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A Variational-Hemivariational Inequality

in Contact Mechanics

Mircea Sofonea, Weimin Han and Mikaël Barboteu

Abstract This chapter deals with a new mathematical model for the frictional
contact between an elastic body and a rigid foundation covered by a deformable layer
made of soft material. We study the model in the form of a variational-hemivariational
inequality for the displacement field. We review a unique solvability result of the
problem under certain assumptions on the data. Then we turn to the numerical solu-
tion of the problem, based on the finite element method. We derive an optimal order
error estimate for the linear finite element solution. Finally, we present numerical
simulation results in the study of a two-dimentional academic example. The theoret-
ically predicted optimal convergence order is observed numerically. Moreover, we
provide mechanical interpretations of the numerical results for our contact model.

1 Introduction

Phenomena of contact involving deformable bodies abound in industry and daily
life. Due to their inherent complexity, they lead to mathematical models expressed
in terms of nonlinear boundary value problems which, in variational formulation,
give rise to challenging inequality problems. Analysis of these problems is based
on arguments of nonlinear functional analysis through the theory of variational and
hemivariational inequalities.

The theory of variational inequalities started in early sixties and has gone through
substantial development since then, see for instance [1, 5, 6, 14] and the references
therein. It was built on arguments of monotonicity and convexity, including properties
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of the subdifferential of a convex function. In contrast, the theory of hemivariational
inequalities is based on properties of the subdifferential in the sense of Clarke, defined
for locally Lipschitz functions which may be nonconvex. Analysis of hemivariational
inequalities, including existence and uniqueness results, can be found in [12, 17, 20,
23]. Both variational and hemivariational inequalities have been extensively used
in the study of various problems in Mechanics, Physics and Engineering Sciences
and, in particular, in Contact Mechanics. References on this matter include [4, 7, 8,
13, 15, 17, 22–24, 26], among others. Variational-hemivariational inequalities are
inequality problems where both convex and nonconvex functions are involved. They
have been introduced in the pioneering work [21] and were further studied in [20, 23].

Recently, a new variational-hemivariational inequality is studied in [9]. The
inequality involves two nonlinear operators and two nondifferentiable functionals,
of which at least one is convex. There, solution existence, uniqueness and data con-
tinuous dependence are shown. Moreover, the finite element method is studied for
solving the inequality problem. For the first time in the literature, an optimal order
error estimate is derived for the linear element solution of a hemivariational inequal-
ity under appropriate solution regularity assumptions. A more general variational-
hemivariational inequality is analyzed in [19]. Solution existence and uniqueness are
proved, together with a result on the continuous dependence of the solution on the
data. This study was continuated in [10, 11] where numerical analysis of variational-
hemivariational inequalities was performed.

The purpose of this chapter is to illustrate the use of variational-hemivariational
inequalities in the analysis and numerical approximations of an elastic contact prob-
lem. We use an abstract result to prove the unique solvability of the problem. For the
finite element method of the problem, we derive error estimates, which are of optimal
order for the linear elements. We provide numerical simulation results to illustrate
the performance of the numerical method, including numerical convergence order.

The rest of the chapter is organized as follows. In Sect. 2 we introduce the con-
tact problem in which the material’s behavior is modeled with a nonlinear elastic
constitutive law and the contact conditions are in a subdifferential form and are asso-
ciated with unilateral constraints. In Sect. 3, we list the assumptions on the data and
state a unique solvability result on the problem. The proof of the unique solvability
statement is based on a recent abstract result obtained in [19]. In Sect. 4, we provide
numerical analysis of the contact model, including convergence and error estima-
tion results. Finally, in Sect. 5, we report numerical simulation results which provide
numerical evidence of our optimal order error estimate and give rise to interesting
mechanical interpretations.

2 The Contact Model

Let Ω be the reference configuration of the elastic body, assumed to be an open,
bounded and connected set in R

d (d = 2, 3). The boundary Γ = ∂Ω is assumed
Lipschitz continuous and is partitioned into three disjoint and measurable parts Γ1,
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Ŵ2 and Γ3 such that meas (Γ1) > 0. The body is in equilibrium under the action of a
body force of density f0 in Ω and a surface traction of density f2 on Γ2, is fixed on Γ1,
and is in frictional contact on Γ3 with a foundation. We use S

d for the space of second
order symmetric tensors on R

d . Also, “·” and “‖ · ‖” will represent the canonical inner
product and the Euclidean norm on the spaces R

d and S
d . We denote by u : Ω → R

d

and σ : Ω → S
d the displacement field and the stress field, respectively. In addition,

we use ε(u) to denote the linearized strain tensor. Let ν be the unit outward normal
vector, defined a.e. on Γ . For a vector field v, we use vν := v · ν and vτ := v − vνν

for the normal and tangential components of v on Γ . Similarly, for the stress field σ ,
its normal and tangential components on the boundary are defined as σν := (σν) · ν

and σ τ := σν − σνν, respectively.
With the above notation, the contact model to be studied is the following.

