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3 Université Côte d’Azur, CNRS, I3S, INRIA-Focus, France, mastandr@i3s.unice.fr

Abstract. This paper presents a static analysis technique based on
effects and behavioural types for deriving synchronisation patterns of
stateful active objects and verifying the absence of deadlocks in this con-
text. This is challenging because active objects use futures to refer to
results of pending asynchronous invocations and because these futures
can be stored in object fields, passed as method parameters, or returned
by invocations. Our effect system traces the access to object fields, thus
allowing us to compute behavioural types that express synchronisation
patterns in a precise way. The behavioural types are thereafter analysed
by a solver that discovers potential deadlocks.

1 Introduction

Active objects are a programming model that unifies the models of actors and
objects. In this model, method invocations are asynchronous: an object that
invokes a method does not release the control and is free to continue processing
– the invocation is “not blocking”. The returned value of an invocation is bound
to a pointer, called future, which is used by the caller to access the value. The
access to a future triggers a synchronisation [12,4,16].

Active objects are gaining prominence because they provide a high-level mul-
titasking paradigm easier to program than explicit threads. For this reason, they
are a pervasive Symbian OS idiom [15] and have been adopted in several lan-
guages and libraries, such as Akka [18], an actor library for Java and Scala [10],
or in ABS [12], and in ProActive [4]. In active object languages, futures are first
class values; therefore they can be sent as arguments of method invocations,
returned by methods, or stored in object fields. In this context, the analysis of
synchronisation patterns is challenging because the context where synchronisa-
tion, i.e. future access, occurs can be different from the context where the future
is created. For example, the synchronisation of a future stored in a field happens
when the value stored in the field is necessary; at this point, the execution of the
corresponding method must finish before the value of the future can be accessed.

This paper presents a static analysis technique for finding synchronisation
patterns and detecting deadlocks in stateful active objects. Our analysis is ex-
pressed on an active model called gASP that features implicit synchronisation
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on futures (called wait-by-necessity) and does not require any specific type for
futures. With wait-by-necessity, the execution is only blocked when a value to
be returned by a method is needed to evaluate a term. This programming ab-
straction allows the programmer not to worry about placing synchronisation
points: the synchronisation will always occur as late as possible. The strengths
of this analysis are: the precise management of object states and their update,
the tracking of futures passed by method invocations or stored in fields, and
the support for infinite states. This paper extends previous works [8,6] with the
handling of stateful objects by tracing the effects of methods on fields, including
the storage of futures inside object fields.

To illustrate synchronisation in active objects, consider the example below.

1 Int n
2 addToStore(Int x){
3 count = n + 1;
4 n = this.store(x,count);
5 return count }
6 store(Int x, Int y){
7 /* storing x */ return y }

8 //MAIN
9 { Store = new Act(0);

10 x = Store.addToStore (1);
11 x = x + 1; // needed to

avoid conflicts
12 k = Store.addToStore (4) }

This program creates an active object, calls the addToStore method asyn-
chronously twice. To prevent non-deterministic results, and to ensure the order
of execution of requests, we synchronise on the result of the first invocation (Line
11) before triggering the second one. Synchronisation is expressed by any oper-
ation accessing the method result, a specific synchronisation operation is not
necessary in gASP even if it could be added. The addToStore method triggers
an invocation to the store method and counts the number of stored elements.
Our analysis is able to detect that a deadlock is possible if the second invocation
to addToStore is executed before the method store. The analysis reveals by a
circular dependency where the single thread of the active object is waiting for
the value of n inside addToStore, the effect analysis reveals that n contains the
result of the store method, and thus store must be executed to resolve the
dependency. The analysis also discovers that if Line 11 is omitted then the two
concurrent addToStore requests lead to a non-deterministic object state (one of
the states being undesired).

