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A Variational-Hemivariational Inequality in Contact Mechanics

This chapter deals with a new mathematical model for the frictional contact between an elastic body and a rigid foundation covered by a deformable layer made of soft material. We study the model in the form of a variational-hemivariational inequality for the displacement field. We review a unique solvability result of the problem under certain assumptions on the data. Then we turn to the numerical solution of the problem, based on the finite element method. We derive an optimal order error estimate for the linear finite element solution. Finally, we present numerical simulation results in the study of a two-dimentional academic example. The theoretically predicted optimal convergence order is observed numerically. Moreover, we provide mechanical interpretations of the numerical results for our contact model.

Introduction

Phenomena of contact involving deformable bodies abound in industry and daily life. Due to their inherent complexity, they lead to mathematical models expressed in terms of nonlinear boundary value problems which, in variational formulation, give rise to challenging inequality problems. Analysis of these problems is based on arguments of nonlinear functional analysis through the theory of variational and hemivariational inequalities.

 and the references therein. It was built on arguments of monotonicity and convexity, including properties

Ŵ 2 and Γ 3 such that meas (Γ 1 )>0. The body is in equilibrium under the action of a body force of density f 0 in Ω and a surface traction of density f 2 on Γ 2 ,isfixedonΓ 1 , and is in frictional contact on Γ 3 with a foundation. We use S d for the space of second order symmetric tensors on R d .Also,"•" and " • " will represent the canonical inner product and the Euclidean norm on the spaces R d and S d . We denote by u : Ω → R d and σ : Ω → S d the displacement field and the stress field, respectively. In addition, we use ε(u) to denote the linearized strain tensor. Let ν be the unit outward normal vector, defined a.e. on Γ . For a vector field v,weusev ν := v • ν and v τ := vv ν ν for the normal and tangential components of v on Γ . Similarly, for the stress field σ , its normal and tangential components on the boundary are defined as σ ν := (σ ν) • ν and σ τ := σ νσ ν ν, respectively.

With the above notation, the contact model to be studied is the following. Problem P. Find a displacement field u : Ω → R d , a stress field σ : Ω → S d and an interface force ξ ν :

Γ 3 → R such that σ = F (ε(u)) in Ω, (1) 
Div σ + f 0 = 0 in Ω, (2) 
u = 0 on Γ 1 , (3) 
σ ν = f 2 on Γ 2 , (4) 
u ν ≤ g,σ ν + ξ ν ≤ 0,(u ν -g)(σ ν + ξ ν ) = 0,ξ ν ∈ ∂ j ν (u ν ) on Γ 3 , (5) 
σ τ ≤F b (u ν ), -σ τ = F b (u ν ) u τ u τ if u τ = 0 on Γ 3 . (6) 
In ( 1)-( 6) and sometimes below, we do not indicate explicitly the dependence of various functions on the spatial variable x ∈ Ω ∪ Γ . We now present a short description of the equations and conditions in Problem P and we refer the reader to the books [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems[END_REF][START_REF] Sofonea | Mathematical Models in Contact Mechanics[END_REF] for more details on the modelling of contact problems. First, Eq. ( 1) is the constitutive law for elastic materials in which F represents the elasticity operator, allowed to be nonlinear. Equation ( 2) is the equilibrium equation and is used here since the process is assumed to be static. Condition (3) represents the displacement condition and condition (4) is the traction condition. Relations ( 5) and ( 6) represent the contact condition and the friction law, respectively. Here g ≥ 0, ∂ j ν denotes the Clarke subdifferential of the given function j ν , and F b denotes a positive function, the friction bound.

Note that condition (5) models the contact with a foundation made of a rigid body covered by a layer of soft material, say asperities. It is obtained through the following considerations:

(a) The penetration is restricted by the rigid body, i.e.

u ν ≤ g, ( 7 
)
where g ≥ 0 represents the thickness of the soft layer. We consider the nonhomogeneous case, i.e., g is allowed to be a function of the spatial variable x ∈ Γ 3 . (b) The normal stress has an additive decomposition of the form

σ ν = σ D ν + σ R ν , (8) 
where the term σ D ν describes the reaction of the soft layer and σ R ν describes the reaction of the rigid body. (c) The component σ D ν satisfies a multivalued normal compliance condition of the form

-σ D ν ∈ ∂ j ν (u ν ). (9) 
Examples of contact conditions of the form (9) can be found in [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems[END_REF], for instance. (d) The component σ R ν satisfies the Signorini unilateral condition in a form with the gap g, i.e.

