The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule

Sason Shaik, David Danovich, Benoît Braïda, Philippe C. Hiberty

- To cite this version:

Sason Shaik, David Danovich, Benoît Braïda, Philippe C. Hiberty. The Quadruple Bonding in C 2 Reproduces the Properties of the Molecule. Chemistry - A European Journal, 2016, 22 (12), pp.41164128. 10.1002/chem. 201600011 . hal-01627878

HAL Id: hal-01627878
https://hal.science/hal-01627878
Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Quadruple Bonding in C_{2} Reproduces the Properties of the Molecule

Sason Shaik, ${ }^{[a]}$ David Danovich, ${ }^{[a]}$ Benoit Braida, ${ }^{[b]}$ and Philippe C. Hiberty* ${ }^{[c]}$
The paper is dedicated to Andreas Savin, a great scientist and a Mensch, on occasion of his 65 ${ }^{\text {th }}$ birthday

Abstract

Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C_{2} is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruplybonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond

strength of which is estimated as $17-21 \mathrm{kcal} \mathrm{mol}^{-1}$. Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol^{-1}, respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the ${ }^{3} \Sigma_{u}^{+}$state. C_{2} 's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding!

Introduction

Ever since Cotton described the $\operatorname{Re} \equiv \operatorname{Re}$ quadruple bonding in $\mathrm{Re}_{2} \mathrm{Cl}_{8}{ }^{2-},{ }^{[1]}$ there has been a surge of interest in multiple bonding, ${ }^{[2]}$ reaching quintuple and even sextuple bonding in, for example, $\mathrm{Cr}_{2}, \mathrm{~W}_{2}$ and U_{2} complexes and dimers. ${ }^{[3]}$ In contrast to these high bond multiplicities among transition metals and rare earths elements, we and our students with us have been taught that the maximum bond multiplicity between two main elements is a triple bond, ${ }^{[4]}$ for example, as in acetylene, which was asserted by Lewis ${ }^{[4 a]}$ to possess the highest possible union between two atoms. Nevertheless, there are diatomic molecules, for example, C_{2}, which possess eight valence electrons and a singlet ground state. Could it be that carbon breaks the glass ceiling and has a quadruple bonding in this molecule ${ }^{[5-7]}$

[^0]This fundamental question guided us ever since we started the research on C_{2} and its isoelectronic species. ${ }^{[6,7]}$ Meanwhile, C_{2} is interesting also because of its chemistry and spectroscopic properties. ${ }^{[8-10]}$ Thus, C_{2} is no exotic curiosity, but an important chemical species. ${ }^{[11]}$ It is responsible for the blue glow ("Swan bands") emanating from hydrocarbon flames ${ }^{[12]}$ and for cometic light. ${ }^{[8 c, 11]}$ It is a constituent of solid-state carbides, ${ }^{[9]}$ and it is implicated in diamond growth ${ }^{[13]}$ and in the formation of fullerenes. ${ }^{[14]} \mathrm{C}_{2}$ is also one of the most strongly bound diatomic molecules in nature. ${ }^{[15]}$ However, quite paradoxically, despite the strong bond in C_{2}, this molecule is very highly reactive ${ }^{[8 d, 15]}$ and is not isolable. Its reactivity may reflect the presence of the diradicaloid ${ }^{3} \Pi_{u}$ state ${ }^{[8 d]}$ very close to the ground state, or to simply originate from the multiply-bonded nature of the ground state (or its inverted weak σ bond; see later). Indeed, based on experience, the reactivity of multiplybonded CC-based molecules increases with the bond multiplicity, so that triple bonds are frequently more reactive than double bonds, ${ }^{[8 \mathrm{e}]}$ and both multiple bonds, in turn, are more reactive than single bonds. And for all these fundamental and practical reasons, it is very important to reach a consensus about the nature of its bonding. Bonding is after all at the heart of chemistry.

A simplified molecular orbital (MO) consideration of bond orders (BOs) suggests that C_{2} possesses a π double bond, as in 1 in Scheme 1. There is no underlying σ bonding in 1 , because presumably the occupied bonding and anti-bonding orbitals, $2 \sigma_{g}$ and $2 \sigma_{u}$, cancel one another and contribute zero to the total BO. A related doubly-bonded picture was supported from energy decomposition analysis of a DFT calculation. ${ }^{[16 a]}$ Howev-

$1, \pi$-double bond

3, [1.1.1]-propellane

$\mathbf{2}$, quadruple bond

$4,{ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$state

Scheme 1. Bonding cartoons: the π doubly-bonded model for $C_{2}(1)$ suggested by bond order consideration of the MO diagram, and the quadruply bonded model for $\mathrm{C}_{2}(2)$ suggested by qualitative VB consideration. The inverted bond in [1.1.1] propellane (3), and the bonding cartoon of the triplet ${ }^{3} \Sigma_{u}^{+}$state (4) of C_{2}.
er, usage of standard DFT may be questioned, since C_{2} has a multireference character. ${ }^{[166]}$ Similarly, usage of a full-valence CASSCF and wave function or other correlated methods leads to effective BO (EBO) values of 2.2-3.0. ${ }^{[6]}$ Other BO (e.g., or Wiberg's WBI, NBO-based BO) or EBO determination methods reveal values of $3.30,3.40,3.51,3.71$, and $3.9{ }^{[6,17]}$ raising the doubt whether the naïve BO/EBO calculations are reliable methods for determining the bond multiplicity of a molecule like C_{2}, because of the fuzzy status of $2 \sigma_{u}$. Indeed, as argued several times, ${ }^{[6,15,18]}$ the $2 \sigma_{u}$ orbital is weakly antibonding if not simply non-bonding, and hence counting this orbital in BO/ EBO considerations may distort the bonding picture (see later).
An alternative starting point to the qualitative MO picture in 1 is 2 (Scheme 1), which can be deduced from qualitative valence bond (VB) considerations. Thus, sp-hybridization at each carbon atom leads to the straightforward model of C_{2} shown in 2. Here, C_{2} possesses a quadruple bond made of an inner triple bond (one σ and two π bonds) and an outer fourth σ bond made from the inverted hybrids in 2.
At first sight, the inverted hybrids in $\mathbf{2}$ might look rather poorly matched for bonding. However, similarly inverted hybrids as in [1.1.1]propellane, 3 (Scheme 1), were shown to bring about significant bonding. ${ }^{[19]}$ So why dismiss the inverted fourth σ bond in C_{2} ? Indeed, as we showed in recent VB and full configuration interaction (FCl) studies, ${ }^{[6,7]} C_{2}$ and all its isoelectronic molecules have major quadruply-bonded characters; a strong internal triple bond and a weak inverted fourth bond. For C_{2} we determined the bond interaction energy of the fourth bond as 17-21 $\mathrm{kcalmol}^{-1}$ using several methods, including an experimentally based one. ${ }^{[7]}$
Our early work ${ }^{[6]}$ has been criticized by several groups, ${ }^{[20 a-c]}$ and despite our efforts to respond, ${ }^{[7,200, e]}$ the main criticism has just recently resurfaced in several studies raising more issues. ${ }^{[21,22]}$ In a nutshell, the criticism is based on observables as well as on theoretical indices of bonding. The main observables, which were emphasized, are the stretching force constant of C_{2} compared with that in $\mathrm{HC} \equiv \mathrm{CH}$, the corresponding CC bond lengths, and the bond dissociation energies (BDEs) of
the CC bonds. These observable properties indicate that the bond in C_{2} is somewhere between those in ethylene and acetylene. ${ }^{[20 a, b, 21]}$ In addition, theoretical indices such as EBOs, ${ }^{[21]}$ bond-strength orders (BSOs), ${ }^{[216]}$ and BOs based on localized natural orbitals ${ }^{[22]}$ indicate bond orders of slightly more than two, reaching 2.5-2.6 (note however the $\mathrm{BO}\left(\mathrm{C}_{2}\right)$ in references $[22 b, c]$ is as large as that of $\mathrm{HC} \equiv \mathrm{CH}$ and larger than in $\left.\mathrm{N} \equiv \mathrm{N} .{ }^{[22 d]}\right]$. Furthermore, the domain-averaged Fermi holes (DAFH) analysis ${ }^{[22 b, c]}$ suggests that C_{2} has only a residual sigma bonding akin to Be_{2} (so-called "a non-classical sigma component" ${ }^{[22 c]}$). Thus, these studies dismiss a "genuine quadruple bond ${ }^{\prime[23]}$ in C_{2} and suggest a species like 1 , with a π double bond and "a residual σ interaction", which Hermann and Frenking ${ }^{[21 a]}$ suggest to be two weak dative σ bonds, as described in 5 in Scheme 2. Alternatively, Weinhold and Landis ${ }^{[24]}$ proposed a similar type of σ interaction, called " v bonding" (6), which they did not define as weak or residual bonding (recall that BOs with $\mathrm{NBO}^{[17 \mathrm{b]}]}$ are close to 4). Thus, all the recent criticisms of the quadruple bonding idea in $C_{2}^{[20 a, b, 21,22]}$ agree on a "double-bond-plus" model, and their major criticism ${ }^{[21 a, b]}$ is that the proposed quadruple bonding model is, allegedly, disconnected from any observable of the C_{2} molecule.

Scheme 2. The dative bonding model (5), and the v-bonding model (6).

Therefore, in order to respond to this challenge, we focus herein on the quadruply-bonded structure of C_{2} with an aim of establishing that this structure by itself determines the key observable properties of the molecule, while other VB structures have a marginal effect on these properties. Moreover, VB theory does not interpret the wave function, as done by usage of EBO or other indices, but rather it directly gives a snapshot description of the bonds in terms of chemical Lewis structures. At the same time, the method provides the means to determine the contribution of the various VB structures to the total bonding interaction of the molecule, ${ }^{[6,7,25]}$ and to rank the VB structures by energy relative to the most stable one. As will be shown, the four electron pairs that contribute to bonding in the quadruply-bonded VB structure of C_{2} account for more than 90% of the total bond dissociation energy (BDE) of the molecule in the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$ground state, its bond length, and its force constant, as well as for the properties of its associated triplet state, ${ }^{3} \Sigma_{u}{ }^{+}$state, wherein the fourth bond is decoupled to a triplet as shown in 4 in Scheme 1 . By contrast, we shall demonstrate that all doubly-bonded models of C_{2} are much higher in energy ($>100 \mathrm{kcal} \mathrm{mol}^{-1}$), for a good physical reason (see later), and given the variational freedom they collapse to the quadruply-bonded structure.

Results and Discussion

The technical details are described in the Computational Methods section and the Supporting Information document, while here we display key structures and discuss the key results.