The typing technique is based on an effect system that traces the accesses
to fields (e.g. read and write access to n in the example), and a behavioural sys-
tem that discovers the synchronisation patterns of active objects. The effect type
records if a field is read or write, and which parameters are used by each method.
It is used to identify conflicting field accesses, e.g. one invocation reading a field
and a parallel one writing a new future in the same field. The effect type records
the usage of parameters because they correspond to synchronisations that cre-
ate a dependency between tasks. Also we mark an accessed future as “already
synchronised” to avoid synchronising it multiple times. Because futures are im-
plicit and pervasive we use a novel technique where “everything is a future”, this
enables precise tracking of futures and prevent multiple synchronisation of the
same future hold by several variables. The analysis detects and excludes pro-
gram with non-deterministic effects. It could be extended to non-deterministic



programs by associating multiple values to each variable, merging the different
environments when non-determinacy is detected. This is not studied here, it
would make the analysis less precise and the formalisation more complex.

The behavioural types define the synchronisation patterns. They are ex-
pressed in a modelling language that is an extension of lams [7,13], which are
conjunctions and disjunctions of object dependencies and method invocations.
Like in [6], to deal with method returning futures, we use a place-holder that
represents the object that will access a future. Actually, our types extend those
of [6] with so-called delegations that represent side-effects of methods on ar-
gument fields. If a method stores a future f in the field of an argument, then
the next access to the field should occur after the end of the method (to pre-
vent read/write conflicts) and should be bound to the future. As the future f is
generally not known when typing, we create a delegation which represents this
future. We introduce the notation method object .field name for delegations.

The analysis of the behavioural type is performed by the solver defined in [6],
which detects circularities in the graph of dependencies, highlighting potential
deadlocks caused by erroneous synchronisation patterns. The behavioural type
system specifies a set of pairwise dependencies between futures, some of them
being delegations; the analysis unfolds this set of dependencies to find the po-
tential circularities in the program execution. We prove that our analysis finds
all the potential deadlocks of a program.

Section 2 presents gASP. Section 3 describes our type system and Section 4
presents our analysis technique. Section 5 provides related work and a conclu-
sion. Due to space limitation, this paper only contains the crucial points of the
formalisation; technical details and proofs can be found in [11].

2 The active object model gASP

Syntax. The language gASP has types T that may be either Int or a class Act.
Extending this work to several classes is not problematic. We use x, y, k, · · ·
to range over variable names. The notation T x denotes any finite sequence of
variable declarations T x, separated by commas. A gASP program is a sequence
of variable declarations T x (fields) and method definitions T m(T y) { s }, plus a
main body { s′ }. The syntax of gASP body is defined by the following grammar:

s ::= skip | x = z | if e { s } else { s } | s ; s | return v statements
z ::= e | v.m(v) | new Act(v) expressions with side effects
e ::= v | v ⊕ v expressions
v ::= x | null | integer-values atoms

Expressions with side effects include asynchronous method calls v.m(v), where
v is the invoked object and v are the arguments of the invocation. Operations
taking place on different active objects occur in parallel, while operations in the
same active object are sequential. Terms z also include new Act(v) that creates
a new active object whose fields contain the values v. A (pure) expression e may
be a simple term v or an arithmetic or relational expression; the symbol ⊕ range
over standard arithmetic and relational operators. Without loss of generality, we
assume that fields and local variables have distinct names.



w is not a variable

[[w]]` = w

x ∈ dom(`)

[[x]]` = `(x)

[[v]]` = k [[v
′
]]` = k

′

k, k
′

values k
′′

= k ⊕ k′

[[v ⊕ v′]]` = k
′′

Serve
α(a,∅, q ∪ {p})→ α(a, p, q)

Update
(a+ `)(x) = f

(a+ `)[x 7→ w] = a
′
+ `
′

α(a, {` | s}, q) f(w)
→ α(a

′
, {`′ | s}, q) f(w)

Assign
[[e]]a+` = w

(a+ `)[x 7→ w] = a
′
+ `
′

α(a, {` | x = e ; s}, q)
→ α(a

′
, {`′ | s}, q)

Return
[[v]]a+` = w `(destiny) = f

α(a, {` | return v}, q) f(⊥)
→ α(a,∅, q) f(w)

New
[[v]]a+` = w β fresh y = fields

α(a, {` | x = new Act(v) ; s}, q)
→ α(a, {` | x = β ; s}, q) β([y 7→ w],∅,∅)

Invk
[[v]]a+` = β [[v]]a+` = w β 6= α
f fresh bind(β, m, w, f) = p

′

α(a, {` | x = v.m(v) ; s}, q) β(a′, p, q′)
→ α(a, {` | x=f;s}, q) β(a′, p, q′ ∪ {p′}) f(⊥)

Fig. 1: Evaluation function and semantics of gASP (excerpt) - full version in [11].

