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Finding cut-vertices in the square roots of a
graph ?

Guillaume Ducoffe1,2

1 Université Côte d’Azur, Inria, CNRS, I3S, France
2 National Institute for Research and Development in Informatics, Romania

Abstract. The square of a given graph H = (V,E) is obtained from H
by adding an edge between every two vertices at distance two in H. Given
a graph class H, the H-Square Root problem asks for the recognition
of the squares of graphs in H. In this paper, we answer positively to
an open question of [Golovach et al., IWOCA’16] by showing that the
squares of cactus-block graphs can be recognized in polynomial time.
Our proof is based on new relationships between the decomposition of
a graph by cut-vertices and the decomposition of its square by clique
cutsets. More precisely, we prove that the closed neighbourhoods of cut-
vertices in H induce maximal subgraphs of G = H2 with no clique-cutset.
Furthermore, based on this relationship, we can compute from a given
graph G the block-cut tree of a desired square root (if any). Although
the latter tree is not uniquely defined, we show surprisingly that it can
only differ marginally between two different roots. Our approach not
only gives the first polynomial-time algorithm for the H-Square Root
problem for several graph classes H, but it also provides a unifying
framework for the recognition of the squares of trees, block graphs and
cactus graphs — among others.

1 Introduction

This paper deals with the well-known concepts of square and square root in
graph theory. Roughly, the square of a given graph is obtained by adding an
edge between the pairs of vertices at distance two (technical definitions are post-
poned to Section 2). A square root of a given graph G has G as its square.
The reason for this terminology is that when encoding a graph as an adjacency
matrix A (with 1′s on the diagonal), its square has for adjacency matrix A2

–obtained from A using Boolean matrix multiplication. The squares of graphs
appear, somewhat naturally, in the study of coloring problems: when it comes
about modelling interferences at a bounded distance in a radio network [46]. Un-
surprisingly, there is an important literature on the topic, with nice structural
properties of square graphs being undercovered [2,6,15,30,33,35]. In particular,
an elegant characterization of the squares of graphs has been given in [37]. How-
ever, this does not lead to an efficient (polynomial-time) algorithm for recog-
nizing square graphs. Our main focus in the paper is on the existence of such
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algorithms. They are, in fact, unlikely to exist since the problem has been proved
NP-complete [36]. In light of this negative result, there has been a growing liter-
ature trying to identify the cases where the recognition of the squares of graphs
remains tractable [10,22,26,25,27,32,38]. We are interested in the variant where
the desired square root (if any) must belong to some specified graph class.

1.1 Related work

There is a complete dichotomy result for the problem when it is parameterized
by the girth of a square root. More precisely, the squares of graphs with girth at
least six can be recognized in polynomial time, and it is NP-complete to decide
whether a graph has a square root with girth at most five [1,13,14]. One first
motivation for our work was to obtain similar dichotomy results based on the
separators in a square root. We are thus more interested in graph classes with
nice separability properties, such as chordal graphs. Recognizing the squares of
chordal graphs is already NP-complete [26]. However, it can be done in polyno-
mial time for many subclasses [26,27,28,34,39,43].

The most relevant examples to explain our approach are the classes of trees [43],
block graphs [28] and cacti [19]. The squares of all these graphs can be recognized
in polynomial time. Perhaps surprisingly, whereas the case of trees is a well-
known success story for which many algorithmic improvements have been pro-
posed over the years [9,28,32,43], the polynomial-time recognition of the squares
of cactus graphs has been proved only very recently. A common point to these
three above classes of graphs is that they can be decomposed into very sim-
ple subgraphs by using cut-vertices (respectively, in edges for trees, in complete
graphs for block graphs and in cycles for cactus graphs). This fact is exploited in
the polynomial-time recognition algorithms for the squares of these graphs. We
observe that more generally, cut-vertices play a discrete, but important role, in
the complexity of the recognition of squares, even for general graphs. As an ex-
ample, most hardness results rely on a gadget called a “tail”, that is a particular
case of cut-vertices in the square roots [14,36]. Interestingly, this tail construction
imposes for some vertex in the square to be a cut-vertex with the same closed
neighbourhood in any square root. It is thus natural to ask whether more general
considerations on the cut-vertices can help to derive additional constraints on
the closed neighbourhoods in these roots. Our results prove that it is the case.