Valence bond structures and their bonding characteristics

Since C_{2} has eight atomic- and hybrid-atomic orbitals (AOs and HAOs) and eight valence electrons, according to the Rumer rules, ${ }^{[26 a]}$ the configuration in which all HAOs/AOs are singly occupied form a set of 14 covalent structures, of which only part are important (see Supporting Information, Scheme S1) and are depicted in Scheme 3. The lines connecting the corresponding singly occupied orbitals indicate either the covalent bonds or other singlet-pairs. Thus, $\Phi_{\mathrm{A}, \text { cov }}$ in Scheme 3 a is the covalent quadruply-bonded structure. ${ }^{[26 b]}$ Similarly, $\Phi_{B, c o v}$ and $\Phi_{C, \text { cov }}$ in Scheme 3b and 3c, respectively, are the covalent structures with doubly-bonded $C_{2} ; \Phi_{B, \text { cov }}$ describes the doubly- π bonded structures and $\Phi_{C, \text { cov }}$ the two ethylenic $(\sigma+\pi)$-bonded structures. Finally, $\Phi_{\mathrm{D}(1-4)}$ in Scheme 3d are four symmetry-related VB structures, which have no covalent bonds and are unimportant at the equilibrium distance, being essential only at the dissociation limit of the energy curve.

Scheme 3. Covalent structures of C_{2} arranged according to bonding groups. The lines connecting the corresponding singly occupied orbitals indicate covalent bonds. The orbitals in the x and y axes are $2 p$ atomic orbitals (AOs), while those on the z axis are hybrid AOs (HAOs). a) $\Phi_{A, c o v}$ is the quadruplybonded covalent structure. ${ }^{[26 b]}$ b) $\Phi_{\text {B,cov }}$ is the doubly- π-bonded covalent structure. c) The $\Phi_{\text {c,cov }}$ set involves two structures, each with ethylenic ($\sigma+\pi$)-bonded covalent structures. d) $\Phi_{\mathrm{D}(1-4)}$ are four symmetry related ionic VB structures (generated from the covalents of group D, in Scheme S1b in the Supporting Information), which are essential at the dissociation limit for the full $A+B+C$ set of 84 structures.

Each of the above covalent structures generates a corresponding set of ionic structures. By limiting ourselves to no more than di-ionic structures, we generate a group of 21 VB structures, comprising of one covalent, eight mono-ionic and
twelve "di-ionic" structures. Our selection avoids generation of C^{+2} and C^{-2} centers, ensures that the di-ionic structures are overall neutral or at most have C^{+1} and C^{-1} species, and excludes structures with two doubly occupied orbitals on the same atom (see Computational Methods and Supporting Information). Thus, the four covalent structures in Scheme 3ac generate a set of 84 VB structures, which fall into three groups A, B, and C, and which together with the four structures in Scheme 3 d , which are necessary for correct dissociation, lead to a set of 88 VB structures. This VB(88)-set leads to a total energy, which is as close as $8.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at the equilibrium R_{CC} distance to the energy of the complete set of VB structures that involves 1764 structures, ${ }^{[27]}$ and at $10.0 \AA$ the energies of the two sets are identical (see Supporting Information, Scheme S1 and Table S6). At the equilibrium $R_{\text {cc }}$ distance, adding structures $\Phi_{\mathrm{D}(1-4)}$ to Groups A-C lowers the total energy by merely $0.27 \mathrm{kcalmol}^{-1}$. As we already noted, the importance of the D structures is significant only close to the dissociation limit. We can therefore consider only groups A-C in the following discussion of bonding in C_{2}.

Bonding crossover and the quadruply-bonded nature of the ground state

As has been noted, ${ }^{[6,7,21 a, b]}$ a meaningful estimation of the "bond strength" in a molecule may differ from the bond dissociation energy ($B D E$). Indeed, the BDE of a molecule $A B$ is the difference between the energy of this molecule and that of the fragments A and B in their respective ground states, while the bond strength is estimated by reference to fragments A and B in states reflecting their actual electronic configurations in the molecule. ${ }^{[6,7,15,21 b]}$ Thus, if the molecular electronic state of C_{2} resembles the doubly-bonded structures of groups B or C, it is legitimate to take the ${ }^{3} P$ ground states of the C atoms as reference states. If, however, the molecule is indeed quadruply bonded, then each carbon must have four singly occupied orbitals in the molecule. In such a case, the legitimate reference state is ${ }^{5} \mathrm{~S} .{ }^{[28]}$ Let us now see which of these two options passes the test of ab-initio VB calculations. Since a doublybonded C_{2} was proposed ${ }^{[20 b, 21 a, b]}$ to be a potential model for representing the bonding in the molecule (see above), the usage of groups A, B, and C, which constitute the quadruply (A)- and doubly-bonded (B and C) representations, is suitable for testing the bonding preference of the molecule. Which one will it be, quadruply bonded like A, or doubly bonded like B and C?

Figure 1 a and 1 b show the variation of the weights of these bonding groups as a function of the $\mathrm{C}-\mathrm{C}$ distance between 1.2 and $2.5 \AA$. Figure 1 a depicts the variations in the weights for the covalent-only structures (displayed in Scheme 3a-c), while Figure 1 b plots the full group-structural weights (for 21 structures in A and 63 in $\mathrm{B}+\mathrm{C}$). It is seen that at R_{CC} distances are equal to or longer than $1.85-1.95 \AA$, and the dominant structures are those with a double bond between the two carbon atoms. However, at distances shorter than $1.85 \AA$ and at the equilibrium distance ($1.244 \AA$), the wave function is dominated by the quadruply-bonded structure, the weight of which is

Figure 1. Bonding-crossover pattern as reflected in the change of the total weights of the quadruply-bonded-group A (blue curve), and the combined weights of the doubly-bonded-groups $\mathrm{B}+\mathrm{C}$ (red curve), as a function of the $\mathrm{C}-\mathrm{C}$ distance, $R_{\mathrm{CC}}(\AA)$. a) Covalent-only structures and their weights; group A with one structure, and groups B and C with three structures. b) Weights of the full structural groups, A (21 structures), and $B+C$ (63 structures). The cartoons adjacent to the curves highlight the bonding-crossover pattern that occurs at ca. $1.85 \AA$. Note that at long distances ($>1.85 \AA$) all the structures become polyradicaloids with singlet-coupled pairs that bring about weak bonding interactions.
massively dominant (ca. 0.85). The same pattern is found whether we use only the four covalent VB structures of A-C without the ionic structures or the full set of 84 structures. Thus, no matter how we plot the weights, they reveal a bonding crossover pattern from a quadruple bond, at equilibrium, to a double bond from $1.85 \AA$ and up to $2.5 \AA$. At $R_{c \mathrm{c}}>2.5 \AA$ (not shown in Figure 1) and up to the dissociation limit, the four structures of group D dominate the wave function and describe eventually the two carbon atoms at their ${ }^{3}$ P group states.
As shown by the bonding cartoons depicted adjacent to the curves, this bonding-crossover pattern reflects an avoided crossing between a quadruply-bonded state, in which each carbon atom has four odd electrons in a promoted $s^{1} p^{3}$ configuration ($\left.{ }^{5} \mathrm{~S}\right)$, and a doubly-bonded state, in which the carbon atoms are in their ground states ($\left.{ }^{3} \mathrm{P}\right)$. These results provide a clear justification for taking the ${ }^{5} \mathrm{~S}$ states of carbon as reference states of the ${ }^{1} \Sigma_{g}{ }^{+}$ground state of C_{2}, despite opposite claims. ${ }^{[20 b, 212]}$ In fact, we verified in the present study that the covalent structure A at $10.0 \AA$ is identical to the ${ }^{5} \mathrm{~S}-{ }^{5} \mathrm{~S}$ state. The bonding crossover pattern in Figure 1 is observed in all multireference treatments of $\mathrm{C}_{2}{ }^{[28]}$ It is the root cause for the failure of single-reference methods to reproduce the potential energy curve at long distances (e.g. $\operatorname{CCSD}(\mathrm{T})$ fails and a renormalized coupled cluster is needed to restore a smooth curve ${ }^{[29]}$).
Clearly, Figure 1 shows that the quadruply-bonded structure is the dominant descriptor of the ground-state wave function. For further verification of this feature we turn to Figure 2, which displays the relative energies of the A-C structure groups at the equilibrium distance. Thus, the doubly-bonded groups, B and C, reside above the quadruply-bonded covalent structure A or the entire group A by 130.3/137.9 (covalent only) and $129.5 / 106.1 \mathrm{kcalmol}^{-1}$ (full group energies). As such, the energy gap of groups B and C relative to group A shows that the additional two bonds in A are of considerable strength! This will be confirmed later by calculating independently the bond interaction energies of $C_{2}{ }^{[6,7]}$

Figure 2. Relative energies (in kcal mol ${ }^{-1}$) of the doubly-bonded VB structure groups (groups B and C) to the quadruply-bonded one (group A). The relative energies are shown in the order of covalent-structures/full-sets. B and C are higher than A, since they suffer from Pauli repulsion of the dangling lone pair electrons, while in A these electrons are used for bonding.

There is a fundamental reason why the doubly-bonded structures (B or C) are much higher in energy than the quadru-ply-bonded structure at equilibrium. At this short distance (1.244 \AA), the dangling electron pairs on each carbon atom (in B and C) are engaged in severe Pauli repulsion with the electron pair on the other atom. As we shall see later, this repulsion is retained when we allow for dative interactions as in $\mathbf{5}$ (Scheme 2), which is expected by the "two-bond plus" model. ${ }^{[20 b, 21 a, b, 22]}$ On the other hand, engaging these idle electron pairs in bonding stabilizes the quadruply-bonded structure well below the doubly-bonded ones.

Figure 3 is a VB-mixing diagram, showing that the quadru-ple-bonded set A benefits by $16.0 \mathrm{kcalmol}^{-1}$ from the mixing

Figure 3. VB mixing diagrams: stabilization of the quadruply-bonded structure (A) by VB mixing with C and B, where A, B and C are the corresponding full groups. All relative energies are calculated at $R_{\mathrm{CC}}=1.244 \AA$, the equilibrium distance of A. ε signifies a small mixing coefficient of C into A.
in of set C. However, the mixing of set B has almost no effect on A, just $1.4 \mathrm{kcalmol}^{-1}$. As such, set B with the doubly- $\pi-$ bonded structures is virtually an excited state that does not mix with the quadruply-bonded structures of set A. On the other hand, set C with its two ($\sigma+\pi$)-ethylenic doubly-bonded structures stabilizes set A by mixing with it, and further augments the σ bonding in A. Nevertheless, considering the energy gap between sets A and C, this resonance energy stabilization is a perturbation on the energy of the quadruplybonded structure. What remains to be established is how well does the quadruply-bonded structure set A alone reproduce key molecular properties?

How well does the quadruply-bonded structure reproduce the BDE of C_{2} ?