σ R ν ≤ 0,σ R ν (u ν -g) = 0. ( 10 
)
Comments and mechanical interpretation on the contact condition (10) can be found in [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and the references therein.

Denote -σ D ν = ξ ν . Then, it is easy to see that the contact condition ( 5) is a direct consequence of relations ( 7)- [START_REF] Han | A class of variational-hemivariational inequalities with applications to frictional contact problems[END_REF].

The friction law (6) was used in [START_REF] Sofonea | Numerical analysis of history-dependent variational inequalities with applications to contact problems[END_REF], associated with a multivalued normal compliance contact condition without unilateral constraint. Here the friction bound F b may depend on the normal displacement u ν , which is reasonable from the physical point of view, as explained in [START_REF] Sofonea | Numerical analysis of history-dependent variational inequalities with applications to contact problems[END_REF].

Note that, due to the strong nolinearities involved, in general Problem P does not have classical solution. Therefore, as usual in Contact Mechanics, its study is made by using a weak formulation, the so-called variational formulation. The formulation will allow one to prove the unique solvability of the problem and to construct numerical schemes for the approximation of the weak solution.

Variational Analysis

In the study of Problem P we use standard notation for Lebesgue and Sobolev spaces. For the stress and strain fields, we use the space Q = L 2 (Ω; S d ), which is a Hilbert space with the canonical inner product

(σ , τ ) Q := Ω σ ij (x)τ ij (x) dx, σ , τ ∈ Q
and the associated norm • Q . The displacement fields will be sought in a subset of the space

V = v = (v i ) ∈ H 1 (Ω; R d ) | v = 0 on Γ 1 .
Since meas (Γ 1 )>0, it is known that V is a Hilbert space with the inner product

(u, v) V := Ω ε(u) • ε(v) dx, u, v ∈ V
and the associated norm • V . We denote by V * the topological dual of V , and by •, • V * ×V the duality pairing of V and V * . When no confusion may arise, we simply write

•, • instead of •, • V * ×V .Forv ∈ H 1 (Ω; R d )
we use the same symbol v for the trace of v on Γ . By the Sobolev trace theorem we have

v L 2 (Γ 3 ;R d ) ≤ Ŵ v V ∀ v ∈ V, (11) 
γ being the norm of the trace operator γ :

V → L 2 (Γ 3 ; R d ).
We now turn to the assumptions on the data. First, the elasticity operator F : Ω × S d → S d and the potential function j ν : Γ 3 × R → R, are assumed to have the following properties:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a) there exists L F > 0 such that for all ε 1 , ε 2 ∈ S d , a.e. x ∈ Ω, F (x, ε 1 ) -F (x, ε 2 ) ≤L F ε 1 -ε 2 ; (b) there exists m F > 0 such that for all ε 1 , ε 2 ∈ S d , a.e. x ∈ Ω, (F (x, ε 1 ) -F (x, ε 2 )) • (ε 1 -ε 2 ) ≥ m F ε 1 -ε 2 2 ; (c) F (•, ε) is measurable on Ω for all ε ∈ S d ; (d) F (x, 0) = 0 for a.e. x ∈ Ω. (12) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a) j ν (•, r ) is measurable on Γ 3 for all r ∈ R and there exists ē ∈ L 2 (Γ 3 ) such that j ν (•, ē(•)) ∈ L 1 (Γ 3 ); (b) j ν (x, •) is locally Lipschitz on R for a.e. x ∈ Γ 3 ; (c) |∂ j ν (x, r )|≤ c0 +c 1 |r | for a.e. x ∈ Γ 3 , for all r ∈ R with c0 , c1 ≥ 0; (d) j 0 ν (x, r 1 ; r 2 -r 1 ) + j 0 ν (x, r 2 ; r 1 -r 2 ) ≤ α j ν |r 1 -r 2 | 2 for a.e. x ∈ Γ 3 , all r 1 , r 2 ∈ R with α j ν ≥ 0. ( 13 
)
On the penetration bound g : Γ 3 → R and the friction bound