As stated before, we are not the first to study the properties of cut-vertices in
the square roots. In this respect, the work in [19] has been a major source of in-
spiration for this paper. However, most of the results so far obtained are specific
to some graph classes and they hardly generalize to more general graphs [19,28].
Evidence of this fact is that whereas both the squares of block graphs and the
squares of cacti can be recognized in polynomial time, the techniques involved
in these two cases do not apply to the slightly more general class of cactus-
block graphs (graphs that can be decomposed by cut-vertices into cycles and
complete graphs) [19]. In the end, the characterization of the cut-vertices in
these roots is only partial – even for cactus roots –, with most of the technical
work for the recognition algorithm being rather focused on the notion of tree



decompositions (e.g., clique-trees for chordal squares, or decomposition of the
square into bounded-treewidth graphs). Roughly, tree decompositions [42] aim
at decomposing graphs into pieces, called bags, organized in a tree-like manner.
The decomposition of a square root of a graph by its cut-vertices leads to a
specific type of tree decompositions for this graph that are called “H-tree de-
compositions” [18]. Note that it is not known whether a H-tree decomposition
can be computed in polynomial time. In contrast, we use in this work another
type of tree decompositions, called an atom tree, that generalizes the notion of
clique-trees for every graph. It can be computed in polynomial time [4].

1.2 Our contributions

Our work is based on new relationships between the cut-vertices in a given graph
and the clique-cutsets of its square (separators being a clique). These results are
presented in Section 3. In particular, we obtain a complete characterization of
the atoms of a graph (maximal subgraphs with no clique cutset) based on the
blocks of its square roots (maximal subgraphs with no cut-vertices).

The most difficult part is to show how to “reverse” these relationships: from
the square back to a square root. We prove in Section 4 that it can be done
to some extent. More precisely, in Section 4.1 we show that the “essential” cut-
vertices of the square roots, with at least two connected components not fully
contained in their closed neighbourhoods, are in some sense unique (independent
of the root) and that they can be computed in polynomial time, along with their
closed neighbourhood in any square root. Indeed, structural properties of these
vertices allow to reinterpret them as the cut-vertices of some incidence graphs
that can be locally constructed from the intersection of the atoms in an atom
tree (tree decomposition whose bags are exactly the atoms). Proving a similar
characterization for non essential cut-vertices remains to be done. We give suf-
ficient conditions and a complete characterization of the closed neighbourhoods
of the non essential cut-vertices for a large class of graphs in Section 4.2.

Then, inspired from these above results, we introduce a novel framework in
Section 5 for the recognition of squares3. Assuming a square root exists, we can
push further some ideas of Section 4 in order to compute, for every block in
this root, a graph that is isomorphic to its square. This way, a square root can
be computed for each square of a block separately. However, we need to impose
additional constraints on these roots in order to be able to reconstruct from
them a square root for the original graph. We thus reduce the recognition of
the squares to a stronger variant of the problem for the squares of biconnected
graphs. Let us point out that this approach can be particularly beneficial when
the blocks of a root are assumed to be part of a well-structured graph class.

In Section 6, we finally answer positively to an open question of [19] by
proving that the squares of cactus-block graphs can be recognized in polynomial
time. Our result is actually much more general, as it gives a unifying algorithm

3 Sufficient conditions for the framework to be applied are rather technical. They will
be properly stated in a journal version.



for many graph classes already known to be tractable (e.g., trees, block graphs
and cacti) and it provides the first polynomial time recognition algorithm for the
squares of related graph classes – such as Gallai trees [16]. In its full generality,
the result applies to “j-cactus-block graphs”: a generalization of cactus-block
graphs where each block is either a complete graph or the kth-power of a cycle,
for some 1 ≤ k ≤ j. As expected this last result is obtained by using our
framework. This application is not straightforward. Indeed, we need to show the
existence of a a j-cactus-block root with some “good” properties in order for the
framework to be applied. We also need to show that a stronger variant of the
recognition of squares (discussed in Section 5) can be solved in polynomial time
for j-cactus-block graphs when j is a fixed constant. We do so by introducing
classical techniques from the study of circular-arc graphs [45].