To gauge the energetic contribution of the quadruply-bonded structure vis-à-vis the full VB wave function, we calculated the corresponding bond dissociation energy (BDE) values, which are collected in Table 1, along with the experimental datum. ${ }^{[30]}$ It is seen that at the best level, the $\operatorname{VBSCF}(1764)$ calculation reproduces closely the $\mathrm{FCl}^{[7,31]}$ value with the same basis set. The BDE value with $\operatorname{VBSCF}(1764)$ and FCl are also close to the experimental datum of $146.67 \mathrm{kcalmol}^{-1} .{ }^{[30]}$ The $\operatorname{VBSCF}(88)$ in entry 3 corresponds to the set of 88 VB structures ($84 \mathrm{~A}-\mathrm{C}$, and 4 D), and its BDE value is 93.6% of $\operatorname{VBSCF}(1764)$.
Thus, the VBSCF(88) wave function, which is dominated by the quadruple bond with a small resonance-energy contribution from the ethylenic double bond (see Figure 3), practically accounts for most of the BDE value at $\operatorname{VBSCF}(1764) / 6-31 \mathrm{G}^{*}$. Furthermore, as seen in entry 4, the BDE of the quadruplybonded structure, VBSCF(4-bonds), by itself is 88% of BDE for $\operatorname{VBSCF}(88)$ and 82% of the BDE of $\operatorname{VBSCF}(1764)$. With some dynamic correlation, the BDE at the VBCISD(4-bonds) level reaches 94% of the $\operatorname{VBSCF}(1764)$ value. Finally, from the quantum Monte Carlo augmented VBSCF-QMC calculations (entries 7 and 8), which add the missing dynamic correlation using a flexible quadruple-zeta basis set, ${ }^{[32]}$ the $\operatorname{BDE}(88)$ level in entry 7 ac counts for 98% the experimental DBE datum. At the same VB-

Table 1. Bond dissociation energies (BDE) of the quadruply-bonded structure (group A) and the full VB wave function, and the corresponding experimental value.

	VB Method	BDE [kcal mol $\left.{ }^{-1}\right]^{[d]}$	\%BDE ${ }^{[\text {e] }}$
1	VBSCF (1764) ${ }^{[\text {[] }}$	137.9	100
2	full configuration interaction (FCI)	138.1	100
3	VBSCF (88)	129.1	93.6
4	VBSCF (4-bonds) ${ }^{[b]}$	112.9	81.9/87.5 ${ }^{\text {[f] }}$
5	VBCISD (4-bonds) ${ }^{[b]}$	129.3	$93.6{ }^{[9]}$
6	Experimental datum ${ }^{[]]}$	146.67 ± 0.06	100
7	VBSCF-QMC (88)	143.7 ± 0.4	98.0
8	VBSCF-QMC (4-bonds)	134.9 ± 0.4	92.0/93.9 ${ }^{[\mathrm{h]}}$

[a] The full VBSCF wave function involves 1764 VB structures. [b] Group A has 21 structures to which a few structures are added to reproduce correctly the dissociation limit (${ }^{3} \mathrm{P}-{ }^{3} \mathrm{P}$). The effect of these structures at the equilibrium distance is less than $1 \mathrm{kcalmol}^{-1}$ (see Table S 6 in the Supporting Information) [c] From Ref. [30]. [d] Relative to VB at $10.0 \AA$. [e] [BDE(truncated VB)/BDE(full)] $\times 100$. [f] \%BDE of A relative to VBSCF(1764)/ VBSCF(88), respectively. [g] \%BDE of A relative to full Cl in the same basis set. [h] \%BDE of VBSCF-QMC(4-bonds) to experimental datum/VBSCFQMC(88), respectively.

QMC level, the BDE(4-bonds), entry 8, reaches 92% of the experimental BDE. Therefore, for all intents and purposes, the quadruply-bonded structure describes the ground state of C_{2} quite well.

How well does the quadruply-bonded structure reproduce the bond length and force constant of C_{2} ?

One of the main sources of criticism ${ }^{[21]}$ of the quadruple-bonding model in C_{2} is that the molecule has a somewhat longer bond than acetylene ($1.243 \AA$ vs. $1.204 \AA$), ${ }^{[15,33]}$ which is only triply bonded and at the same time the force constant of C_{2} is smaller than that of acetylene. This is an apparent paradox if one is an orthodox adherent of the idea that force constants measure relative bond multiplicities. We shall now show that the quadruply-bonded structure accounts also for the bond length and force constant of the molecule. Such a demonstration may unravel the roots of this apparent paradox.

Table 2 shows the VB-computed equilibrium distances ($R_{\text {cc }}$) and force constants ($k_{c c}$) at different VB levels, along with corresponding experimental data. It is seen that the somewhat long R_{cc} and the small k_{cc} values, compared with the corresponding values for acetylene (entry 8), manifest already for the quadruply-bonded structure (entries 1 and 2). Firstly, the 4bonded covalent structure $\Phi_{\mathrm{A}, \text { cov }}$ has by itself already a longish bond and a smallish k_{cc}. Adding all the corresponding ionic structures for group A (see Supporting Information) generates Φ_{A} (4-bonds) in entry 2 , wherein all the four bonds have their covalent and ionic structures. This appears to have small effects on the R_{CC} and k_{CC} values compared with the covalent structure in entry 1 . Using the balanced set of 88 structures, $\Phi(88)$ in entry 3, lengthens the bond by merely $0.01 \AA$ and slightly lowers k_{CC} compared with the quadruply-bonded VB structure in entry 2 . Going all the way to $\mathrm{VB}(1764)$ further shows also small changes. The so determined VB values of R_{CC} and $k_{\mathrm{C} C}$ at all the VB levels, are in rather close agreement with

Table 2. Equilibrium distances $\left(R_{\mathrm{CC}}\right)$, and force constants (k_{CC}) for the quadruply-bonded VB structures of C_{2} and the full VB wave function, compared with experimental data and data for acetylene.

	VB Structures	$R_{\text {CC }}\left[\AA{ }^{\text {d }}\right.$]	$k_{\text {cc }}\left[\mathrm{N} \mathrm{cm}^{-1}\right]$	Method
1	$\Phi_{\text {A, cov }}{ }^{\text {[a] }}$	1.238	11.84	VBSCF/6-31G*
2	$\Phi_{\text {A }}(4 \text {-bonds })^{\text {b] }]}$	1.244	13.59	VBSCF
3	$\Phi(88)^{[c]}$	1.253	13.24	VBSCF
4	$\Phi(1764)$	1.260	12.56	VBSCF
5	configuration interaction	1.260	12.27	MRCI/ $6-31 \mathrm{G}^{*(d)}$
6	coupled cluster	1.258	12.43	$\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}^{*(d)}$
7	experimental (C_{2})	$1.243^{[\text {e] }}$	$12.16{ }^{\text {[e] }}$	
8	experimental ($\mathrm{C}_{2} \mathrm{H}_{2}$)	$1.204^{\text {ff] }}$	$15.84{ }^{\text {[f] }}$	

[a] The covalent quadruply-bonded structure (Scheme 3a). [b] The 21structure set that describe the quadruple bond (see Scheme S1 in the Supporting Information). [c] 88 VB structures. [d] From reference [7]. [e] Experimental values from reference [33]. [f] Reference [34].
experimental data in entry 7. It is apparent that the quadruplebonded structure by itself reproduces values in agreement with the experimental data, much as was found above for the BDE values. Thus, once again we conclude that the quadruplebonded structure of C_{2} reproduces its key observables, and for all intents and purposes, it is a good representation of the molecule.

Why is the quadruple bond in C_{2} longer than the triple bond in $\mathrm{HC} \equiv \mathrm{CH}$?

It is instructive to note, from Table 2, that the force constant of the pure quadruply-bonded structure (entries 1 and 2) in C_{2} is smaller than the force constant of the triple bond in $\mathrm{HC} \equiv \mathrm{CH}$. This in turn means that the force constant by itself does not gauge the bond multiplicity, at least not for these two molecules. Moreover, the optimum bond length of the quadruple bond in C_{2} (1.244 \AA in entry 2) is longer than the triple bond in $\mathrm{HC} \equiv \mathrm{CH}$ (entry 8), which at least for these two molecules means that the multiplicity of the bonds does not determine the corresponding bond lengths.

In the sense that the equilibrium bond length in a molecule is affected by the bond interaction energies between the bonded atoms, the primary question we should try to answer is: why is the equilibrium distance for the quadruply-bonded C_{2} molecule longer than the triple bond in acetylene? VB theory enables one to calculate the singlet-coupling interaction energies (called in-situ bond energies, $D^{\text {in-situ }}$) by decoupling the electron pairs to a quasiclassical state (QCS), in which the bonding electrons are not spin paired, and quantifying the energy it takes to decouple the electron pair. ${ }^{[6,7,27,35]}$ This enables us to determine the $D^{\text {in-situ }}$ values for individual bonds or for a group of bonds and compare thereby the respective bonding-interaction energies for different molecules. Scheme 4 shows the comparison of the $D^{\text {in-situ }}$ determination for the σ bonds in C_{2} and acetylene. Thus, in C_{2} we decouple the inner and outer bonds, $\sigma_{\text {in }}$ and $\sigma_{\text {out, }}$ to the respective QCS with four unpaired electrons (and two π bonds), and determine the corresponding $D_{2 \sigma}{ }^{\text {in-situ }}$ value, and similarly, we decouple the electrons of the single σ bond in acetylene (leaving it with two π
(a) C_{2}

(b) HCCH

Scheme 4. Determining in-situ singlet-coupling interaction energies for the σ bonds in a) $\mathrm{C}_{2}\left(D_{2 \sigma}{ }^{\text {in-situ }}\right)$ and b) acetylene ($\left.D_{\sigma}^{\text {in-situ }}\right)$, relative to the reference quasi-classical state (QCS). The electron dots that are not connected by lines are not singlet coupled. In a), only one of the two possible QC determinants is represented. The QCS is the average of the two (see Supporting Information).
bonds), and determine the respective $D_{\sigma}{ }^{\text {in-situ }}$ value. We can do the same for the π bonds of the two molecules, and have in this manner also the corresponding $D_{2 \pi}{ }^{\text {in-situ }}$ values for the two molecules.

Furthermore, we can determine these in-situ singlet-coupling interaction energies at different $R_{\text {CC }}$ values and find the optimal intrinsic energy of the σ and π bonds. Table 3 compares acetylene and C_{2} represented by the quadruply-bonded structure, Φ_{A}. The table lists the corresponding R_{CC} values for the σ and π components, along with the molecular $R_{\text {cc }}$ and force constants (k_{cc}) values.