Problem P . Find a displacement field u : Ω → R
d , a stress field σ : Ω → S

d and

an interface force ξν : Γ3 → R such that

σ = F (ε(u)) in Ω, (1)

Div σ + f0 = 0 in Ω, (2)

u = 0 on Γ1, (3)

σν = f2 on Γ2, (4)

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0, ξν ∈ ∂ jν(uν) on Γ3, (5)

‖σ τ‖ ≤ Fb(uν), −σ τ = Fb(uν)
uτ

‖uτ‖
if uτ �= 0 on Γ3. (6)

In (1)–(6) and sometimes below, we do not indicate explicitly the dependence
of various functions on the spatial variable x ∈ Ω ∪ Γ . We now present a short
description of the equations and conditions in Problem P and we refer the reader to
the books [17, 26] for more details on the modelling of contact problems. First, Eq.
(1) is the constitutive law for elastic materials in which F represents the elasticity
operator, allowed to be nonlinear. Equation (2) is the equilibrium equation and is
used here since the process is assumed to be static. Condition (3) represents the
displacement condition and condition (4) is the traction condition. Relations (5) and
(6) represent the contact condition and the friction law, respectively. Here g ≥ 0, ∂ jν
denotes the Clarke subdifferential of the given function jν , and Fb denotes a positive
function, the friction bound.

Note that condition (5) models the contact with a foundation made of a rigid body
covered by a layer of soft material, say asperities. It is obtained through the following
considerations:

(a) The penetration is restricted by the rigid body, i.e.

uν ≤ g, (7)
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where g ≥ 0 represents the thickness of the soft layer. We consider the non-
homogeneous case, i.e., g is allowed to be a function of the spatial variable
x ∈ Γ3.

(b) The normal stress has an additive decomposition of the form

σν = σ D
ν + σ R

ν , (8)

where the term σ D
ν describes the reaction of the soft layer and σ R

ν describes the
reaction of the rigid body.

(c) The component σ D
ν satisfies a multivalued normal compliance condition of the

form
− σ D

ν ∈ ∂ jν(uν). (9)

Examples of contact conditions of the form (9) can be found in [17], for instance.
(d) The component σ R

ν satisfies the Signorini unilateral condition in a form with
the gap g, i.e.

σ R
ν ≤ 0, σ R

ν (uν − g) = 0. (10)

Comments and mechanical interpretation on the contact condition (10) can be
found in [24] and the references therein.

Denote −σ D
ν = ξν . Then, it is easy to see that the contact condition (5) is a direct

consequence of relations (7)–(9).
The friction law (6) was used in [25], associated with a multivalued normal com-

pliance contact condition without unilateral constraint. Here the friction bound Fb

may depend on the normal displacement uν , which is reasonable from the physical
point of view, as explained in [25].

Note that, due to the strong nolinearities involved, in general Problem P does not
have classical solution. Therefore, as usual in Contact Mechanics, its study is made by
using a weak formulation, the so-called variational formulation. The formulation will
allow one to prove the unique solvability of the problem and to construct numerical
schemes for the approximation of the weak solution.

3 Variational Analysis

In the study of Problem P we use standard notation for Lebesgue and Sobolev spaces.
For the stress and strain fields, we use the space Q = L2(Ω; S

d), which is a Hilbert
space with the canonical inner product

(σ , τ )Q :=

∫

Ω

σi j (x) τi j (x) dx, σ , τ ∈ Q
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and the associated norm ‖ · ‖Q . The displacement fields will be sought in a subset of
the space

V =
{

v = (vi ) ∈ H 1(Ω; R
d) | v = 0 on Γ1

}

.