Although we keep the focus on square roots, we think that our approach
could be generalized in order to compute the cut-vertices in the p-th roots of a
graph (e.g., see [9] for related work on p-th tree roots). This is left for future
work. Due to lack of space, most proofs are only sketched or postponed to our
technical report [11]. Definitions and preliminary results are given in Section 2.
We conclude this paper in Section 7 with some open questions.

2 Preliminaries

We use standard graph terminology from [7]. All graphs in this study are finite,
unweighted and simple (hence with neither loops nor multiple edges), unless
stated otherwise. Given a graph G = (V,E) and a set S ⊆ V , we will denote
by G[S] the subgraph of G that is induced by S. The open neighbourhood of
S, denoted by NG(S), is the set of all vertices in G[V \ S] that are adjacent
to at least one vertex in S. Similarly, the closed neighbourhood of S is denoted
by NG[S] = NG(S) ∪ S. For every u, v ∈ V , vertex v is dominated by u if
NG[v] ⊆ NG[u]. In particular, if NG[u] = NG[v] then we say u and v are true
twins. If even more strongly, we have NG[w] ⊆ NG[u] for every w ∈ NG[v], then
u is a maximum neighbour of v.

2.1 Squares and powers of graphs

For every connected graph G and for every u, v ∈ V , the distance between u
and v in G, denoted by distG(u, v), is equal to the minimum length (number
of edges) of a uv-path in G. The jth-power of G is the graph Gj = (V,Ej)
with same vertex-set as G and an edge between every two distinct vertices at
distance at most j in G. In particular, the square of a graph G = (V,E) is the
graph G2 = (V,E2) with same vertex-set V as G and an edge between every
two distinct vertices u, v ∈ V such that NG[u] ∩NG[v] 6= ∅. Conversely, if there
exists a graph H such that G is isomorphic to H2 then H is called a square root
of G. On the one hand it is easy to see that not all graphs have a square root.
For example, if G is a tree with at least three vertices then it does not have
any square root. On the other hand, note that a graph can have more than one



square root. As an example, the complete graph Kn with n-vertices is the square
of any diameter two n-vertex graph.

In what follows, we will focus on the following recognition problem:

Problem 1 (H-square root).

Input: A graph G = (V,E).
Question: Is G the square of a graph in H ?

Our proofs will make use of the notions of subgraphs, induced subgraphs and
isometric subgraphs, the latter denoting a subgraph H of a connected graph G
such that distH(x, y) = distG(x, y) for every x, y ∈ V (H). Furthermore, let H be
a square root of a given graph G = (V,E). Given a walk W = (x0, x1, . . . , xl) in
G, an H-extension ofW is any walkW ′ of H that is obtained fromW by adding,
for every i such that xi and xi+1 are nonadjacent in H, a common neighbour
yi ∈ NH(xi) ∩NH(xi+1) between xi and xi+1.

2.2 Graph decompositions

A set S ⊆ V is a separator in a graph G = (V,E) if its removal increases the
number of connected components. A full component in G[V \S] is any connected
component C in G[V \S] satisfying that NG(C) = S (note that a full component
might fail to exist). The set S is called a minimal separator in G if it is a sepa-
rator and there are at least two full components in G[V \S]. Minimal separators
are closely related to the notion of Robertson and Seymour’s tree decompositions
(e.g., see [8,20,23,40]). Formally, a tree-decomposition (T,X ) of G is a pair con-
sisting of a tree T and of a family X = (Xt)t∈V (T ) of subsets of V indexed by
the nodes of T and satisfying:

–
⋃

t∈V (T )Xt = V ;

– for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;
– for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition.
In what follows, we will consider two main types of minimal separators.