Table 3. Molecular bond lengths $\left(R_{\mathrm{CC}}\right)$, and force constants (k_{CC}) for acetylene and C_{2}, shown along the optimum bond lengths ($R_{\mathrm{CC}, \pi}$ and $R_{\mathrm{CC}, 0}$) for the π and σ components and the $D^{\text {in-situ }}$ values for the σ components.

	$\mathrm{HC}=\mathrm{CH}^{[\mathrm{aj}}$	$\mathrm{C}_{2}\left[\Phi_{\text {A }}(4\right.$-bonds $\left.)\right]$
$R_{\text {CC }}[\AA]$	1.217	1.244
$k_{\text {cc }}\left[\mathrm{Ncm}^{-1}\right]$	15.67 (16.39 ${ }^{[6]}$)	13.59
$R_{\text {CC, }, ~}[\AA]^{[b]}$	<1.1	<1.1
$R_{\text {CC, }, ~}[\AA]^{[b]}$	1.30	$1.40{ }^{\text {[c] }}$
$D_{\text {ores }}^{\text {in-situ }}$ [kcal $\left.\mathrm{mol}^{-1}\right]^{[d]}$	138.7	156.6

[a] The geometry of $\mathrm{HC}=\mathrm{CH}$ was optimized using $\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}^{*}$, and $k_{\text {cC }}$ was determined from harmonic approximation as a second derivative of energy $\left(k_{\mathrm{CC}}=\mathrm{d}^{2} E / \mathrm{d}^{2} R_{\mathrm{CC}}\right)$. The value in parentheses is the relaxed force constant determined in reference [6]. [b] These R_{CC} values were calculated at $0.1 \AA$ steps (Supporting Information Figure S 5 and Tables S 8 and S9). [c] $R_{c C, \sigma}$ [\AA] for inner σ bond is $1.26 \AA$. [d] These $D_{\sigma}{ }^{\text {in-situ }}$ values correspond to the respective σ bond minima (1.30 vs. $1.40 \AA$). The difference remains ca. $16 \mathrm{kcalmol}^{-1}$ in favor of C_{2}, at the global respective minima of the two molecules.

The table reveals a few trends: Firstly, the π components simply prefer the shortest possible bond, while the σ components prefer longer bond lengths. As shown by Jemmis et al., this is a normal tendency for the two bond types. ${ }^{[36]}$ At the same time, the σ component of C_{2} prefers a longer distance than the single σ bond in acetylene (1.40 vs. $1.30 \AA$, respectively). This σ bond preference to be longer in C_{2} increases the σ interaction energy and is the root cause why the molecular R_{cc} of C_{2} is slightly longer than in acetylene. It is thus very clear
that the molecular bond length and the force constant are determined by opposing tendencies of the bond components, namely, the relationship for multiple bonds reflects opposing tendencies of the two bond types. Thus, one cannot use simple arguments to predict the bond multiplicity from either $R_{\text {CC }}$ or $k_{\text {cc }}$.

The preference of the double σ bond in C_{2}

A double σ bond is quite unique in chemistry, because unlike a double π bond (Scheme 1 , structure 1), in which the two bond components occupy different planes, in the double σ bond the components have to cohabit in the same space. This brings about Pauli repulsion between the bonds, as shown schematically in Scheme 5. Reduction of the Pauli repulsion requires some bond lengthening for C_{2} by comparison to acetylene. As such, the double σ bond is intrinsically longer than a single σ bond. But is it necessarily weaker? As shown in the last entry of Table 3, this is not the case.

Scheme 5. Pauli repulsion in the double σ bond in C_{2}.

This opposition of the π bonding and the double σ bonding in C_{2} leads ultimately to a bond length slightly longer and a force constant smaller as compared to acetylene (Table 3). Still, the existence of the double σ bond and its singlet-coupling interaction energy in C_{2} are apparent from all the foregoing results (Table 3). Looking back at the last entry of Table 3 one sees that $D_{2 \sigma}^{\text {in-situ }}>D_{\sigma}^{\text {in-situ }}$, namely, the double σ bond in C_{2} displays a stronger interaction due to singlet coupling than the single σ bond in acetylene, when each σ system is in its own intrinsic optimal geometry. The difference of 17.9 kcal mol^{-1} is right at the ballpark value of the inverted fourth σ bond, as determined by at least three different methods. ${ }^{[7]}$ Thus, we are led with a picture of one strong inner σ bond that cohabits with a weak outer one. As we already said, the strength of the fourth bond was determined in different ways, in which we took care and pain to show ${ }^{[7,200]}$ that the factors mentioned in past and present criticisms (e.g., different bond lengths of the CC moieties, rehybridization, hyperconjugation, etc.), ${ }^{[20 b, 37]}$ do not contribute to this interaction energy. It is surprising to see these factors being reiterated in the present criticism, ${ }^{[27 a, b]}$ which ignores our past response. ${ }^{[37]}$

Comments about the force constants in C_{2}

Our findings, that the force constant $k_{\mathrm{cc}}(\mathrm{A})$ of the quadruplybonded structure of C_{2} is lower than that for acetylene, question some of the tenets associated with the Badger rule. Thus, in 1934, Badger found a relationship linking the internuclear
equilibrium distance of a bond $\left(R_{e}\right)$ to its force constant $(k){ }^{[38]}$ Badger derived this relationship empirically and introduced it as a useful tool for estimating bond lengths from spectroscopy. Following Badger's work, the accuracy of the rule was shown to be somewhat limited, and improvements were sought by introducing different functional dependencies of R_{e} and k, and addition of other properties like electronegativity ${ }^{[39]}$ In the course of time, chemists have also extended the original relationship to include additional properties of the chemical bond, ${ }^{[34 b, 39 a]}$ and used the force constant as an index of "bond strength", ${ }^{[20 a, b, 21 a, b]}$ and of bond multiplicity ${ }^{[34 b]}$ As such, on the basis of this extension of the original Badger rule, the rather low force constant of the CC bond in C_{2} was used as reason to dismiss the quadruple-bond character. ${ }^{[206]}$ Indeed, to an adherent of the generalized Badger rule, it may appear as paradoxical that C_{2}, which is strongly bonded by reference to the carbon atoms taken in their ${ }^{5}$ S sates, displays a force constant in-between those of ethylene and acetylene. However, it is a fact that the force constant of structure A alone, which by any means cannot be denied to have a quadruply-bonded wave function, is close to that of the full ground state of C_{2} and is lower than that of the triple bond in acetylene, however paradoxical this may seem. Thus, the case of C_{2} suggests that the force constant is not necessarily and certainly not always, an indicator of bond multiplicity.
It is important to recognize that the generalized Badger Rule has quite a few exceptions, ${ }^{[20 e, 40]}$ in which longer bonds are stronger, whereas shorter, and hence presumably stronger, bonds have smaller force constants. Some of these "problematic" bonds are for example, $\mathrm{Li}_{2}{ }^{+},{ }^{[20 e]} \mathrm{N}-\mathrm{F}, \mathrm{O}-\mathrm{F}_{1}^{[40 \mathrm{C}, \mathrm{d}]} \mathrm{C}-\mathrm{C}_{1}^{[40 a, b, e]}$ $\mathrm{Si}-\mathrm{Si}^{[40 \mathrm{a}, \mathrm{b}]} \mathrm{Ge}-\mathrm{Ge},{ }^{[40 a . b]}$ and $\mathrm{Sn}-\mathrm{Sn}^{[400, g]}$ bonds. Many of these cases have perfectly good explanations. ${ }^{[40 \mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}]}$ Other cases (e.g., N-F, O-F, S-F) involve charge shift bonds, which exhibit unusual features of electron density in the bond region. ${ }^{[4]}$ Given that the π bonds (and the inverted σ bond) of C_{2} have significant charge-shift character, higher than in acetylene, ${ }^{[7,27]}$ simply points out that the deduction of bond multiplicity for C_{2} with its unique double σ bond and π bonds, from a Badger plot for well-behaved molecules like ethane, ethylene, acetylene, and so forth rests on a belief that all these bonds are similar in nature. They are not.
In summary, the Badger relationship does not count the number of electron-pair bonds in the molecule. Firstly, such a claim is unsupportable by any fundamental argument. Secondly, as demonstrated in Table 3 the quadruply-bonded VB structure of C_{2}, by itself, has a longer R_{CC} and smaller k_{CC} compared with acetylene, while at the same time providing a BDE close to the FCl value (entries 5 vs. 2, Table 1). It follows therefore that the low force constant does not prove that C_{2} is not quadruply-bonded. On the contrary, the low force constant of the quadruply-bonded structure A proves that the force constant is not necessarily and indicator of bond multiplicity.

Do effective bond orders (EBOs) measure bond multiplicity?

As we argued at the outset of the paper, the EBO for C_{2} falls within the range of 2.2-2.6 when one uses a correlated wave
function like full-valence CASSCF. ${ }^{[21]}$ If one adheres to the notion that EBO measures bond multiplicity, then C_{2} seems to possess slightly more than a double bond between the two carbon atoms. Indeed, the EBO and similar indices ${ }^{[21,42]}$ seem to predict well the trends in the force constants and to place C_{2} in between ethylene and acetylene-but do EBOs actually measure bond multiplicity? This is the question.
The EBO of a molecule is calculated from the expression $\mathrm{EBO}=\left(\Sigma n_{\text {bonding }}-\Sigma n_{\text {antibonding }}\right) / 2$, which subtracts the occupation numbers (n) of the antibonding orbitals from those of the bonding orbitals, and summing the differences over all the orbitals in a CASSCF wave function. The major problem with the EBO expression is that it ceases to be meaningful when the bonding/antibonding nature of the considered orbitals is not clear. ${ }^{[18]}$ Thus, the least one can say on the problem at hand is that the $2 \sigma_{u} \mathrm{MO}$ of $\mathrm{C}_{2}{ }^{[15]}$ is very far from being clearly antibonding. A schematic drawing of the components of the orbital in Scheme 6 highlights this fuzziness. Thus, $2 \sigma_{u}$ involves $2 s-$ 2 s and $2 \mathrm{p}_{z}-2 \mathrm{p}_{z}$ antibonding interactions, and two $2 \mathrm{~s}-2 \mathrm{p}_{z}$ bonding interactions.
these two MOs on equal footing; one being totally bonding and the other totally antibonding. As such, since the $2 \sigma_{u} \mathrm{MO}$ has a large occupation number and at the same time it is formally considered as antibonding, this orbital will contribute to a greatly diminished EBO estimate for C_{2}. In such an event, the calculated EBO has not much to do with the bond multiplicity. In the case at hand, since we already know that the force constant of the quadruply-bonded structure of C_{2} is in-between those of ethylene and acetylene, EBO teaches us nothing new and certainly not about the bonding nature of C_{2}. Using the EBO values ${ }^{[21]}$ to dismiss quadrupling bonding in C_{2} is not a sound argument.
The disparity of EBO and bond multiplicity in C_{2} is highlighted by the recent treatment by Zhang et al. ${ }^{[43]}$ To begin with, this study showed that it is possible to bridge the complex full-valence CASSF wave function and the quadruply-bonded structure, using an orbital transformation, which conserves the energy of a full-valence CASSCF wave function. We reproduced this transformed wave function in Figure 4 side by side with

Scheme 6. A schematic drawing of the overlapping components of the $2 \sigma_{u}$ MO of C_{2}. Note that there are two antibonding interactions and two bonding interactions.