Since meas (Γ1) > 0, it is known that V is a Hilbert space with the inner product

(u, v)V :=

∫

Ω

ε(u) · ε(v) dx, u, v ∈ V

and the associated norm ‖ · ‖V . We denote by V ∗ the topological dual of V , and by
〈·, ·〉V ∗×V the duality pairing of V and V ∗. When no confusion may arise, we simply
write 〈·, ·〉 instead of 〈·, ·〉V ∗×V . For v ∈ H 1(Ω; R

d) we use the same symbol v for
the trace of v on Γ . By the Sobolev trace theorem we have

‖v‖L2(Γ3;Rd ) ≤ ‖Ŵ‖ ‖v‖V ∀ v ∈ V, (11)

‖γ ‖ being the norm of the trace operator γ : V → L2(Γ3; R
d).

We now turn to the assumptions on the data. First, the elasticity operator
F : Ω × S

d → S
d and the potential function jν : Γ3 × R → R, are assumed to have

the following properties:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
d , a.e. x ∈ Ω,

‖F (x, ε1) − F (x, ε2)‖ ≤ LF‖ε1 − ε2‖;

(b) there exists mF > 0 such that for all ε1, ε2 ∈ S
d , a.e. x ∈ Ω,

(F (x, ε1) − F (x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖
2;

(c) F (·, ε) is measurable on Ω for all ε ∈ S
d;

(d) F (x, 0) = 0 for a.e. x ∈ Ω.

(12)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there
exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂ jν(x, r)| ≤ c̄0 + c̄1|r | for a.e. x ∈ Γ3,

for all r ∈ R with c̄0, c̄1 ≥ 0;

(d) j0
ν (x, r1; r2 − r1) + j0

ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|
2

for a.e. x ∈ Γ3, all r1, r2 ∈ R with α jν ≥ 0.

(13)

On the penetration bound g : Γ3 → R and the friction bound Fb : Γ3 × R → R+, we
assume

g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3, (14)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) there exists L Fb
> 0 such that

|Fb(x, r1) − Fb(x, r2)| ≤ L Fb
|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) Fb(·, r) is measurable on Γ3, for all r ∈ R;

(c) Fb(x, r) = 0 for r ≤ 0, Fb(x, r) ≥ 0 for r ≥ 0, a.e. x ∈ Γ3.

(15)
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Finally, on the densities of the body force and the surface traction, we assume

f0 ∈ L2(Ω; R
d), f2 ∈ L2(Γ2; R

d). (16)

Define f ∈ V ∗ by

〈f, v〉V ∗×V = (f0, v)L2(Ω;Rd ) + (f2, v)L2(Γ2;Rd ) ∀ v ∈ V . (17)

Corresponding to the constraint uν ≤ g on Γ3 in (5), we introduce the following
subset of the space V :

U := {v ∈ V | vν ≤ g on Γ3} . (18)

Also, we use the notation j0
ν (u, v) for the generalized directional derivative of jν at

u ∈ R in the direction v ∈ R, defined by

j0
ν (u; v) := lim sup

y→u, λ↓0

jν(y + λv) − jν(y)

λ
.

Then, from the definition of Clarke subdifferential the following implication holds:

ξν ∈ ∂ jν(uν) a.e. on Ŵ3 =⇒ j0
ν (uν; vν) ≥ ξνvν a.e. on Ŵ3, ∀ v ∈ V . (19)

By a standard approach, based on integration by parts and the inequality (19), the
following weak formulation of the contact problem P can be derived.
Problem PV . Find a displacement field u ∈ U such that

(F (ε(u)), ε(v − u))Q +

∫

Γ3

Fb(uν) (‖vτ‖ − ‖uτ‖) dΓ

+

∫

Γ3

j0
ν (uν; vν − uν) dΓ ≥ 〈f, v − u〉V ∗×V ∀ v ∈ U. (20)

Note that the inequality (20) has both a convex and nonconvex structure. Its convex
structure is given by the subset of the admisible displacement fields U , which is
convex, and the function

v �→

∫

Γ3

Fb(uν)‖vτ‖ dΓ,

which is a convex function on V . The nonconvex structure of the inequality (20)
follows from the term

∫

Γ3

j0
ν (uν; vν − uν) dΓ

which involves a possibly nonconvex locally Lipschitz functions jν . We conclude
from here that the inequality (20) represents a variational-hemivariational inequality.
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The analysis of inequalities of the form (20) has been carried out in [11, 19], in
an abstract functional framework. There, a general existence and uniqueness result
for inequalities with pseudomonotone operators was provided, under a smallness
assumption on the data. The use of this abstract result in the study of (20) is straigh-
forward and, therefore, we skip it. The main point is the use of smallness assumption,
that we describe in what follows.