Cut-vertices. If S = {v} is a separator then it is a minimal one and we call it a
cut-vertex of G. Following the terminology of [19], we name v an essential cut-
vertex if there are at least two components C1, C2 of G\v such that C1 6⊆ NG(v)
and similarly C2 6⊆ NG(v); otherwise, v is called a non essential cut-vertex4.
A graph G = (V,E) is biconnected if it is connected and it does not have a
cut-vertex. Examples of biconnected graphs are cycles and complete graphs.
Furthermore, the blocks of G are the maximal biconnected subgraphs of G. For

4 The authors in [19] have rather focused on the stronger notion of important cut-
vertices, that requires the existence of an additional third component C3 of G \ v
such that C3 6⊆ NG(v). We do not use this notion in our paper.



every connected graph G there is a tree whose nodes are the blocks and the
cut-vertices of G, sometimes called the block-cut tree, that is obtained by adding
an edge between every block B and every cut-vertex v such that v ∈ B. The
block-cut tree of a given connected graph G can be computed in linear time [24].

It has been observed that every graph with a square root is biconnected [15].
We often use this fact in what follows.

Clique cutsets. More generally, if S is a minimal separator inducing a complete
subgraph of G = (V,E) then we call it a clique cutset of G. A connected graph
G = (V,E) is prime if it does not have a clique cutset. Cycles and complete
graphs are again examples of prime graphs, and it can be observed more generally
that every prime graph is biconnected. The atoms of G are the maximal prime
subgraphs of G. They can be computed in polynomial time [29,44]. A clique-
atom is an atom inducing a complete subgraph. Furthermore, a simplicial vertex
is a vertex v ∈ V such that NG[v] is a clique. If the atoms of G are given,
then the clique-atoms and the simplicial vertices of G can be computed in linear
time [12]. Finally, it has been proved in [4] that the atoms of G are the bags of
a tree decomposition of G, sometimes called an atom tree. An atom tree can be
computed in O(nm)-time, and it is not necessarily unique [4].

3 Basic properties of the atoms in a square

We start presenting relationships between the block-cut tree of a given graph
and the decomposition of its square by clique cutsets (Theorem 1). These rela-
tionships are compared after the proof to some existing results in the literature
for the H-square root problem. More precisely, our approach in this paper is
based on the following relationship between the clique cutsets in a graph G and
the cut-vertices in its square-roots (if any).

Proposition 1. Let H = (V,E) be a graph. The closed neighbourhood of any
cut-vertex in H is a clique-atom of G = H2.

Proof. Let v ∈ V be a cut-vertex of H and let Av = NH [v]. It is clear that Av is
a clique of G and so, this set induces a prime subgraph of G. In particular, Av

must be contained in an atom A of G. Suppose for the sake of contradiction that
A 6= Av. Let u ∈ A\Av. This vertex u is contained in some connected component
Cu of H\v. Furthermore since v is a cut-vertex of H, there exists w ∈ NH(v)\Cu.
We claim that S = (Cu ∩NH(v)) ∪ {v} is an uw-clique separator of G. Indeed,
let us consider any uw-path P in G. We name Q = (x0 = u, x1, . . . , xl = w)
an arbitrary H-extension of P. Since Q is an uw-walk in H, and u and w
are in different connected components of H \ v, there exists an i such that
xi ∈ Cu, xi+1 = v. In particular, xi ∈ Cu ∩ NH(v) = S \ v. Furthermore, by
construction, for every two consecutive vertices xi, xi+1 in the H-extension Q,
at least one of xi or xi+1 belongs to P. As a result, every uw-path in G intersects
S, that proves the claim and so, that contradicts the fact that A is an atom of
G. Therefore, A = Av. Since Av is a clique it is indeed a clique-atom of G. ut



The above Proposition 1 unifies and generalizes some previous results that
have been found only for specific graph classes [19,28]. For example, it has been
proved in [28] that for every block-graph H, the closed neighbourhoods of its
cut-vertices are maximal cliques of its square. Our result shows that it holds for
any square root H (not only block-graphs). Indeed, a clique-atom is always a
maximal clique. Furthermore, our purpose with Theorem 1 is to give a partial
characterization of the remaining atoms of the square. Ideally, we would have
liked them to correspond to the blocks of its square roots. It turns out that this
is not always the case. However, there are strong ties between the two.