Actually, the bonding/antibonding characters of the canonical MOs arising from $\operatorname{CASSCF}(8,8)$ calculations are best appreciated by calculating the overlap populations (OPs) for the $2 \sigma_{u}$ MO vis-à-vis $2 \sigma_{\mathrm{g}}$, as shown in Table 4 for several polarized basis sets ranging from double-zeta to sextuple-zeta. It is apparent that the $2 \sigma_{g}$ MO displays a significant positive OP converging to about 0.42 , thus clearly qualifying as a bonding orbital. On the other hand, the OP of the $2 \sigma_{u} \mathrm{MO}$, while being somewhat basis-set-dependent, is found to be only weakly antibonding, if not non-bonding, with an overlap population oscillating between a small negative value of about -0.14 and values close to zero! This clearly non-bonding-like nature ${ }^{[15]}$ is not taken into account in the EBO calculation, which treats

(b) transformed $\operatorname{CASSCF}(8,8) \mathrm{MOs}$

Figure 4. Orbitals, leading configurations of C_{2}, and their respective weights, in: a) a standard full-valence CASSCF/6-31G* wave function, and b) the equivalent full-valence CASSCF wave function after unitary transformations of the upper two orbitals. Note the resemblance of this transformed CASSCF wave function to $\mathbf{2}$ in Scheme 1. The figure was produced based on reference [43]. The authors are thankful to M. Zhang for permission to produce this figure.

Table 4. Overlap populations of the $2 \sigma_{g}$ and $2 \sigma_{u}$ MOs arising from a $\operatorname{CASSCF}(8,8)$ calculations in various basis sets. A positive, negative or very small value qualifies the $M O$ as bonding, antibonding or non-bonding, respectively.

	c-31G*	cc-pVDZ	cc-pVQZ	cc-pV5Z	cc-pV6Z	
$2 \sigma_{u}$	-0.009244	-0.107460	-0.076436	-0.144459	-0.024913	0.0138537
$2 \sigma_{\mathrm{g}}$	0.4096890	0.4153799	0.4145983	0.421948	0.428672	0.4260038

the canonical symmetry-adapted canonical CASSCF MOs. As noted above, the interpretation of the canonical wave function in Figure 4 a is unclear, owing to the ambiguous nature of the $2 \sigma_{u}$ MO whose antibonding character is weak if at all existing. On the other hand, the transformed wave function in Figure 4 b displays a much clearer bonding picture; in this picture there exists an internal triple bond, $\mathrm{C} \equiv \mathrm{C}$, with two π bonds and one σ bond, and two outer hybrids ($\Phi_{L, \mathrm{R}}$), which are singlet coupled. Furthermore, the singlet coupling is not negligible, since the wave function has non-negligible weights of two ionic structures, $\mathrm{C}^{+} \mathrm{C}^{-}$and $\mathrm{C}^{-} \mathrm{C}^{+}$, which augment the coupling, whereas a mere singlet diradical (like, e.g., singlet twisted ethylene) would have no ionic component at all. ${ }^{[44]}$ This quadru-ply-bonded CASSCF-structure comprises 85% of the total wave function, which strongly supports the qualitative VB cartoon 2, in Scheme 1. Interestingly, the canonical CASSCF wave function used by Zhang et al. leads to an EBO value of $2.15,{ }^{[43]}$ while its transformed form in Figure 4b would suggest a bond order of 3 or higher. This disparity between the description in Figure 4b and the EBO of the same wave function in Figure $4 a$ hints that while the EBO may be able to gauge some aspect of C_{2} bonding; it certainly does not count its number of bonds.
While Zhang et al. use the term singlet diradical ${ }^{[43,45]}$ to describe the inverted bond, they were careful to note that the transformed CASSCF wave function provides no quantitative indication on the strength of this bond. This aside, the study of Zhang et al. rules out the doubly-bonded picture that has been suggested by others, ${ }^{[206,21,22]}$ and at the same time the study shows that there is basically no opposition between the VB result of the prevalence of the fourfold bonded structure 2,
and the CASSCF wave function, provided the latter wave function is transformed so as to give maximum insight.

Does C_{2} possess a double π bond with residual dative σ bonding or a quadruple bond?

The statement of quadruple bonding in C_{2} was criticized by comparing C_{2} to the Be_{2} species, which has the same number of σ electron in the valence 2 s and $2 p$ orbitals, ${ }^{[21 a]}$ on the basis of a "density averaged Fermi holes" analysis. ${ }^{[22]}$ It is known that Be_{2} is very weakly bonded, at most by a few kcal mol ${ }^{-1}$ (and VB calculations reproduce that!). This weak bonding is attributed to the mutual cancellation of the bonding and antibonding $2 \sigma_{g}$ and $2 \sigma_{u}$ MOs. ${ }^{[21 a]}$ However, the analogy to C_{2} is not necessarily a good one, as the fuzzy $2 \sigma_{u} \mathrm{MO}$ of C_{2} is far from cancelling the bonding $2 \sigma_{\mathrm{g}}$ MO. This was noted recently ${ }^{[15]}$ and demonstrated in the previous section (Scheme 6 and Table 4). In spite of this, the alleged $\mathrm{C}_{2} / \mathrm{Be}_{2}$ analogy has served as an inspiration for modeling C_{2} as a molecule being bound by two strong π bonds, while the four σ electrons occupy "quasi lone pairs" ${ }^{[22]}$ Another proposal, very close to the latter one, described C_{2} as two interacting ${ }^{3} P$ carbon atoms, with doubly occupied $2 s$ AOs mutually engaging in two $2 s \rightarrow 2 p(\sigma)$ very weak dative interactions (5 in Scheme 2). ${ }^{[20 b, 21 a]}$ Rather than dwelling on an indirect qualitative discussion about the resemblance/ difference of Be_{2} versus C_{2}, we found it more relevant to directly examine model 5 for C_{2} using ab initio VB calculations. The results are displayed in Figure 5 using cartoons for the various flavors of σ bonding, including "dative" bonds.

Figure 5. Testing the relative VBSCF energy of the dative doubly-bonded model, labeled as state II, proposed for C_{2} vis-à-vis the quadruply-bonded structure, labeled as state I, at different variationally optimized levels: a) Level 1: State II, with a double π bond (shown in the dashed lines connecting the respective $\mathrm{p}_{x / y}$ orbitals) and two filled 2 s AOs and vacant $2 \mathrm{p}_{\mathrm{z}} \mathrm{AOs}$ resides $190.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than state \mathbf{I}, the quadruply-bonded structure. In parentheses we show that the relative energy is $174.5 \mathrm{kcalmol}^{-1}$ when the 2 s AOs are allowed to hybridize with the $2 \mathrm{p}_{z}$ AOs on the same carbon atom. b) When the doubly occupied lone pair hybrids in state II are split into two hybrid orbitals, state II resides $129.3 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ above state I. In parentheses we show the relative energy of $109.1 \mathrm{kcal} \mathrm{mol}^{-1}$ when both states are allowed to mix with their corresponding ionic structures. c) Using state II from b) and allowing for the existence of two dative σ bonds by letting the orbitals on the σ lone pair of one carbon atom to delocalize into the vacant and filled σ orbitals of the other. The wiggly arrow, from state II to state I, signifies that the wave function II collapses freely to the quadruply-bonded structure I.

Figure 5 shows the energies of state II in which C_{2} is doubly bonded by two π bonds, while the σ electrons are at various hybridization and bonding situations specified in a)-c), relative to state I in which C_{2} is quadruply bonded. For simplicity, the two π bonds are described using doubly occupied π MOs, while the σ bonds/lone-pairs are described by VB.
The two states in Figure 5a are each described by a single VB structure. Thus, the σ bonds of the quadruply-bonded structure (state I) are purely covalent; one σ bond describes the covalent spin pairing of the two electrons in the inward σ hybrids, whereas the other couples the outward σ hybrids. Similarly, the lone pairs in π doubly-bonded structure (state II) are described by doubly occupied 2 s AOs, as originally proposed. ${ }^{[20 b]}$ It is seen that in these initial states, the π doublybonded structure resides $190.5 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ above the quadru-ply-bonded one! Allowing now each lone pair of the π doublybonded structure to hybridize locally with the $2 p_{z} A O$ of the same atom reduces slightly the gap, which remains very large, $174.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The root-causes of this very high-energy of state II are the Pauli repulsion in this state between the filled lone pairs (2 s AOs or $2 \mathrm{~s}-2 \mathrm{p}_{z}$ HAOs), which are replaced by two σ bonds in state I.
Next, in order to relax the lone-pair/lone-pair repulsion in the doubly-bonded structure as much as possible, we allow, in Figure 5 b, the two atomic-centered lone pairs to split into singly-occupied hybrid orbitals, while keeping states I and II as covalent structures. It is seen that the π doubly-bonded structure still resides well above the quadruply-bonded structure, now by $129.3 \mathrm{kcal} \mathrm{mol}^{-1}$. Using the same states in Figure 5 b, but now allowing the variational mixing of the covalent structure with their respective ionic structures, does not change the conclusion. Even at this level, the π doubly-bonded structure (state II) remains $109.3 \mathrm{kcalmol}^{-1}$ over the quadruply-bonded state (state I). Clearly, in order for state II to become energetically, at least as low as state \mathbf{I}, the two dative σ bond will have to be at least as strong as the σ bonds in state I .

The two dative σ bonds can be computed, in principle, by letting the σ lone pairs of the doubly-bonded structure (state II) delocalize to the other center, by having Coulson-Fisher orbitals ${ }^{[25,44]}$ as in GVB calculations. The result is shown in Figure 5 c . Thus, starting from state II, and allowing its σ lonepairs the complete freedom to delocalize to the other center, the wave function simply collapses to the quadruply-bonded structure as shown by the wiggly arrow (further details on the patterns of collapse of the doubly-bonded model to the quad-ruply-bonded one, see Section XI in the Supporting Information). ${ }^{[46]}$ Apparently, when the freedom is given to the σ doubly-bonded model, its dative σ bonds simply become two full σ bonds.
It follows therefore, that the π doubly-bonded structure with the σ dative bonds is in no way a good model for C_{2}. Clearly, the accidental match of the experimental BDE of the C_{2} molecule ($146.7 \mathrm{kcal} \mathrm{mol}^{-1}$) to a model that has "two π bonds plus" ${ }^{\prime[21,22]}$ is deceptive. On the other hand, no matter what we did in this study, we came back to the quadruply-bonded structure that confirms itself as a faithful descriptor of C_{2}. The reason is that in any formulation of the "two π bonds plus"
model, the severe Pauli repulsion from the largely σ lone pair orbitals on the two carbon atoms is prohibitive, due to the very short C-C distance, and the molecule prefers to replace this repulsion by two σ bonds, one strong and one weak. The outcome is fundamental and simple.

