ 3 ; hip: Γ 4; lumbosacral joint: Γ 5 ) estimated using the CEKF (Γ f ) and the bottom-up classical method (Γ c ) are also illustrated. The first four squats of the series of ten are shown. Table 1 Gain values of the measurement (R) and process (Q) covariance matrices used to adjust the CEKF behaviour. Expected soft tissue artefact (STA) influence for each marker and the forceplate measurement noise used to fill the measurement matrix are taken from the quoted publications. The elements of the process covariance matrix relative to the joint kinematics are determined using equation 9 and set to zero if relative to the constant geometrical and inertial parameters. 
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Fig. 1 .

 1 Fig. 1. Seven-degree-of-freedom model of the human body used to analyse a squat exercise. Joint angles and segment lengths are represented in (a) and (b), respectively. Figure c shows the segment definitions and the marker set.

Fig. 3 .

 3 Fig. 3. Results of the sensitivity analysis performed to determine the weights trade-off between the kinematic and kinetic measured data. The black cross indicates the weight values chosen accounting for subject body mass and height. (a) Each grey dot indicates an α and β combination with corresponding RMSD between measured and estimated marker trajectories and GRFM. (b and c) Evolution of the RMSD between measured and estimated marker trajectories and GRFM as a function of α and β.

Fig. 5 .

 5 Fig.5. Results relative to a randomly chosen volunteer showing the joint angles (Fig.1) estimated using the proposed filter (CEKF) and estimated using the classical method (CM). The first four squats of the series of ten are shown.

Fig. 6 .

 6 Fig. 6. Results for a randomly chosen participant showing the time evolution of the segment mass and length estimates. The first four squats of the series of ten are shown.

Fig. 7 .

 7 Fig. 7. Results for a randomly chosen participant showing the time evolution of the segment first and second moment of inertia estimates. The first four squats of the series of ten are shown.
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Table 2

 2 Results of the comparison between the measured and CEKF estimated global X and Y marker coordinates. Results have been reported as mean±SD over all the analysed squat trials and volunteers.

		RMSD [mm]	NRMSD [%]		r
		X	Y	X	Y	X	Y
	TOE	0.0±0.0 0.0±0.0	0.0±0.0	0.0±0.0	1.0±0.0	1.0±0.0
	HEE	5.3±2.1 3.7±1.4	46.0±28.1 4.7±2.3	0.83±0.12 0.93±0.11
	ANK	0.6±0.2 0.7±0.6	0.4±0.1	2.0±1.6	0.92±0.24 0.76±0.26
	SHA	3.6±1.9 2.5±1.4	2.6±1.5	0.9±0.5	0.94±0.19 0.93±0.21
	KNE	5.0±2.3 2.5±1.2	4.7±2.3	0.5±0.2	0.95±0.18 0.95±0.16
	THI	0.9±0.6 1.9±1.8	6.2±4.9	0.5±0.2	0.94±0.19 0.98±0.01
	PSI	4.1±2.9 4.0±1.2	1.8±1.3	0.4±0.1	0.96±0.05 0.95±0.18
	ASI	4.7±3.3 4.6±2.3	10.1±7.5 0.5±0.2	0.97±0.04 0.99±0.02
	T10	3.9±3.2 2.6±1.4	1.9±1.7	0.2±0.1	0.92±0.09 0.95±0.17
	STR	5.8±3.5 2.3±0.6	12.7±8.2 0.2±0.0	0.88±0.11 0.96±0.11
	C7	5.4±3.2 2.2±1.2	3.7±3.3	0.2±0.0	0.94±0.13 0.92±0.31
	CLA	5.5±4.3 1.9±0.6	17.0±0.0 0.1±0.0	0.93±0.11 0.97±0.09
	SHO	5.1±3.9 2.5±1.1	17.2±8.8 0.1±0.0	0.93±0.12 0.98±0.03
	ELB	5.2±3.9 4.2±2.1	6.7±4.7	0.2±0.0	0.87±0.18 0.87±0.18

Table 3

 3 Root mean square (RMSD) and normalized root mean square difference (NRMSD) between ground reaction force and moment components (F X , F Y , M Z ) estimated using the CEKF and a classical top-down recursive Newton-Euler method (CM) and the corresponding measured values. The difference between the lower limb and lumbosacral intersegmental moments estimated using the CEKF (Γ f ) and the bottom-up classical method (Γ c ) is also illustrated. Results have been reported as mean±SD over all the analysed squat trials and volunteers.

			RMSD	NRMSD [%]	r
	F X	CEKF CM	3.4±4.4 [N] 10.5±6.4 [N]	33±8 44±27	0.77±0.13 0.12±0.09
	F Y	CEKF CM	8.6±9.31 [N] 21.6±20 [N]	1.19±2.98 3.0±2.4	0.99±0.01 0.96±0.02
	M Z	CEKF CM	9.5±12.4 [Nm] 29.2±25.3 [Nm]	12.6±10.7 26.7±15.0	0.85±0.02 0.62±0.19
	(Ankle)		17.3±11.9 [Nm]	33.9±17.2	0.74±0.14
	(Knee)		24.5±1.47 [Nm]	39.0±19.7	0.94±0.07
	(Hip)		21.4±11.9 [Nm]	59.6±28.5	0.77±0.24
	(Lumbosacral)	11.0±7.6 [Nm]	56.3±37.6	0.78±0.23
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