Theorem 1. Let H be a square root of a given graph G = (V,E). Then, the
atoms of G are exactly:

– the cliques Av = NH [v], for every cut-vertex v of H;
– and for every block B of H, the atoms A′ of H[B]2 that are not dominated

in H by a cut-vertex.

4 Computation of the cut-vertices from the square

Given a square graph G = (V,E), we aim at computing all the cut-vertices in
some square root H of G. More precisely, given two square roots H1 and H2 of
G, we say that H1 is “finer” than H2 if the blocks of H1 are contained in the
blocks of H2. The latter defines a partial ordering over the square roots of G, of
which we call maxblock square roots its minimal elements. This notion is related
to, but different than, the notion of minimal square root studied in [19]5. The
following section is based on Proposition 1, that gives a necessary condition for
a vertex to be a cut-vertex in any maxblock square root Hmax of G. Indeed, it
follows from this Proposition 1 that there is a mapping from the cut-vertices of
Hmax to the clique-atoms of its square G = H2

max. This mapping is injective but
in general it is not surjective. In what follows, we present sufficient conditions
for a clique-atom of G to be the closed neighbourhood of a cut-vertex in any
maxblock square root of G. In particular, we obtain a complete characterization
for the essential cut-vertices.

4.1 Recognition of the essential cut-vertices

We recall that a cut-vertex v of Hmax is called essential if there are two vertices
in different connected components of Hmax\v that are both at distance two from
v in Hmax. The remaining of the section is devoted to prove the following result.

Theorem 2. Let G = (V,E) be a square graph. Every maxblock square root of
G has the same set C of essential cut-vertices. Furthermore, every vertex v ∈ C
has the same neighbourhood Av in any maxblock square root of G. All the vertices
v ∈ C and their neighbourhood Av can be computed in O(n+m)-time if an atom
tree of G is given.



Algorithm 1 Computation of the essential cut-vertices.

Require: A graph G = (V,E); an atom tree (TG,A) of G.
Ensure: Returns (if G is a square) the set C of essential cut-vertices, and for every

v ∈ C its neighbourhood Av, in any maxblock square root of G.
1: C ← ∅.
2: for all clique-atom A ∈ A do
3: Compute the incidence graph IA = Inc(Ω(A), A), with Ω(A) being the multiset

of neighbourhoods of the connected components of G \A.
4: if

⋂
S∈Ω(A)

S = {v} and v is a cut-vertex of IA then

5: C ← C ∪ {v}; Av ← A.

The proof of Theorem 2 mainly follows from the correctness proof and the
complexity analysis of Algorithm 1. Its basic idea is that the essential cut-vertices
in any maxblock square root of G are exactly the cut-vertices in some “incidence
graphs”, that are locally constructed from the neighbourhoods of each clique-
atom in the atom tree. Formally, for every clique-atom A of G, let Ω(A) contain
NG(C) for every connected component C of G\A (note that Ω(A) is a multiset,
with its cardinality being equal to the number of connected components in G\A).
The incidence graph IA = Inc(Ω(A), A) is the bipartite graph with respective
sides Ω(A) and A and an edge between every S ∈ Ω(A) and every u ∈ S.

We first need to observe that for every v ∈ A, v is a cut-vertex of IA if and
only if there is a bipartition P,Q of the connected components of G\A such that
NG(P )∩NG(Q) = {v}. Then, we subdivide the correctness proof of Algorithm 1
in two lemmas.