F b : Γ 3 × R → R + ,we assume g ∈ L 2 (Γ 3 ), g(x) ≥ 0a .e. on Γ 3 , (14) 
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (a) there exists L F b > 0 such that |F b (x, r 1 ) -F b (x, r 2 )|≤L F b |r 1 -r 2 |∀ r 1 , r 2 ∈ R, a.e. x ∈ Γ 3 ; (b) F b (•, r ) is measurable on Γ 3 , for all r ∈ R; (c) F b (x, r ) = 0forr ≤ 0, F b (x, r ) ≥ 0forr ≥ 0, a.e. x ∈ Γ 3 . (15) 
Finally, on the densities of the body force and the surface traction, we assume

f 0 ∈ L 2 (Ω; R d ), f 2 ∈ L 2 (Γ 2 ; R d ). ( 16 
) Define f ∈ V * by f, v V * ×V = (f 0 , v) L 2 (Ω;R d ) + (f 2 , v) L 2 (Γ 2 ;R d ) ∀ v ∈ V. ( 17 
)
Corresponding to the constraint u ν ≤ g on Γ 3 in (5), we introduce the following subset of the space V :

U := {v ∈ V | v ν ≤ g on Γ 3 } . ( 18 
)
Also, we use the notation j 0 ν (u, v) for the generalized directional derivative of j ν at u ∈ R in the direction v ∈ R, defined by

j 0 ν (u; v) := lim sup y→u,λ↓0 j ν (y + λv) -j ν (y) λ .
Then, from the definition of Clarke subdifferential the following implication holds:

ξ ν ∈ ∂ j ν (u ν ) a.e. on Ŵ 3 =⇒ j 0 ν (u ν ; v ν ) ≥ ξ ν v ν a.e. on Ŵ 3 , ∀ v ∈ V. ( 19 
)
By a standard approach, based on integration by parts and the inequality [START_REF] Migórski | A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces[END_REF], the following weak formulation of the contact problem P can be derived.

Problem P V . Find a displacement field u ∈ U such that (F (ε(u)), ε(v -u)) Q + Γ 3 F b (u ν ) ( v τ -u τ ) dΓ + Γ 3 j 0 ν (u ν ; v ν -u ν ) dΓ ≥ f, v -u V * ×V ∀ v ∈ U. ( 20 
)
Note that the inequality (20) has both a convex and nonconvex structure. Its convex structure is given by the subset of the admisible displacement fields U , which is convex, and the function

v → Γ 3 F b (u ν ) v τ dΓ,
which is a convex function on V . The nonconvex structure of the inequality (20) follows from the term

Γ 3 j 0 ν (u ν ; v ν -u ν ) dΓ
which involves a possibly nonconvex locally Lipschitz functions j ν . We conclude from here that the inequality (20) represents a variational-hemivariational inequality.

The analysis of inequalities of the form (20) has been carried out in [START_REF] Han | Numerical Analysis of Stationary Variational-Hemivariational Inequalities[END_REF][START_REF] Migórski | A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces[END_REF], in an abstract functional framework. There, a general existence and uniqueness result for inequalities with pseudomonotone operators was provided, under a smallness assumption on the data. The use of this abstract result in the study of (20) is straighforward and, therefore, we skip it. The main point is the use of smallness assumption, that we describe in what follows.

Let λ 1,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V, Ω ε(u)•ε(v) dx = λ Γ 3 u•v dΓ ∀ v ∈ V,
and let λ 1ν,V > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V, Ω ε(u)•ε(v) dx = λ Γ 3 u ν v ν dΓ ∀ v ∈ V.
Assume also that

L F b λ -1 1,V + α j ν λ -1 1ν,V < m F , (21) 
Then, using the abstract result in [START_REF] Han | Numerical Analysis of Stationary Variational-Hemivariational Inequalities[END_REF] it follows that, under the assumptions ( 12), ( 12)-( 16) and ( 21), Problem P V has a unique solution u ∈ U . Let u ∈ U be the solution of Problem P V and denote by σ ∈ Q the function given by σ = F ε(ν). The couple (u, σ ) is called a weak solution to the contact problem P. We conclude from the above discussion that the latter has a unique weak solution.