Let λ1,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫

Ω

ε(u)·ε(v) dx = λ

∫

Γ3

u·v dΓ ∀ v ∈ V,

and let λ1ν,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫

Ω

ε(u)·ε(v) dx = λ

∫

Γ3

uνvνdΓ ∀ v ∈ V .

Assume also that
L Fb

λ−1
1,V + α jν λ

−1
1ν,V < mF , (21)

Then, using the abstract result in [11] it follows that, under the assumptions (12),
(12)–(16) and (21), Problem PV has a unique solution u ∈ U .

Let u ∈ U be the solution of Problem PV and denote by σ ∈ Q the function given
by σ = Fε(ν). The couple (u, σ ) is called a weak solution to the contact problem
P . We conclude from the above discussion that the latter has a unique weak solution.

4 Numerical Analysis

We now consider the finite element method of solving Problem PV . For simplic-
ity, assume Ω is a polygonal/polyhedral domain and express the three parts of the
boundary, Γk , 1 ≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

Γk = ∪
ik

i=1Γk,i , 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of Ω into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂Ω into Γk,i , 1 ≤ i ≤ ik , 1 ≤ k ≤ 3,
in the sense that if the intersection of one side/face of an element with one set Γk,i

has a positive measure with respect to Γk,i , then the side/face lies entirely in Γk,i .
Construct the linear element space corresponding to T h :

V h =
{

vh ∈ C(Ω)d | vh |T ∈ P1(T )d , T ∈ T
h, vh = 0 on Γ1

}

,
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and the related finite element subset Uh = V h ∩ U. Assume g is a concave function. 

Then
U h =

{

vh ∈ V h | vh
ν ≤ g at node points on Γ3

}

.

Note that 0 ∈ U h . Define the following numerical method for Problem PV .
Problem Ph

V . Find a displacement field uh ∈ U h such that

(F (ε(uh)), ε(vh − uh))Q +

∫

Γ3

Fb(u
h
ν)

(

‖vh
τ ‖ − ‖uh

τ ‖
)

dΓ

+

∫

Γ3

j0
ν (uh

ν ; vh
ν − uh

ν) dΓ ≥ 〈f, vh − uh〉V ∗×V ∀ vh ∈ U h . (22)

For an error analysis, we assume

u ∈ H 2(Ω)d , σν ∈ L2(Γ3)
d . (23)

Note that for many application problems, σν ∈ L2(Γ3)
d follows from u ∈ H 2(Ω)d ;

e.g., this is the case where the material is linearized elastic with suitably smooth
coefficients, or where the elasticity operator F depends on x smoothly.

The starting point for obtaining error estimates is the inequality

‖u − uh‖2
V ≤ c

[

‖u − vh‖2
V + ‖u − vh‖L2(Γ3)d + R(vh)

]

∀ vh ∈ U h . (24)

This inequality is based on the properties of the operators F , the function Fb, the
potential jν and the trace inequality (11). Its proof follows from an abstract error esti-
mation result in the study of elliptic variational-hemivariational inequalities which
can be found in [11]. In (24) and below, c represents a positive constant which does
not depend on h and whose value may change from line to line and R(vh) is a residual
term defined by

R(vh) = (F (ε(u)), ε(vh − u))Q +

∫

Γ3

Fb(uν)
(

‖vh
τ ‖ − ‖uτ‖

)

dΓ

+

∫

Γ3

j0
ν (uν; vh

ν − uν) dΓ − 〈f, vh − u〉V ∗×V .

We now derive a bound for this residual term and, to this end, we follow the
procedure found in [7]. Take v = u ± w with w in the subset Ũ of U defined by

Ũ :=
{

w ∈ C∞(Ω)d | w = 0 on Γ1 ∪ Ŵ3

}

,

and derive from (20) that

(F (ε(u)), ε(w))Q = 〈f, w〉V ∗×V ∀ w ∈ Ũ .
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 Therefore,

DivF (ε(u)) + f0 = 0 in Ω, (25)

σν = f2 on Γ2. (26)

Then multiply (25) by v − u with v ∈ U , integrate over Ω , and integrate by parts,

∫

∂Ω

σν·(v − u) dΓ −

∫

Ω

F (ε(u))·ε(v − u) dx +

∫

Ω

f0·(v − u) dx = 0,

i.e.,
∫

Ω

F (ε(u))·ε(v − u) dx = 〈f, v − u〉V ∗×V +

∫

Γ3

σν·(v − u) dΓ. (27)

Thus,

R(vh) =

∫

Γ3

[

σν·(vh − u) + Fb(uν)
(

‖vh
τ ‖ − ‖uτ‖

)