Lemma 1. Let H be a square root of a given graph G = (V,E), let v ∈ V be an
essential cut-vertex of H and let Av = NH [v]. Then, v has a neighbour in G in
every connected component of G \ Av. Furthermore, there is a bipartition P,Q
of the connected components of G \Av such that NG(P ) ∩NG(Q) = {v}.

Proof. First, observe that for every connected component D of G \Av, we have
that NH(D)∩Av 6= ∅. Since Av = NH [v], it follows that v ∈ NG(D). In particu-
lar, v has a neighbour in G in every connected component of G \Av. Second, let
C1, C2, . . . , Ck be all the connected components of H \v such that Ci 6⊆ Av. Note
that k ≥ 2 by the hypothesis. Furthermore, since for every i 6= j and for every
ui ∈ Ci \Av, uj ∈ Cj \Av, we have distH(ui, uj) = distH(ui, v)+distH(uj , v) ≥
4, there can be no edge between Ci\Av and Cj \Av in G. It implies that for every
component D of G \Av, there is an 1 ≤ i ≤ k such that D ⊆ Ci \Av. So, let us
group the components of G \ Av in order to obtain the sets Ci \ Av, 1 ≤ i ≤ k.
For every 1 ≤ i ≤ k, we have {v} ⊆ NG(Ci \ Av) ⊆ (NH(v) ∩ Ci) ∪ {v}. In
particular, for every i 6= j, we obtain NG(Ci \Av)∩NG(Cj \Av) = {v}. Hence,
let us bipartition the sets Ci \ Av into two nonempty supersets P and Q; by
construction we have NG(P ) ∩NG(Q) = {v}. ut
5 Let H be closed under edge deletion. If G has a square root in H then there exists

a finest square root H ∈ H such that H is a minimal square root of G.



It turns out that conversely, Lemma 1 also provides a sufficient condition
for a vertex v to be an essential cut-vertex in some square root of G (and in
particular, in any maxblock square root). We formalize this next.

Lemma 2. Let Hmax be a maxblock square root of a given graph G = (V,E),
and let v ∈ V . Suppose there is a clique-atom Av of G and a bipartition P,Q
of the connected components of G \Av such that NG(P ) ∩NG(Q) = {v}. Then,
for every square root H of G, we have NH(P ) ∪ NH(Q) ⊆ NH(v) ⊆ Av. In
particular, v is an essential cut-vertex of Hmax and NHmax [v] = Av.

Correctness of Algorithm 1 follows from Lemmas 1 and 2. In order to obtain a
linear-time implementation, we replace the incidence graph IA with a “reduced
version” I∗A, where we only consider the adhesion sets in an atom tree of G
(intersection of A with the adjacent atoms in the atom tree). Indeed, doing
so we simply discard the neighbourhoods of some components that are strictly
contained in the neighbourhood of another component. Using the fact that G is
biconnected, it can be shown that this does not affect the outcome. This allows
us to achieve a time complexity that is linear in the size of the atom tree, and
so, linear in the size of the input graph G.

4.2 Sufficient conditions for non essential cut-vertices

We let open whether a good characterization of non essential cut vertices can
be found. The remaining of this section is devoted to partial results in this
direction. In general, not all the maxblock square roots of a graph have the same
set of non essential cut-vertices. Our main result in this section is a complete
characterization of the closed neighbourhoods of such vertices in any finest square
root with some prescribed properties being satisfied by its blocks (Theorem 3).

Non essential cut-vertices are strongly related to simplicial vertices in the
square. In general, if a clique-atom of G contains a simplicial vertex then it may
not necessarily represent the closed neighbourhood of such a cut-vertex. However,
we can prove it is always the case if the vertex is simple, i.e., it is simplicial and
the closed neighbourhoods of its neighbours can be linearly ordered by inclusion.

Lemma 3. Let Hmax be a maxblock square root of a graph G = (V,E). If there
exists a simple vertex u in G then it has a neighbour v ∈ NG(u) that is a non
essential cut-vertex of Hmax. Furthermore, NHmax

[v] = NG[u].

Before concluding this section, we now state its main result.