Semantics. The semantics of gASP uses two sets of names: active object names,
ranged over by α, β, . . . , and future names, ranged over by f , g, . . . .

The runtime syntax of gASP is:
cn ::= f(w) | f(⊥) | α(a, p, q) | cn cn configurations
w ::= α | f | v values and names

p, q ::= {` | s} processes
a, ` ::= x 7→ w memories

Configurations, denoted cn, are non empty sets of active objects and futures.
Active objects α(a, p, q) contain a name α, a memory a recording fields, a running
process p, and the set of processes waiting to be scheduled q. The element f(·)
represents a future which may be an actual value (called future value) or ⊥ if
the future has not yet been computed. A name, either active object or future,
is fresh in a configuration if it does not occur in the configuration. Memories
a and ` (where ` stores local variables) map variables into values or names.
The following auxiliary functions are used: dom(`) returns the domain of `;
fields(Act) is the list of fields of Act; `[x 7→ v] is the standard map update;
a + ` merges the mappings a and `, it is undefined if a(x) 6= `(x) for some x.
We use the following notation: (a + `)[x 7→ w] = a′ + `′ implies a′ = a[x 7→ w],
if x ∈ dom(a), or `′ = `[x 7→ w], otherwise. The evaluation of an expression,
denoted [[e]]a+`, returns the value of e by computing the expression, retrieving
the values stored in a + `; [[e]]a+` returns the tuple of values of e. Finally, if m
is defined by T m(T x) { s } then: bind(α, m, w, f) = p where p is a process in
the following shape { [ destiny 7→ f, this 7→ α, x 7→ w ] | s }, where the special
variable destiny records the name of the future currently computed.

The operational semantics of gASP is defined by a transition relation between
configurations. Figure 1 shows the essential rules of the semantics, all the rules
can be found in [6,11]. Rule Update replaces the future reference by its value,
it can be triggered at any time when a future value is known. The new value
may be also a future. Rule Serve schedules a new process to be executed, which
is taken from the set q of waiting processes. Rule Assign stores a value or a
name into a local variable or a field (cf. definition of a + `). The evaluation
of [[e]]a+` may require synchronisations: if e is an arithmetic expression, the



operands must be evaluated to integers, and, if an operand is a future, the
rule can only be applied after this future has been evaluated and updated. The
if statement is omitted here but the evaluation of the condition must result
in a boolean which may trigger a synchronisation. Note that this semantics
ensures the strong encapsulation of objects: an active object can only assign its
own fields. The initial configuration of a gASP program with main body {s} is:
main( [x 7→ 0 ], { [ destiny 7→ fmain , this 7→ main ] | s },∅) where main is a
special active object, x = fields, and fmain is a future name. As usual,→∗ is the
reflexive and transitive closure of →.

Analysed Programs. In order to simplify the technical details, we will consider
gASP programs that verify the following restrictions:

(i) object fields and method returned values are of type Int (at runtime they
can be either futures or integer values);

(ii) the futures created in a method must be either returned or synchronised or
stored in a field of a parameter (or this).

Constraint (i) can be checked by a standard type checker, and (ii) can be
verified by a simple static analyser. In particular, (ii) prevents computations
running in parallel without any means to synchronise on them. Technically, ad-
mitting futures that are never synchronised requires to collect the corresponding
behaviours and add them to any possible continuation, like in [8].

Deadlocks. In gASP, when computing an expression, if one of the elements of
the expression is a future then the current active object waits until the future
has been updated. If the waiting relation is circular then no progress is possible.
In this case all the active objects in the circular dependency are deadlocked. We
formalise the notion of deadlock below. Let contexts C[ ] be the following terms

C[ ] ::= x = [ ]⊕ v ; s | x = v ⊕ [ ] ; s | if [ ] { s′ } else { s′′ } ; s
| if [ ]⊕ v { s′ } else { s′′ } ; s | if v ⊕ [ ] { s′ } else { s′′ } ; s

As usual, C[e] is the context where the hole [] of C[ ] is replaced by e.