+ j0
ν (uν; vh

ν − uν)
]

dΓ,

and then,
∣

∣R(vh)
∣

∣ ≤ c ‖u − vh‖L2(Γ3)d . (28)

Finally, from (24), we derive the inequality

‖u − uh‖2
V ≤ c

(

‖u − vh‖2
V + ‖u − vh‖L2(Γ3)d

)

∀ vh ∈ U h . (29)

Under additional solution regularity assumption

u|Γ3,i
∈ H 2(Γ3,i ; R

d), 1 ≤ i ≤ i3, (30)

we have the optimal order error bound

‖u − uh‖V ≤ c h. (31)

We comment that similar results hold for the frictionless version of the model,
i.e., where the friction condition (6) is replaced by

σ τ = 0 on Γ3.

Then the problem is to solve the inequality (20) without the term

∫

Γ3

Fb(uν) (‖vτ‖ − ‖uτ‖) dΓ.
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The condition (21) reduces to α jν λ1
−

ν,
1
V < mF . The inequality (29) and the error 

bound (31) still hold for the linear finite element solution.

5 Numerical Simulations

This section is devoted to some numerical simulation results in order to illustrate the
solution of the frictional contact Problem Ph

V and to provide a numerical evidence of
the theoretical error bound obtained in Sect. 4. We comment that the solution of Prob-
lem Ph

V is based on numerical methods presented in detail in [2, 3]. Numerous stan-
dard numerical methods for contact mechanics can be found for instance in [16, 27].

Numerical example. The physical setting of the numerical example related to Prob-
lem Ph

V is depicted in Fig. 1. There, the unit square body Ω = (0, 1) × (0, 1) ⊂ R
2

is considered and

Γ1 = [0, 1] × {1}, Γ2 = ({0} × (0, 1)) ∪ ({1} × (0, 1)), Γ3 = [0, 1] × {0}.

The domain Ω represents the cross section of a three-dimensional linearly elastic
body subjected to the action of tractions in such a way that a plane stress hypothesis
is assumed. On the part Γ1 the body is clamped and, therefore, the displacement field
vanishes there. Horizontal compressions act on the part ({0} × [0.5, 1)) ∪ ({1} ×

[0.5, 1)) of the boundary Γ2 and the part ({0} × (0, 0.5)) ∪ ({1} × (0, 0.5)) is traction
free. Constant vertical body forces are assumed to act on the elastic body. We consider
that the deformable body is in frictional contact with an obstacle on the subset
Γ3 = [0, 1] × {0} of its boundary.

Fig. 1 Reference
configuration of the
two-dimensional example
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Let 0 < r1
ν < r2

ν be given, and let pν : R → R, jν : R → R be the functions
defined by

pν(r) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if r ≤ 0,

c1
νr if r ∈ (0, r1

ν ],

c1
νr1

ν + c2
ν(r − r1

ν ) if r ∈ (r1
ν , r2

ν ),

c1
νr1

ν + c2
ν(r

2
ν − r1

ν ) + c3
ν(r − r2

ν ) if r ≥ r2
ν ,

(32)

jν(r) =

∫ r

0

pν(s) ds ∀ s ∈ R. (33)

In the numerical example, we consder the frictional contact conditions (5) and (6) in
which the function jν is given by (32), (33) and

Fb(r) = μpν(r) ∀ r ∈ R (34)

where μ ≥ 0 represents a given coefficient of friction. Note that the fuction pν is
continuous but is not monotone and, therefore, jν is a locally Lipschitz nonconvex
function. With this choice, the frictional contact condition we use on Γ3 takes the
following form:

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0,

ξν =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if uν ≤ 0,

c1
νuν if uν ∈ (0, r1

ν ],

c1
νr1

ν + c2
ν(uν − r1

ν ) if uν ∈ (r1
ν , r2

ν ),

c1
νr1

ν + c2
ν(r

2
ν − r1

ν ) + c3
ν(uν − r2

ν ) if uν ≥ r2
ν ,

‖σ τ‖ ≤ μξν, −σ τ = μξν

uτ

‖uτ‖
if uτ �= 0.