Using the quadruple bonding model to predict the properties of the ${ }^{3} \Sigma_{u}^{+}$of C_{2}

Let us use the quadruply-bonded model to "predict" properties of the ${ }^{3} \Sigma_{\mathrm{u}}^{+}$state. These predictions are largely much easier with MO theory, but deriving them from a quadruply-bonded ground state model is instructive, in view of the debates surrounding this model. Thus, comparison of the bonding cartoons in Scheme 1 shows that relative to the quadruplybonded structure $\mathbf{2}$, which possesses a double- σ bond, in the ${ }^{3} \Sigma_{u}^{+}$state 4 , we break the inverted σ bond and create a pure acetylenic bond embedded in a triplet diradical. As such, we might expect the following trends:

1) Since we broke a bond in the quadruply-bonded structure, we expect the resulting ${ }^{3} \Sigma_{u}^{+}$state to lie higher in energy than the singlet state and possess as such a lower BDE.
2) Since the two σ bonds that cohabit in the ground state are replaced in ${ }^{3} \Sigma_{u}^{+}$by a triplet pair and a σ bond that are mutually orthogonal (of different symmetry) and hence independent of one another, the single σ bond in ${ }^{3} \Sigma_{u}^{+}$is free to optimize its R_{CC} value, which should come out shorter than in the ground state.
3) Since the R_{CC} for the ${ }^{3} \Sigma_{\mathrm{u}}^{+}$state is shorter than in the ground state, we expect the force constant $k_{c c}$ to be significantly higher.

The results of the VB calculations are shown in Scheme 7. It is seen that all the above predictions are reproduced by the VB calculations (and are in accord with experiment ${ }^{[8,28 d]}$). It is further interesting to note that the calculated force constant for the triplet state is virtually identical to the relaxed force constant calculated ${ }^{[6]}$ for acetylene, while the non-relaxed value of the latter is smaller, $15.67 \mathrm{Ncm}^{-1}$ (Table 3). The smaller non-relaxed value for $\mathrm{HC} \equiv \mathrm{CH}$ arises from the fact that, unlike independence of the $\sigma_{c c}$ bond of the triplet state of C_{2}, the $\sigma_{c c}$ bond in acetylene has to cohabit with the two σ_{CH} bonds, and

$$
R_{\mathrm{CC}}=1.244 \AA
$$

$$
k_{\mathrm{CC}}=13.59 \mathrm{~N} \mathrm{~cm}^{-1}
$$

$$
\mathrm{BDE}_{\mathrm{Rel}}=0.00 \mathrm{kcal} \mathrm{~mol}
$$

${ }^{3} \Sigma_{u}^{+}$(3-bond structure)

$R_{\mathrm{CC}}=1.210 \AA$
$k_{\mathrm{CC}}=16.97 \mathrm{~N} \mathrm{~cm}^{-1}$
$\mathrm{BDE}_{\text {Rel }}=-22.17 \mathrm{kcal} \mathrm{mol}^{-1}$

Scheme 7. Equilibrium bond lengths (R_{CC}, \AA), force constants $\left(k_{\mathrm{CC}}, \mathrm{Ncm}^{-1}\right)$, and relative bond dissociation energies $\left(\mathrm{BDE}_{\text {Rel }}, \mathrm{kcal} \mathrm{mol}^{-1}\right)$ for the quadru-ply-bonded structure of the ground singlet ${ }^{1} \Sigma_{\mathrm{g}}^{+}$and the triply-bonded structure of the triplet ${ }^{3} \Sigma_{u}^{+}$states (both dissociate to the ${ }^{3} \mathrm{P}-{ }^{3} \mathrm{P}$ dissociation limit with the appropriate spin). All VB data are calculated at VBSCF/6-31G* level using the corresponding VB structures from set A .
hence the C-C bond reflects this Pauli repulsion and has a lower force constant compared with the triplet state. In contrast, the relaxed force constant for $\mathrm{HC} \equiv \mathrm{CH}$, which is a local force constant of the $\mathrm{C}=\mathrm{C}$ bond without the effect of the $\mathrm{C}-\mathrm{H}$ bonds, is virtually identical to force constant of the ${ }^{3} \Sigma_{u}^{+}$state. It is further important to emphasize that the σ bond interaction energies $D_{\sigma}^{\text {in-situ }}$ for ${ }^{3} \Sigma_{u}^{+}\left(\mathrm{C}_{2}\right)$ and $\mathrm{HC} \equiv \mathrm{CH}$ are almost identical, 138.2 and $138.7 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively (See Table S12a in the Supporting Information, and Table 3 above). Both values are smaller than the corresponding value $D_{20}{ }^{\text {in-situ }}$ ($156.8 \mathrm{kcalmol}^{-1}$) for the σ double-bond in the ground state of C_{2}. Scheme 7 and the $D^{\text {in-situ }}$ data again underscore the above conclusions that force constant does not count the number of bonds.

Conclusions

Ab initio valence-bond (VB) calculations show that the ${ }^{1} \Sigma_{g}^{+}$ ground state of C_{2} is accurately described by a small set of four Lewis structures, which account for more than ca. 94% of the bond dissociation energy calculated by the full VB set or the full configuration interaction in the same basis set. This set of Lewis structures involves the major quadruply-bonded structure, and three minor structures; one doubly- π-bonded structure and two ethylenic $(\sigma+\pi)$-bonded ones. In fact, VB theory shows (Figure 3) that set B with the doubly- π-bonded structures makes a tiny contribution ($1.4 \mathrm{kcalmol}^{-1}$) to the BDE of the molecules, while set C with the two ethylenic $(\sigma+\pi)$ bonded structures is more significant. Thus, the mixing of the ethylenic ($\sigma+\pi$)-bonded structures add small, but non-negligible, resonance energy that stabilizes further the σ bonding of the quadruply-bonded structure. All the more, at the equilibrium distance, the quadruply-bonded structure is the major C_{2} descriptor, and it accounts by itself for more than 90% of the bond dissociation energy at the best VB computational level (Table 1). This VB description of C_{2} in terms of Lewis structures is in agreement with the picture derived by Zhang et al. from the full-valence CASSCF wave function. ${ }^{[43]}$
Alternative proposals of a two- π-bond model, with or without additional weak dative σ bonds, ${ }^{[20,21 a, b ;}{ }^{22]}$ based on indirect interpretations like EBO estimations, resemblance of C_{2} to Be_{2} and so on, are not supported by computations, as the proposed structures are shown to be either high-lying in energy or unstable and collapsing to the quadruply-bonded one. At the equilibrium R_{cc} distance and up to $1.85 \AA$, the doublybonded structures are destabilized by the severe Pauli repulsion of the largely σ lone pair electrons, which in the quadruple bond structure are replaced by σ bonds. As such, the doubly-bonded structures are too high in energy to matter much for the molecule.
Plotting the energy of the ground state against the interatomic C-C distance reveals a bonding-crossover pattern from a quadruple bond at equilibrium, to a double bond, from $R_{\mathrm{CC}}=$ $1.85 \AA$ on (where the Pauli repulsion as well as bonds become weak). Beyond $2.5 \AA$, the ground state wave function converges to a collection of unbound structures, which describe the two carbon atoms at their ${ }^{3} \mathrm{P}$ group states at the dissociation limit (see D structures in Scheme 3 and further details in the

Supporting Information). On the other hand, by itself, the quadruply-bonded covalent structure (Scheme 3a) dissociates to a state in which each carbon atom has four singly occupied AOs (at $10 \AA$, the quadruply-bonded structure involves two carbons in their $s^{1} p^{3}$ promoted states), thus more akin to the ${ }^{5} \mathrm{~S}$ state rather than to the ${ }^{3} \mathrm{P}$ state. ${ }^{[28]}$ This is in accord with the result that the $D^{\text {in-situ }}$ bond-interaction energy in C_{2} is stronger than that of acetylene.
In summary, in whichever way we looked at C_{2}, we found that it has a quadruple bond, which possesses the following features:

1) The quadruply-bonded structure is composed of two strong π bonds and a double σ bond. In order to cohabit, the σ bonds prefer a longer $C-C$ distance that lowers the Pauli repulsion. As such, the equilibrium R_{cc} value of C_{2} lengthens a bit and the force constant is lowered (vis-à-vis acetylene).
2) The double σ bond comprises of a strong inner σ bond, ${ }^{[7,43]}$ and a weak outer σ bond. The latter has a sizeable bond interaction energy of $17-21 \mathrm{kcalmol}{ }^{-1} \cdot{ }^{[7]}$ An immediate outcome of having a weak fourth bond is the highly reactive nature of the molecule, for example, towards radical attack, which can be predicted from VB principles. ${ }^{[47]}$
3) Our findings account also for the features of the ${ }^{3} \Sigma_{u}^{+}$triplet state of C_{2}. This state is a perfect acetylenic diradical with a triple CC bond, $\uparrow \cdot C \equiv C \cdot \uparrow$. If we now flip the spin of the diradical to a singlet, the energy goes down by over 20 kcal mol^{-1}. This is a proof that the ground state of C_{2} is more strongly bonded than a triple bond. This is reflected also by the $D^{\text {in-situ }}$ values of the corresponding σ bonds, which show that the single σ bond in the triplet state is 18.4 kcal mol^{-1} weaker than the double σ bond in the ground state; a value well within the range of the fourth bond's strength of $17-21 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, determined in a variety of ways. ${ }^{[7]}$
4) The fact that the quadruple-bond-structure of C_{2} has, by itself, a lower force constant and a longer bond length than acetylene, indicates that at least for these two molecules, these two observables do not count the relative bond multiplicities.
5) The double σ bond and the charge shift bonding character of the π bonds of C_{2} (and of the inverted σ bond $^{[7]}$) are challenging, and holding the key to understanding the apparent paradox, that a quadruple bond shows signs of "weakness" like a "double-bond plus".

We may therefore conclude that carbon and other first-row elements can break the glass ceiling of triple bonding and form quadruple bonds with double π and σ bonds. The number of possibilities to explore the presence of this unusual bonding is not too small.