Numerical Analysis

We now consider the finite element method of solving Problem P V . For simplicity, assume Ω is a polygonal/polyhedral domain and express the three parts of the boundary, Γ k ,1≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

Γ k =∪ i k i=1 Γ k,i , 1 ≤ k ≤ 3.
Let {T h } be a regular family of partitions of Ω into triangles/tetrahedrons that are compatible with the partition of the boundary

∂Ω into Γ k,i ,1≤ i ≤ i k ,1≤ k ≤ 3,
in the sense that if the intersection of one side/face of an element with one set Γ k,i has a positive measure with respect to Γ k,i , then the side/face lies entirely in Γ k,i . Construct the linear element space corresponding to T h :

V h = v h ∈ C(Ω) d | v h | T ∈ P 1 (T ) d , T ∈ T h , v h = 0 on Γ 1 ,
and the related finite element subset

U h = V h ∩ U. Assume g is a concave function. Then U h = v h ∈ V h | v h ν ≤ g at node points on Γ 3 .
Note that 0 ∈ U h . Define the following numerical method for Problem P V .

Problem P h V . Find a displacement field u h ∈ U h such that (F (ε(u h )), ε(v h -u h )) Q + Γ 3 F b (u h ν ) v h τ -u h τ dΓ + Γ 3 j 0 ν (u h ν ; v h ν -u h ν ) dΓ ≥ f, v h -u h V * ×V ∀ v h ∈ U h . (22) 
For an error analysis, we assume

u ∈ H 2 (Ω) d , σ ν ∈ L 2 (Γ 3 ) d . (23) 
Note that for many application problems, σ ν ∈ L 2 (Γ 3 ) d follows from u ∈ H 2 (Ω) d ; e.g., this is the case where the material is linearized elastic with suitably smooth coefficients, or where the elasticity operator F depends on x smoothly. The starting point for obtaining error estimates is the inequality

u -u h 2 V ≤ c u -v h 2 V + u -v h L 2 (Γ 3 ) d + R(v h ) ∀ v h ∈ U h . (24) 
This inequality is based on the properties of the operators F , the function F b ,t h e potential j ν and the trace inequality [START_REF] Han | Numerical Analysis of Stationary Variational-Hemivariational Inequalities[END_REF]. Its proof follows from an abstract error estimation result in the study of elliptic variational-hemivariational inequalities which can be found in [START_REF] Han | Numerical Analysis of Stationary Variational-Hemivariational Inequalities[END_REF]. In [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and below, c represents a positive constant which does not depend on h and whose value may change from line to line and R(v h ) is a residual term defined by

R(v h ) = (F (ε(u)), ε(v h -u)) Q + Γ 3 F b (u ν ) v h τ -u τ dΓ + Γ 3 j 0 ν (u ν ; v h ν -u ν ) dΓ -f, v h -u V * ×V .
We now derive a bound for this residual term and, to this end, we follow the procedure found in [START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF]. Take v = u ± w with w in the subset Ũ of U defined by

Ũ := w ∈ C ∞ (Ω) d | w = 0 on Γ 1 ∪ Ŵ 3 ,
and derive from (20) that

(F (ε(u)), ε(w)) Q = f, w V * ×V ∀ w ∈ Ũ . Therefore, DivF (ε(u)) + f 0 = 0 in Ω, (25) 
σ ν = f 2 on Γ 2 . (26) 
Then multiply [START_REF] Sofonea | Numerical analysis of history-dependent variational inequalities with applications to contact problems[END_REF]byvu with v ∈ U , integrate over Ω, and integrate by parts,

∂Ω σ ν•(v -u) dΓ - Ω F (ε(u))•ε(v -u) dx + Ω f 0 •(v -u) dx = 0, i.e., Ω F (ε(u))•ε(v -u) dx = f, v -u V * ×V + Γ 3 σ ν•(v -u) dΓ. ( 27 
)
Thus,

R(v h ) = Γ 3 σ ν•(v h -u) + F b (u ν ) v h τ -u τ + j 0 ν (u ν ; v h ν -u ν ) dΓ,
and then,

R(v h ) ≤ c u -v h L 2 (Γ 3 ) d . (28) 
Finally, from [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF], we derive the inequality

u -u h 2 V ≤ c u -v h 2 V + u -v h L 2 (Γ 3 ) d ∀ v h ∈ U h . ( 29 
)
Under additional solution regularity assumption

u| Γ 3,i ∈ H 2 (Γ 3,i ; R d ), 1 ≤ i ≤ i 3 , (30) 
we have the optimal order error bound

u -u h V ≤ ch. ( 31 
)
We comment that similar results hold for the frictionless version of the model, i.e., where the friction condition ( 6) is replaced by

σ τ = 0 on Γ 3 .
Then the problem is to solve the inequality (20) without the term

Γ 3 F b (u ν ) ( v τ -u τ ) dΓ.
The condition [START_REF] Panagiotopoulos | Nonconvex problems of semipermeable media and related topics[END_REF] 

reduces to α j ν λ 1 - ν, 1 
V < m F . The inequality (29) and the error bound (31) still hold for the linear finite element solution.