The compressible material response, considered here, is governed by a linear
elastic constitutive law defined by the elasticity tensor F given by

(Fτ )αβ =
Eκ

1 − κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ , 1 ≤ α, β ≤ 2, ∀τ ∈ S

2,

where E and κ are Young’s modulus and Poisson’s ratio of the material and δαβ

denotes the Kronecker symbol.
For the numerical simulations, the following data are used:
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Fig. 2 Deformed meshes and interface forces on Γ3 corresponding to the Problem Ph
V

E = 2000N/m2, κ = 0.4,

f0 = (0,−0.5 × 10−3)N/m2,

f2 =

{

(8 × 10−3, 0) N/m on {0} × [0.5, 1),

(−8 × 10−3, 0) N/m on {1} × [0.5, 1),

c1
ν = 100, c2

ν = −100, c3
ν = 400, r1

ν = 0.1 m, r2
ν = 0.15 m,

g = 0.15 m μ = 0.2.

In Fig. 2, we plotted the deformed mesh and the interface forces on Γ3. We observe
that the contact nodes on the extremities of the boundary Γ3 are in multivalued
normal compliance with either backward slip (slip-) or forward slip (slip+); there,
the normal displacement uν does not reach the penetration bound, that is uν < g. All
the remaining nodes of Γ3 are in unilateral contact; there, the penetration bound is
reached, that is uν = g. Most of these nodes are in the slip status, except the node in
the center of the boundary Γ3 which is in stick status.

Numerical convergence orders. The aim of this part is to illustrate the convergence
of the discrete solutions and to provide numerical evidence of the optimal error
estimate obtained in Sect. 4. To this end, we computed a sequence of numerical
solutions by using uniform discretization of the Problem Ph

V according to the spatial
discretization parameter h. For instance, for h = 1/64, we obtained the deformed
configurations and the interface forces plotted in Fig. 2.

The numerical errors ‖u − uh‖E are computed by using the energy norm ‖ · ‖E

for several discretization parameters of h. The energy norm ‖ · ‖E is equivalent to
the canonical norm ‖ · ‖V . Since it is not possible to calculate the exact solution
u in an analytical way, we consider a “reference” solution uref corresponding to
a fine discretization of Ω , instead of the exact solution. Here, each line segment
component of the boundary Γ of Ω is divided into 1/h equal parts. We start with
h = 1/4 which is successively halved. The numerical solution uref corresponding to

12



Fig. 3 Relative numerical
errors in the energy norm for
Problem Ph

V

0,015625 0,03125 0,0625 0,125 0,25
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1

|| 
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|| E
 /

  
||u

re
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h = 1/256 was taken as the “reference” solution. This fine discretization corresponds
to a problem with 132612 degrees of freedom and 131329 finite elements. The
numerical results are presented in Fig. 3 where the dependence of the relative error
‖uref − uh‖E/‖uref‖E with respect to h is plotted for the Problem Ph

V . Note that
these results provide a numerical evidence of the theoretically predicted optimal
order estimate obtained in Sect. 4 and highlight the linear asymptotic convergence
of the numerical solutions.

Acknowledgements The work of W.H. was partially supported by NSF under grant DMS-1521684.

References

1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-
Boundary Problems. John Wiley, Chichester (1984)

2. Barboteu, M., Bartosz, K., Kalita, P.: An analytical and numerical approach to a bilateral contact
problem with nonmonotone friction. Int. J. Appl. Math. Comput. Sci. 23, 263–276 (2013)

3. Barboteu, M., Bartosz, K., Kalita, p, Ramadan, A.: Analysis of a contact problem with normal
compliance, finite penetration and nonmonotone slip dependent friction. Commun. Contemp.
Math. 15, 1350016 (2013). doi:10.1142/S0219199713500168

4. Eck, C., Jarušek, J., Krbec, M.: Unilateral Contact Problems: Variational Methods and Existence
Theorems, Pure and Applied Mathematics 270. Chapman/CRC Press, New York (2005)

5. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New
York (1984)

6. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities.
North-Holland, Amsterdam (1981)

7. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,
Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence, RI-
International Press, Somerville, MA (2002)

8. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn.
Springer-Verlag, New York (2013)

9. Han, W., Migórski, S., Sofonea, M.: A class of variational-hemivariational inequalities with
applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

10. Han, W., Sofonea, M., Barboteu, M.: Numerical Analysis of Elliptic Hemivariational Inequal-
ities, to appear in SIAM J. Numer. Anal

13



11. Han, W., Sofonea, M., Danan, D.: Numerical Analysis of Stationary Variational-
Hemivariational Inequalities (submitted)

12. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivaria-
tional Inequalities. Theory, Methods and Applications. Kluwer Academic Publishers, Boston,
Dordrecht, London (1999)
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