Computational Methods

Valence bond calculations: The VB calculations were generally done for C_{2} at the VBSCF/6-31G* level ${ }^{[6,7]}$ using the XMVB package. ${ }^{[48]}$ In some cases, we used also VBCISD. ${ }^{[49]}$ This method per-
forms singles and doubles Cl for the local AOs and HAOs , and endows the VB wave function by dynamic correlation. In the calculations described in Figure 5 c , we used semi-localized Coulson Fischer orbitals to allow variation for the dative bonds. ${ }^{[50]}$ The VBSCF-QMC calculations (QMC = Quantum Monte Carlo) were done as described recently, ${ }^{[32]}$ using a quadruple-zeta basis set, with core pseudo potential, and especially designed for QMC calculations. ${ }^{[51]}$
Valence bond structures: The full valence shell of C_{2} involves 1764 (according to the Weyl formula ${ }^{[52]}$) structures, which are produced automatically by XMVB. As in the past, ${ }^{[27]}$ here too we devised systematically a truncated set of VB structures that reproduces closely the BDE in agreement with FCl and VBSCF(1764). This new truncated set involves 88 structures, which are given in the Supporting Information (see Scheme S1), and represent the set of covalent and lowest energy mono-ionic and di-ionics (84 structures) for groups A, B, and C, to which we add four structures generated from $\Phi_{\text {D13,cov }}$ (see Scheme 1, Supporting Information) and all with the electronic configurations necessary to describe two carbon atoms in their ${ }^{3} \mathrm{P}$ ground states at the dissociation limit. Adding these structures generates a $\mathrm{VB}(88)$ structure, which at the dissociation limit differs by $0.004 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to $\mathrm{VB}(1764)$.
Force constants: Force constants (k_{cc} in Ncm^{-1}) based on MRCI and $\operatorname{CCSD}(\mathrm{T})$ for both C_{2} and as well for $\mathrm{HC} \equiv \mathrm{CH}$, were calculated using frequencies (in cm^{-1}) in MOLPRO. ${ }^{[53]}$ The force constants based on VB calculations, were obtained from the fit of the VB energies to the harmonic approximation as a second derivative of energy $k_{C C}=d^{2} E / d^{2} x$ (see Supporting Information).

Keywords: bond dissociation energy - bond order - bonding C_{2}. force constants - quadruple bonds \cdot valence bonds
[1] F. A. Cotton, Inorg. Chem. 1965, 4, 334-336.
[2] "Electronic Structure of Metal-Metal Bonds": J. E. McGrady in Computational Inorganic and Bioinorganic Chemistry (Eds.: E.I. Solomon, R. A. Scott, R. B. King), Wiley, New York 2009, pp. 425-431.
[3] See for example, a) T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long, P. P. Power, Science 2005, 310, $844-847$; b) B. O. Roos, A. C. Borin, L. Gagliardi, Angew. Chem. Int. Ed. 2007, 46, 1469-1472; Angew. Chem. 2007, 119, 1491 - 1494; L. Gagliardi, B. O. Roos, Nature 2005, 433, 848-851; c) J. Christ, C. Epp, V. Pritchard, D. Schmeh, C. Pierpont, E. Nordlander, Inorg. Chem. 2010, 49, 2029-2031; d) X. Wu, X. Lu, J. Am. Chem. Soc. 2007, 129, 2171-2177.
[4] a) G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762-785 (specifically, p. 780); b) R. N. Pease, J. Am. Chem. Soc. 1921, 43, 991 -1004; c) M. Karni, Y. Apeloig, Chem. Isr. 2005, 19, 22-32; d) V. Kravchenko, R. Kinjo, A. Sekiguchi, M. Ichinohe, R. West, Y. S. Balazs, A. Schmidt, M. Karni, Y. Apeloig, J. Am. Chem. Soc. 2006, 128, 14472-14473; e) for a review on acetylene and heavier analogues, see: R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877-3923; f) apparently, sulfur may exceed double bonding and form triple bonds, see: P. Schreiner, H. P. Reisenauer, J. Romanski, G. Mloston, Angew. Chem. Int. Ed. 2009, 48, 8133-8136; Angew. Chem. 2009, 121, 8277-8280.
[5] "Following one's nose: a quadruple bond to carbon. Surely I must be joking!" H. S. Rzepa, URL: http://www.ch.imperial.ac.uk/rzepa/blog/?p= 3065; accessed: 4th June 2011 (archived by WebCite ${ }^{\circledR}$ at http:// www.webcitation.org/5zBSjBjhM).
[6] See paper and Supporting Information in: S. Shaik, D. Danovich, W. Wu, P. Su, H. S. Rzepa, P. C. Hiberty, Nat. Chem. 2012, 4, 195-200.
[7] D. Danovich, P. C. Hiberty, W. Wu, H. S. Rzepa, S. Shaik, Chem. Eur. J. 2014, 20, 6220-6232.
[8] For reviews on C_{2} and other carbon clusters, see: a) W. Weltner, Jr., R. J. van Zee, Chem. Rev. 1989, 89, 1713-1747; b) A. Van Orden, R. J. Saykally, Chem. Rev. 1998, 98, 2313-2357; c) for a review of the experimental spectroscopic information on C_{2}, see M. Martin, J. Photochem. Photobiol. A 1992, 66, 263-289; d) for some studies of C_{2} reactivity see: L. Pasternack, A. P. Baronavski, J. R. McDonald, J. Phys. Chem. 1980, 73, 3508-