Let f ∈ destinies(q) if there is {`|s} ∈ q such that `(destiny) = f .

Definition 1 (Deadlocked configuration). Let cn be a configuration con-
taining α0(a0, p0, q0), · · · , αn−1(an−1, pn−1, qn−1). If, for every 0 ≤ i < n,

1. pi = {`i | C[v]} where [[v]]ai+`i = fi and
2. fi ∈ destinies(pi+1, qi+1), where + is computed modulo n

then cn is deadlocked.

A program is deadlock-free if all reachable configurations are deadlock free.

Queue with non deterministic effects. Since gASP is stateful, it is possible
to store futures in object fields and to pass them around during invocations.
Therefore, computing the value of a field is difficult and, sometimes, not possi-
ble because of the nondeterminism caused by the concurrent behaviours. To be
precise enough, we restrict the analysis to programs where method invocations
only create request queues with deterministic effects.



Definition 2. An active object α(a, p, q) has a queue with deterministic effects
if when a process in q write on a field all the other process in the queue do not
perform neither read nor writes on the same field.

A configuration cn has deterministic effects if every active object of this con-
figuration has a queue with deterministic effects. A gASP program has determin-
istic effects if any reachable configuration has deterministic effects.

Example. The execution of the program shown in the introduction reaches
the following configuration after the first execution of the addToStore method
(future f), at the point where either the method store (future g) or addToStore
(future h) can be served: main

(
[n 7→ 0 ],∅,∅

)
f(1) g(⊥) h(⊥) α

(
[n 7→

g ],∅, {body-of-store}, {body-of-addToStore}
)
.

From this point, if α serves the invocation of addToStore we reach a dead-
lock because the execution of addToStore needs to know the value of the field n

(to execute Line 4) but the method store can only be served after the termina-
tion of the current method. If store is served first, then when the execution of
addToStore occurs, the future stored in the field n is already computed therefore
the expression n + 1 can be solved and the program terminates.

3 Behavioural Type System

In this section we define a type system that associates abstract descriptions,
called behavioural types to gASPprograms. This association is done by recording
several information: (1) effects on object fields to enforce consistency of read-
/write operations between methods invoked in parallel on the same active object;
(2) dependencies between active objects and between futures and active objects
to enforce consistency of synchronisation patterns. The analysis is performed
following the program structure and verifying that the types of methods match
previously declared types. From the explicit type system presented below, an in-
ference system can be defined in a standard way. Note that it is not possible to
infer at static time which variables contain a future. Consequently, we consider
all stored values as futures and some of corresponding values will be already
synchronised when created. It is therefore important to distinguish future names
that are identifiers and future types that are values corresponding to futures; the
environment will map future identifiers to future types.

Analysed Properties. The goal of the type system is to verify the deadlock
freedom of gASP programs. Since gASP is stateful, deadlocks might be caused by
accesses to futures stored in object fields. Therefore, the type system must also
compute the effects of statements on active object fields (and expose them in
types of methods so that the analysis is compositional). It is worth noticing that
in gASP, because of concurrency, the computations are non-deterministic and the
effects on fields may be indeterminate. Our type system also verifies whether the
analysed program might exhibit such a non-deterministic behaviour.