Theorem 3. Let G = (V,E) be a connected graph that is not a complete graph.
Furthermore let Hmax be a finest square root of G with the property that, for
every block B of Hmax, we have: Hmax[B] has no dominated vertex, unless B
is a clique6; and Hmax[B]2 is prime. Then, a clique-atom A of G is the closed
neighbourhood of a non essential cut-vertex in Hmax if and only if it is a leaf in
some atom tree of G.

6 This first assumption on the blocks may look a bit artificial. However, we emphasize
that it holds for every regular graph [3].



Sketch proof. Let H be any square root of G with its blocks satisfying the two
assumptions of the theorem. By analogy between the block-cut tree of H and an
atom tree of G, it can be shown that the closed neighbourhood of a non essential
cut-vertex in H satisfies the condition of the theorem. Conversely, if a clique-
atom of G is a leaf in some atom tree, then either it is the closed neighbourhood
of some (non essential) cut-vertex, or it is the square of a block B of H with
diameter two. In the latter case, we deduce from the hypothesis – that there
can be no dominated vertex in B – that B must contain a single cut-vertex v of
H. Let us pairwise connect all the neighbours of v in B. Then, let us make of
all the remaining vertices in B \NH [v] a set of pending vertices adjacent to an
arbitrary neighbour u ∈ NH(v) ∩ B. In doing so, we keep the property to be a
square root of G and we strictly increase the number of blocks. ut

5 Reconstructing the block-cut tree of a square root

Given a graph G = (V,E), we propose a generic approach in order to compute
the block-cut tree of one of its square-roots (if any). More precisely, we remind
that a square root Hmax of G is called a maxblock square root if there does not
exist any other square root H 6= Hmax of G with all its blocks being contained
in the blocks of Hmax. We suppose we are given the closed neighbourhoods of all
the cut-vertices in some maxblock square root Hmax of G (the cut-vertices may
not be part of the input). Based on this information, we show how to compute
for every block of Hmax a graph that is isomorphic to its square.

Theorem 4. Let Hmax be a maxblock square root of a graph G = (V,E), and
let A1, A2, . . . , Ak be the closed neighbourhoods of every cut-vertex in Hmax. For
every block B of Hmax, we can compute a graph GB that is isomorphic to its
square. Furthermore, if B is not isomorphic to K2 then we can also compute the
mapping from V (GB) to B. It can be done in O(n+m)-time in total if an atom
tree of G is given.
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(b) Square G = H2.
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(c) Incidence graph. (d) Block-cut tree.

Fig. 1: Computation of the connected components in a square root.

Sketch proof. This part reuses the same techniques as Section 4.1. Given a clique-
atom A and its incidence graph IA, we can compute the blocks of IA. Then,
let us define the following equivalence relation over the connected components
of G \ A: C ∼A C ′ if and only if NG(C) and NG(C ′) (taken as elements of



Ω(A)) are in the same block of IA. The latter relation naturally extends to an
equivalence relation over V \ A: for every two components C,C ′ of G \ A and
for every u ∈ C, u′ ∈ C ′, u ≡A u′ if and only if C ∼A C ′. In doing so, the
equivalence classes of ≡A partition the set V \ A. We refer to Figure 1 for an
illustration of the procedure. Furthermore, it can be proved that when A is the
closed-neighbourhood of a cut-vertex v in Hmax, the equivalence classes of ≡A

are exactly the sets Ci \ A, 1 ≤ i ≤ l, with C1, . . . , Cl being the connected
components of Hmax. Applying this procedure sequentially to all the clique-
atoms that represent the closed neighbourhood of a cut-vertex in Hmax, we
can compute the squares of each block of Hmax \ v. This can be done in total
O(n+m)-time by carefully using the adhesion sets in an atom tree of G. ut

Then, we wish to solve the H-square root problem for each square of a
block separately. However, doing so, we may not be able to reconstruct a square
root for the original graph. Indeed, the closed neighbourhoods of cut-vertices
are imposed, and these additional constraints may be violated by the partial
solutions. We thus need to solve the following stronger version of the problem.