3510; L. Pasternack, J. R. McDonald, Chem. Phys. 1979, 43, 173-182; A. Páramo, A. Canosa, S. D. Le Picard, I. R. Sims, J. Phys. Chem. A 2008, 112, 9591-9600; P. S. Skell, L. M. Jackman, S. Ahmed, M. L. McKee, P. B. Shevlin, J. Am. Chem. Soc. 1989, 111, 4422-4429; e) for relative reactivities of double and triple bonds in nucleophilic additions, cycloadditions and sigmatropic shifts, see: R. W. Strozier, P. Caramella, K. N. Houk, J. Am. Chem. Soc. 1979, 101, 1340-1343; R. A. Firestone, Tetrahedron 1977, 33, 3009-3039.
[9] On the rich chemical world of C_{2} moieties, see: R. Hoffmann, Am. Sci. 1995, 83, 309-311.
[10] a) J. Li, R. Hoffmann, Chem. Mater. 1989, 1, 83-101; b) R. Hoffmann, H.J. Meyer, Z. Anorg. Allg. Chem. 1992, 607, 57-71; c) H. Deng, R. Hoffmann, Inorg. Chem. 1993, 32, 1991-1996; d) E. F. Merschrod, S. H. Tang, R. Hoffmann, Z. Naturforsch. B 1998, 53, 322-332.
[11] P. Ball, Chem. World 2013, 10, 41-42.
[12] W. Swan, Trans. R. Soc. Edinburgh 1857, 21, 411-429.
[13] a) D. M. Gruen, S. Liu, A. R. Krauss, X. Pan, J. Appl. Phys. 1994, 75, 1758 1763; b) See however, J. R. Rabeau, P. John, J. I. B. Wilson, Y. Fan, J. Appl. Phys. 2004, 96, 6724-6732.
[14] a) A. Rodríguez-Fortea, S. Irle, J. M. Poblet, WIREs Comput. Mol. Sci. 2011, 1, 350-367, and references therein; b) for an overview discussion of the alternative mechanisms, the importance of cationic intermediate, and the putative role of C_{2}, see: H. Schwarz, Angew. Chem. Int. Ed. Engl. 1993, 32, 1412-1415; Angew. Chem. 1993, 105, 1475-1478.
[15] S. Shaik, H. S. Rzepa, R. Hoffmann, Angew. Chem. Int. Ed. 2013, 52, 3020-3033; Angew. Chem. 2013, 125, 3094-3109.
[16] a) A. Krapp, F. M. Bickelhaupt, G. Frenking, Chem. Eur. J. 2006, 12, 9196 9216; b) for problems in DFT representation of the molecule, see P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 329-343.
[17] a) J. M. Matxain, F. Ruiperez, I. Infante, X. Lopez, J. M. Ugalde, G. Merino, M. Piris, J. Chem. Phys. 2013, 138, 151102-1-151102-4; b) J. M. L. Martin, Mol. Phys. 2014, 112, 785-793.
[18] a) I. Mayer, J. Comput. Chem. 2007, 28, 204-221; b) see comments on BO and specifically for C_{2}, in: I. Mayer, J. Phys. Chem. A 2014, 118, 2543 2546.
[19] a) See discussion in: W. Wu, J. Gu, J. Song, S. Shaik, P. C. Hiberty, Angew. Chem. Int. Ed. 2009, 48, 1407-1410; Angew. Chem. 2009, 121, $1435-$ 1438; b) For a review, see: M. D. Levine, P. Kaszynski, J. Michl, Chem. Rev. 2000, 100, 169-234.
[20] a) J. Grunenberg, Nat. Chem. 2012, 4, 154-155; J. Grunenberg, Chem. Eur. J. 2015, 21, 17126; b) G. Frenking, M. Hermann, Angew. Chem. Int. Ed. 2013, 52, 5922-5925; Angew. Chem. 2013, 125, 6036-6039; c) L. T. Xu, T. H. Dunning Jr., J. Chem. Theor. Comput. 2014, 10, 195-201; d) D. Danovich, S. Shaik, R. Hoffmann, H. S. Rzepa, Angew. Chem. Int. Ed. 2013, 52, 5926-5928; Angew. Chem. 2013, 125, 6040-6042; e) S. Shaik, D. Danovich, P. D. Hiberty, Chem. Eur. J. 2015, 21, 17127-17128.
[21] a) M. Hermann, G. Frenking, Chem. Eur. J. 2016, DOI: 10.1002/ chem.201503762; b) W. Zou, D. Cremer, Chem. Eur. J. 2016, DOI: 10.1002/chem.201503750; c) M. Piris, X. Loopez, J. M. Ugalde, Chem. Eur. J. 2016, DOI: 10.1002/chem. 201504491.
[22] a) D. L. Cooper, lecture at the conference The Chemical Bond at the 21th Century, June 14-18, 2015, Xiamen (China); b) D. L. Cooper, F. E. Penotti, Comput. Theor. Chem. 2015, 1053, 189-194; c) D. L. Cooper, R. Ponec, M. Khout, Mol. Phys. In press, DOI: 10.1080/00268976.2015.1112925; d) note that in two papers given in the previous two references, the BO of C_{2} is larger than that of $\mathrm{N} \equiv \mathrm{N}$ and as large as that of $\mathrm{HC} \equiv \mathrm{CH}$!
[23] Zou and Cremer ${ }^{[216]}$ insist that their BSO index determines the intrinsic bond strength. Nevertheless they state the following statement: "Such an analysis cannot confirm or exclude the possibility of a quadruple bond derived from the form of a VB- or FCl-wavefunction of C_{2}. There may be a fourfold overlap in dicarbon and the arguments in favor of a quadruply-bonded C_{2} molecule might have their basic value in the light of bonding theory".
[24] F. Weinhold, C. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, 2005.
[25] W. Wu, P. Su, S. Shaik, P. C. Hiberty, Chem. Rev. 2011, 111, 7557-7593.
[26] a) G. Rumer, Göttinger Nachr. 1932, 377; b) a referee has made a comment that the fourth bond represents a singlet coupling, but does not have a BDE (since BDE involves also nuclear repulsion). We point out
that, while this is true, nevertheless the fourth pair contributes to the BDE since at infinite separation its singlet-coupling energy vanishes.
[27] P. Su, J. Wu, J. Gu, W. Wu, S. Shaik, P. C. Hiberty, J. Chem. Theory Comput. 2011, 7, 121-130.
[28] There are multiple avoided crossings: the correlation to ${ }^{5} \mathrm{~S}-{ }^{5} \mathrm{~S}$, at the dissociation limit (of a quadruply bodend C_{2}), was shown using GVB + CCCI. See : a) C. J. Wu, E. A. Carter, J. Phys. Chem. 1991, 95, 8352-8363; b) G. Raos, J. Gerratt, D. L. Copper, M. Raimondi, Mol. Phys. 1993, 79, 197-216-this study notes "an avoided crossing between a long range ${ }^{3} \mathrm{P}-{ }^{3} \mathrm{P}$ interaction which is repulsive and a short range ${ }^{5} \mathrm{~S}-{ }^{5} \mathrm{~S}$ interaction which is strongly attractive"; c) the avoided crossings of $\mathrm{X}^{1} \Sigma_{\mathrm{q}}^{+}$with $\mathrm{B}^{\prime} \Sigma_{\mathrm{q}}^{+}$ and $\mathrm{B}^{1} \Delta_{\mathrm{g}}$ were discussed in: A. J. C. Varandas, J. Chem. Phys. 2008, 129, 234103; d) for similar avoided crossings as in the previouse reference, see: M. B. Boggio-Pasqua, V. I. Voronin, Ph. Halvick, J. C. Rayez, J. Mol. Struct. 2000, 531, 159-167.
[29] a) M. L. Abrams, C. D. Sherrill, J. Chem. Phys. 2004, 121, 9211-9219; b) C. D. Sherrill, P. Piecuch, J. Chem. Phys. 2005, 122, 124104.
[30] B. Ruscic, J. Phys. Chem. A 2015, 119, 7810-7837; ZPE correction from NIST data base, http://cccbdb.nist.gov.
[31] See Supporting Information of reference [7]. The value was recalculated here at the equilibrium geometry determined in the present study.
[32] B. Braida, J. Toulouse, M. Caffarel, C. J. Umrigar, J. Chem. Phys. 2011, 134, 084108.
[33] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules, Van Nostrand, New York, 1979.
[34] a) G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 2, Krieger, Malabar, 1991, p. 180; b) W. Gordy, J. Chem. Phys. 1946, 14, 305-320.
[35] J. M. Galbraith, E. Blank, S. Shaik, P. C. Hiberty, Chem. Eur. J. 2000, 6, 2425-2434.
[36] E. D. Jemmis, B. Pathak, R. B. King, H. F. Schaefer III, Chem. Commun. 2006, 2164-2166.
[37] The authors of reference [20b] suggested the experimentally based determination of the fourth bond's strength is faulty because it does not take into account the changes in $R_{C C}$ in $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{HC} \equiv \mathrm{C}$, and C_{2}, and the corresponding rehybridization changes. As we showed subsequently in reference [21d] and then in reference [7], the different R_{CC} values contribute no more than $1 \mathrm{kcalmol}^{-1}$, which was anyway taken into account in calculating the $D^{\text {in-situ }}$ (fourth bond) value. We also showed that the $\mathrm{H}-\mathrm{C}$ bond length, and force constant in $\mathrm{H}-\mathrm{CC}$. remain the same as in acetylene, and the radical is localized, and the hybridization does not change. The $D^{\text {in-situ }}$ (fourth bond) value we got is in perfect according with the, independently determined, BOVB datum of $20.4 \mathrm{kcalmol}^{-1}$. Nevertheless, the authors of references [21a,b] have now repeated the same arguments (as in referemce [20a]), without noting that these have been already responded to.
[38] R. M. Badger, J. Chem. Phys. 1934, 2, 128-131; R. M. Badger, J. Chem. Phys. 1935, 3, 710-714.
[39] a) The Badger Rule was shown to be of moderate accuracy. See: W. G. Penney, G. B. B. Sutherland, Proc. R. Soc. London Ser. A 1936, 156, 654678 ; b) see estimation of inaccuracy and an extension in reference [34b]; c) For the inaccuracy of the rule, which is about 17% and can exceed 90%, see also: J. Cioslowski, G. Liu, R. A. Mosquera Castro, Chem. Phys. Lett. 2000, 331, 497-501.
[40] a) M. Kaupp, B. Metz, H. Stoll, Angew. Chem. Int. Ed. 2000, 39, 46074609; Angew. Chem. 2000, 112, 4780-4782; b) M. Kaupp, S. Riedel, Inorg. Chim. Acta 2004, 357, 1865-1872; c) H.-G. Mack, D. Christen, H. Oberhammer, J. Mol. Struct. 1988, 190, 215-226; D. Christen, O. D Gupta, J. Kadel, R. L. Kirchmeier, H. G. Mack, H. Oberhammer, J. M. Shreeve, J. Am. Chem. Soc. 1991, 113, 9131-9135; d) for a breakdown of bond-length/bond-strength (BLBS) relationships, see: P. Politzer, D Habibollahzadeh, J. Chem. Phys. 1993, 98, 7659-7660; B. A. Lindquist, T. H. Dunning, J. Phys. Chem. Lett. 2013, 4, 3139-3143; e) A. A. Fokin, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafim, J. E. P. Dahl, R. M. K. Carlson, P. R. Schreiner, J. Am. Chem. Soc. 2012,

134, 13641-13650; P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafim, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, Nature 2011, 477, 308-311; f) T. Zeng, D. Danovich, S. Shaik, N. Anath, R. Hoffmann, ACS Cent. Sci. 2015, 1, 270-278; g) E. Kraka, D. Setiawan, D. Cremer, J. Comput. Chem. 2016, 37, 130-142.
[41] S. Shaik, D. Danovich, W. Wu, P. C. Hiberty, Nat. Chem. 2009, 1, $443-$ 449.
[42] The bond strength order (BSO) in reference [21b] is calibrated to fit the well-behaved series of $C-C, C=C$, and $C \equiv C$. This calibration may well be responsible for the deduced low BSO of C_{2} (reaching up to 2.6), because this calibration forms a circular argument (namely that C_{2} must fit into this series, so let's fit it and see what its BSO turns out to be). Be this as it may, it is clear that BSO does not measure bond multiplicity, at least not for C_{2} versus HCCH . In fact, the authors of reference [21b] seem to agree that BSO does not necessarily measure bond multiplicites. ${ }^{[23]}$
[43] R. Zhong, M. Zhang, H. Xu, Z. Su, Chem. Sci. 2016, 7, 1028-1032.
[44] S. Shaik, P. C. Hiberty, A Chemist's Guide to Valence Bond Theory, Wiley, Hoboken, NJ, 2008.
[45] Notably, local spin analysis predicts a triply-bonded diradical character. See: E. Ramos-Cordoba, P. Salvador, M. Reiher, Chem. Eur. J. 2013, 19, 15267-15275.
[46] We tried to start from State II with the pure 2s lone pairs in Figure 4a, and to employ the dative bonding by allowing it to delocalized to the vacant $2 p_{z} A O$ on the other center. This wave function has a high energy and simply collapsed to the more stable Hartree-Fock wave function, which is thought to have "doubly-bonded structure".
[47] See for example, W. Z. Lai, C. Li, H. Chen, S. Shaik, Angew. Chem. Int. Ed. 2012, 51, 5556-5578; Angew. Chem. 2012, 124, 5652-5676. Based on this study the barrier to cleave the fourth bond of C_{2} by a radical is given as, $\Delta E^{+}=0.3 \Delta E_{S T}-B \approx 0$ ($\Delta E_{S T}$, the corresponding singlet to triplet unpairing of the bond to be broken, which is ca. 28-30 kcal mol ${ }^{-1}$; and B, the resonance energy of the TS, given as ca. $0.5 D$ whereby $D \approx 17-$ $21 \mathrm{kcalmol}^{-1}$). The weakness of the fourth bond endows C_{2} with reactivity resembling those of a diradical. ${ }^{[15]}$ Another source of C_{2} reactivity is the ${ }^{3} \Pi_{u}$ sate, which is a pure diradicaloid (see however, reference [8d]).
[48] a) L. Song, Z. Chen, F. Ying, J. Song, X. Chen, P. Su, Y. Mo, Q. Zhang, W. Wu, XMVB 2.0: An ab initio Non-orthogonal Valence Bond Program, Xiamen University, Xiamen 361005, China, 2012; b) L. Song, Y. Mo, Q. Zhang, W. Wu, J. Comput. Chem. 2005, 26, 514-521; c) Z. Chen, F. Ying, X. Chen, J. Song, P. Su, L. Song, Y. Mo, Q. Zhang, W. Wu, Int. J. Quantum Chem. 2015, 115, 731-737.
[49] W. Wu, L. Song, Z. Cao, Q. Zhang, S. Shaik, J. Phys. Chem. A 2002, 106, 2721-2726.
[50] W. A. Goddard III, L. B. Harding, Annu. Rev. Phys. Chem. 1978, 29, 363 396.
[51] M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 2007, 126, 234105.
[52] H. Weyl, in The Theory of Groups and Quantum Mechanics, Dover Publications, New York, 1956.
[53] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, version 2010.1 University College Cardiff Consultants Limited, UK.
S. Shaik,* D. Danovich, B. Braida, P. C. Hiberty*

The Quadruple Bonding in C_{2} Reproduces the Properties of the Molecule

The case for four! There is only a quad-ruply-bonded C_{2}, while all σ doublybonded models, without or with dative σ bonds, collapse to the quadruple bond!

[^0]: [a] Prof. S. Shaik, Dr. D. Danovich
 Institute of Chemistry and
 The Lise Meitner-Minerva Center for Computational Quantum Chemistry
 Hebrew University of Jerusalem, 91904, Jerusalem (Israel)
 E-mail: sason.shaik@gmail.com
 [b] Dr. B. Braida
 UPMC Université Paris 06, CNRS UMR 7616
 Laboratoire de Chimie Théorique
 C. 137, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
 [c] Dr. P. C. Hiberty
 Laboratoire de Chimie Physique, UMR CNRS 8000, Bat. 349
 Université de Paris Sud, 91405 Orsay Cédex (France)
 E-mail:philippe.hiberty@u-psud.fr