Types. Types are either basic types, future types or behavioural types. They
are defined as follows:



b ::= @ | α[x :f ] basic type
f ::= b | λX.m(f, g,X, Γ,E) | f g.x future type
κ ::= ? | α | X synchronisers
L ::= 0 | (κ, α) | fκ | L + L | LN L behavioural type

Basic types b are used for values or parameters; they may be either primitive
type, i.e. integer, @ or an object type α[a :f ]. Future types f include basic types,
invocation results, and delegations. The invocation result λX.m(f, g,X, Γ,E) rep-
resents the value computed by a method invocation, where f, g are the arguments
of the invocation (f is the future of the called object), X, called handle, is a place-
holder for the object that will synchronise with the invocation, the environment
Γ and the effects E record the state changes performed by the method, they
are discussed in the following. The delegation f g.x represents a method side
effect, namely the value that is written by the method corresponding to f in the
field x of the argument g. In the type system we also use “check-marked” future
types, noted f

X, to represent a future value that has been already synchronised.
We use f

[X] to range over both future types and “check-marked” future types.
Behavioural types include 0, the empty dependency, and (κ, α) that means: if

κ is instantiated by an object β, then β will need α to be available in order to pro-
ceed its execution. Behavioural types also include synchronisation commitments
fκ, whose meaning depends on the value of κ: f? means that the invocation
related to f is potentially running in parallel; fα means that the active object α
is waiting for the result of the invocation corresponding to f ; fX represents the
return of a future f , where the handle X will be replaced with the name of the
object that will synchronise on the result of f . The types LN L′ is the behaviour
of two statements of types L and L′ running in parallel; L+L′ is the behaviour of
two statements (of types L and L′) running in sequence (regardless of the order).
We will shorten L1 N · · ·N Ln into Ni∈{1..n} Li and L1 + · · ·+Ln into

∑
i∈{1..n} Li.

The operations “N” and “+” on behavioural types are associative, commutative
with 0 being the identity. The operator “N” has precedence over “+”.

Environments. Environments, noted Γ , Γ ′, · · · , are maps from variables to
future names (x 7→ f), from future names to future types, check-marked or not
(f 7→ f

[X]), and from method names to their signatures.
The image of an environment Γ is noted im(Γ ); the restriction of Γ to a set

S of names is noted Γ |S ; the difference operation the difference operation Γ \ x
defined as Γ |dom(Γ )\x. The following functions on Γ are also used:

– names(Γ ) = dom(Γ ) ∪ {α | α[x : f ][X] ∈ im(Γ )};
– obj (f ) (resp. int(f ′)) is a subset of f such that for each f ′ ∈ obj (f ) (resp.
f ′ ∈ int(f )) we have Γ (f ′) = α[· · · ] (resp. Γ (f ′) 6= α[· · · ]) for some α;

– Fut(Γ ) is the set of future names in dom(Γ ); aFut(Γ ) and sFut(Γ ) are the
subset of Fut(Γ ) that contain future names f such that Γ (f) is respectively
not-check-marked or check-marked;

– unsync(Γ ) = Nf∈aFut(Γ ) f? is the parallel behaviour of the method invoca-
tions which are not-yet-synchronised;

– Γ [fX] returns the environment Γ [f 7→ f
X] when Γ (f) is either f or fX;



E[f.x 7→t h](f.x) =


h t h′ if E(f.x) = h′

h if x /∈ E(f) and x ∈ fields(Act)

undefined otherwise

(1)

Effects(Γ ) =
⊔
{E | Γ (f) = λX.m(g,X, Γm, E)} (2∗)

x
h
# y

h′
=

{
true if x 6= y or (x = y and h′ = r = h)

false otherwise
(3)

instanceof(E, σ)(f) =


⊔

g∈σ−1(f)

E(g) if ∀f1, f2∈σ−1(f).f1 6=f2 ⇒ E(f1)#E(f2)

undefined otherwise
(4∗∗)

Fig. 2: Auxiliary functions for effects - full version in [11].

– Γ (f.x) =

{
g if Γ (f) = α[· · · , x :g, · · · ]
undefined otherwise

– Γ [f.x 7→ g] returns the environment such that Γ (f.x) = g, assuming that
f ∈ dom(Γ ) and x ∈ fields(Act); Γ [f.x 7→ g] is defined like Γ elsewhere;

– Γ1 =unsync Γ2 whenever Γ1(f) = Γ2(f) for every f in aFut(Γ1) ∪ aFut(Γ2).