Problem 2 (H-square root with neighbours constraints).

Input: A graph G = (V,E); a list NF of pairs 〈v,Nv〉 with v ∈ V, Nv ⊆ V ;
a list NA of subsets Ni ⊆ V, 1 ≤ i ≤ k.

Question: Are there a graph H ∈ H and a sequence v1, v2, . . . , vk ∈ V of
pairwise distinct vertices such that H is a square root of G, and:
– ∀〈v,Nv〉 ∈ NF , we have NH [v] = Nv

– ∀1 ≤ i ≤ k, we have NH [vi] = Ni; furthermore, 〈vi, Ni〉 /∈ NF ?

To our best knowledge, this variant has not been studied before in the lit-
erature. We show how to solve it for some graph classes in the next section.
Intuitively, the list NF represents the essential cut-vertices and their closed
neighbourhoods in the block. The list NA represents the closed neighbourhoods
of non essential cut-vertices. Furthermore, non essential cut-vertices correspond
to the vertices v1, . . . , vk to be computed. Notice that we need to ensure that all
the vi’s are distinct in case there may be true twins in a square root. We also
need to ensure that 〈vi, Ni〉 /∈ NF for the same reason.

6 Application to trees of cycle-powers

A cycle-power graph is any jth-power Cj
n of the n-node cycle Cn, for some

j, n ≥ 1. A tree of cycle-powers is a graph whose blocks are cycle-power graphs. In
particular, a j-cactus-block graph is a graph whose blocks are complete graphs or
kth-powers of cycles, for any 1 ≤ k ≤ j. This above class generalizes the classes of
trees, block graphs and cacti: where all the blocks are edges, complete subgraphs
and cycles, respectively. Other relevant examples are the class of cactus-block
graphs (a.k.a., 1-cactus-block graphs with our terminology): where all the blocks
are either cycles or complete subgraphs [41]; and the Gallai trees, that are the
cactus-block graphs with no block being isomorphic to an even cycle [16]. Our



main result in this section is that the squares of these graphs can be recognized
in polynomial time:

Theorem 5. For every fixed j ≥ 1, the squares of j-cactus-block graphs can be
recognized in O(nm)-time.

Up to simple changes, the proof of Theorem 5 applies to all the subclasses
mentioned above. This solves for the first time the complexity of the H-square
root problem for the cactus-block graphs and Gallai trees:

Theorem 6. Squares of cactus-block graphs, resp. squares of Gallai trees, can
be recognized in O(nm)-time.

(a) A pending block. (b) Non-essential cut. (c) Splittable block. (d) Essential cut.

Fig. 2: Local modifications of the blocks.

The proof of Theorem 5 is twofold. We seek for a square root H of G that is a
tree of cycle-powers and maximizes its number of blocks. First we show that the
cut-vertices in this square root are exactly those characterized by Theorems 2
and 3. We do so by adapting the respective techniques from Lemma 2 and Theo-
rem 3 in order to increase the number of cut-vertices. An illustration is provided
with Figure 2. Then, we need to show that H-square root with neighbours
constraints can be solved in linear time for j-cactus-block graphs. This is done
by exploiting the fact that cycle-power graphs are circular-arc graphs (intersec-
tion graphs of intervals on the cycle) with a unique circular-arc model [21,31].

7 Conclusion

We intend the framework introduced in this paper to be applied for solving
the H-square root problem in other graph classes – e.g., graphs with special
treewidth at most two [5]. Furthermore, we leave the existence of a full char-
acterization of non essential cut-vertices in the square roots as an interesting
open question. More generally, we aim at better understanding the relationships
between small-size separators in a graph and small-diameter separators in its
square. As an example, we believe that by studying the relationships between
edge-separators in a graph and quasi-clique cutsets in its square (clique with one
edge removed), we could improve the recognition of the squares of outerplanar
graphs [17]. Let us mention that the complexity of recognizing the squares of
planar graphs is still open.
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