Numerical Simulations

This section is devoted to some numerical simulation results in order to illustrate the solution of the frictional contact Problem P h V and to provide a numerical evidence of the theoretical error bound obtained in Sect. 4. We comment that the solution of Problem P h V is based on numerical methods presented in detail in [START_REF] Barboteu | An analytical and numerical approach to a bilateral contact problem with nonmonotone friction[END_REF][START_REF] Barboteu | Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction[END_REF]. Numerous standard numerical methods for contact mechanics can be found for instance in [START_REF] Laursen | Computational Contact and Impact Mechanics[END_REF][START_REF] Wriggers | Computational Contact Mechanics[END_REF].

Numerical example. The physical setting of the numerical example related to Problem P h V is depicted in Fig. 1. There, the unit square body Ω = (0, 1) × (0, 1) ⊂ R 2 is considered and

Γ 1 =[0, 1]×{1},Γ 2 = ({0}×(0, 1)) ∪ ({1}×(0, 1)), Γ 3 =[0, 1]×{0}.
The domain Ω represents the cross section of a three-dimensional linearly elastic body subjected to the action of tractions in such a way that a plane stress hypothesis is assumed. On the part Γ 1 the body is clamped and, therefore, the displacement field vanishes there. Horizontal compressions act on the part ({0}×[0.5, 1)) ∪ ({1}× [0.5, 1)) of the boundary Γ 2 and the part ({0}×(0, 0.5)) ∪ ({1}×(0, 0.5)) is traction free. Constant vertical body forces are assumed to act on the elastic body. We consider that the deformable body is in frictional contact with an obstacle on the subset Γ 3 =[0, 1]×{0} of its boundary. 3 where the dependence of the relative error u refu h E / u ref E with respect to h is plotted for the Problem P h V . Note that these results provide a numerical evidence of the theoretically predicted optimal order estimate obtained in Sect. 4 and highlight the linear asymptotic convergence of the numerical solutions.

Fig. 1 Fig. 3 h = 1 /

 131 Fig. 1 Reference configuration of the two-dimensional example
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Let 0 < r 1 ν < r 2 ν be given, and let p ν : R → R, j ν : R → R be the functions defined by

In the numerical example, we consder the frictional contact conditions ( 5) and ( 6)in which the function j ν is given by ( 32), (33) and

where μ ≥ 0 represents a given coefficient of friction. Note that the fuction p ν is continuous but is not monotone and, therefore, j ν is a locally Lipschitz nonconvex function. With this choice, the frictional contact condition we use on Γ 3 takes the following form:

The compressible material response, considered here, is governed by a linear elastic constitutive law defined by the elasticity tensor F given by

where E and κ are Young's modulus and Poisson's ratio of the material and αβ denotes the Kronecker symbol.

For the numerical simulations, the following data are used: In Fig. 2, we plotted the deformed mesh and the interface forces on Γ 3 . We observe that the contact nodes on the extremities of the boundary Γ 3 are in multivalued normal compliance with either backward slip (slip-) or forward slip (slip+); there, the normal displacement u ν does not reach the penetration that is u ν < g.All the remaining nodes of Γ 3 are in unilateral contact; there, the penetration bound is reached, that is u ν = g. Most of these nodes are in the slip status, except the node in the center of the boundary Γ 3 which is in stick status.

Numerical convergence orders. The aim of this part is to illustrate the convergence of the discrete solutions and to provide numerical evidence of the optimal error estimate obtained in Sect. 4. To this end, we computed a sequence of numerical solutions by using uniform discretization of the Problem P h V according to the spatial discretization parameter h. For instance, for h = 1/64, we obtained the deformed configurations and the interface forces plotted in Fig. 2.

The numerical errors uu h E are computed by using the energy norm • E for several discretization parameters of h. The energy norm • E is equivalent to the canonical norm • V . Since it is not possible to calculate the exact solution u in an analytical way, we consider a "reference" solution u ref corresponding to a fine discretization of Ω, instead of the exact solution. Here, each line segment component of the boundary Γ of Ω is divided into 1/ h equal parts. We start with h = 1/4 which is successively halved. The numerical solution u ref corresponding to