Effects. Effects are functions, noted E, A, · · · , that map future names to a set of
field names labelled either with r (read) or with w (write). For example, consider
m a method with effect E, and f one of its arguments, E(f) = {xw, yr} means
that m writes on the field x of the object that is the value of f and reads on the
field y. Let h range over {r, w}; if xh ∈ E(f), we use the notation E(f.x) = h.
With an abuse of notation, we also write x ∈ E(f) if E(f) = {xh11 , · · · , xhnn }
and x ∈ {x1, · · · , xn} (therefore x /∈ E(f) also when E(f) is undefined). In the
example in the introduction, the method addToStore has the effect [g 7→ [nw]
where g represents the current object (this). The set {r, w} with the ordering
r < w is a lattice, therefore we use the operation t for least-upper bound. We
also use few auxiliary operations that are shown in Figure 2: update operation
with upper bound(1); effects of unsynchronised methods(2); compatibility(3); effect
instantiation taking into account effect compatibility(4). We extend the definition
of the operation t and # from effects to sets of effects iterating them for all the
element of the sets pairwise.

Judgements. The judgements used in the type system are:

– ` m : (f, g, Γm, X)→(E,A) instantiates the method signature of m, where f, g,
X are the formal parameters, Γm is the part of environment accessible from the
method parameters which are objects: Γm = (Γ |f∪obj (g)), where Γ is the en-
vironment at invocation point. E,A are the environments storing the effects
of m: E stores the effects that happen before m is synchronised, A stores the
effects of the methods invoked by m and not synchronised in its body;

– Γ,E ` x :f . E′ for typing values and variables with future names, where
E′ is the update of E

– Γ ` f :f for typing future names with future types;

? We notice that Γ (f) is not check-marked
?? The usage of instanceof is illustrated in the description of T-Method-Sign



fields and method names: Γ ` x :b and ` m : (f,X, Γ ′)→ (E,A)

(T-Field)

Γ (this.x) = f
E
′
= E[this.x 7→t r]

Γ,E ` x :f . E
′

(T-Method-Sign)

Γ (m) = (f,X, Γ
′
)→ (E,A) σ renaming

Γ
′′

= σ(Γ
′
) E

′
= instanceof(E, σ) A

′
= instanceof(A, σ)

` m : (σ(f), σ(X), Γ
′′
)→ (E

′
, A
′
)

synchronizations: Γ,E ⊕`S x : L . Γ ′, E′

(T-Sync-Invk)

Γ ` this :α[· · · ]X Γ,E ` x :f . E
′

Γ ` f :λX.m(f ′, X, Γm, Em) Γ
′
=Γ [f

X
][h
X
]
h∈dom(Em)

Γ
′′

= Γ
′
([g.y 7→ g

′
][g
′ 7→ f g.y])

yw∈Em(g), g
′ fresh

Γ,E
⊕`S x : fα N unsync(Γ

′′
) . Γ

′′
, E
′ t Em|S

(T-Sync-Field)

Γ ` this :α[· · · ]X Γ,E ` x :f . E
′

Γ ` f :g this.x Γ
′
= Γ [f

X
]

Γ,E
⊕`S x : fα N unsync(Γ

′
) . Γ

′
, E
′

expressions with side effects: Γ,E,A `S z :f, L . Γ ′, E′, A′

(T-Expression)

Γ,E
⊕`S v : L . Γ

′
, E
′

Γ
′
, E
′ ⊕`S v

′
: L′ . Γ

′′
, E
′′

Γ,E,A `S v ⊕ v
′
:@, L + L′ . Γ

′
, E
′′
, A

(T-Invk)

Γ,E ` v :f . E Γ ` f :β[· · · ]X Γ,E ` v :f ′ . E
′

h = f ∪ obj (f ′)

` m : (f, f ′, X, Γ |h)→ (Em, Am) g fresh g′ = f ′[
@
/int(sFut(Γ))] Γm = (Γ |h)[

@
/int(sFut(Γ))]

Γ
′
= Γ [g 7→ λX.m(f, g′, X, Γm, Em)]

(
Effects(Γ

′
)(h
′
) # y

(EmtA)(h′.y))h′∈dom(Em]A) ∧ y∈fields(Act)

Γ,E,A `S v.m(v) :g, g? N unsync(Γ ) . Γ
′
, E
′
, A t Am

statements Γ,E,A `S s :L . Γ ′, E′, A

(T-Assign-Field-Exp)

x ∈ fields(Act) Γ,E,A `S z :f, L . Γ
′
, E
′
, A
′

Effects(Γ
′
)(this) # x

w
A
′
(this) # x

w

Γ,E,A `S x = z :L . Γ ′[this.x 7→ f ], E
′
[this.x 7→t w], A

′

(T-Return-Fut)

Γ,E ` v :f . E
′

Γ ` f :f
Γ (future) = X L = unsync(Γ \ f)
Γ,E,A `S return v :fX N L . Γ,E′, A

methods: Γ ` m (T x){s}:(x′, X)→(ν κ)(Γ ′ �Γ ′′ � L) and Γ ` Int a,M {s}:(L, Γ ′ � L)

(T-Method)

Γ (m) = (this, f,X, Γm)→ (E,A) g = int(f ∪ names(Γm))

Γ + Γm + x :f + g :@ + future :X, [this 7→ ∅],∅ `dom(Γm)
s :L . Γ

′
, E,A

′
w = flat(this, f, Γm)

κ = names(Γ
′
) \ names(Γm) A = A

′ t
⊔

h∈dom(Γ ′)

{(
Em′ |{this,f}

)
|Γ ′(h) = λY.m

′
(f, Y, Γm′ , Em′ )

}
Γ ` m (T x){s} : (w,X)→ (ν κ)(Γ

′|κ � Γ ′|obj(f )
� LN(X,α))

Fig. 3: Typing rules -full version in [11].

– Γ,E ⊕`S e : L . Γ ′, E′ for typing synchronisations, where S is the set of
arguments of the current method, L is the behavioural type, and Γ ′ and E′

are the updates of Γ and E respectively;
– Γ,E,A `S z :f, L . Γ ′, E′, A′ for typing expressions with side effects z;
– Γ,E,A `S s :L . Γ ′, E′, A′ for typing statements s.

Type System. We assume that every environment Γ is such that Γ (@) = @X

and Γ (this) = α[· · · ], where α is the active object running the current method.
The typing rules are shown in Figure 3 and the most rellevant ones are discussed.

Rule (T-Field) models the reading of a field (of the this actor). The precon-
ditions verify that the access is compatible with the effects of not yet synchro-



nised invocations in Γ and those in A (that will not be synchronised). We notice
that there is no compatibility check with effects in E and E is updated with the
new access (performing the upper bound with the old value). Rule (T-Method-
Sign) instantiates a method signature according to the invocation parameters.
In particular, the rule also covers the case when two parameters have the same
value thanks to the instanceof function. In the signature, each parameter has a
fresh name, but upon invocation, new conflicts might be created by the fact that
two different parameters are actually the same object. In this case, we prevent the
instantiation of the invocation if a conflict might occur. For example, if the sig-
nature of a method m is such that Γ (m) = (f, f ′, X, Γ ′)→ ([f 7→ {xr}, f ′ 7→ {xw}]
or Γ (m) = (f, f ′, X, Γ ′) → ([f 7→ {xw}, f ′ 7→ {xw}], the type system is not able
to instantiate the method invocation λX.m(g, g,X, Γ ′′, Em) because of potential
conflicts: two operations of write on the same object appeared due to the aliasing
created between parameters.

In gASP, synchronisations are due to the evaluation of expressions e that are
not variables. We use the notation ⊕` for these judgments. Overall, we parse
the expression and the leaves have two cases: either the future is synchronised
(check-marked) or not. In this last case, there are three sub-cases, according to
the future corresponds to an invocation – rule (T-Sync-Invk) –, or to a field –
rule (T-Sync-Field) –, or to a method’s argument – rule (T-Sync-Param).
We discuss (T-Sync-Invk), the other ones are similar. In this case, the future
f bound to x is synchronised – henceforth its result is check-marked in the
environment. Correspondingly, the futures that are synchronised by f , namely
those that are recorded in the effect Em, are synchronised as well. Finally, the
rule records in the environment the updates of arguments’ fields. Technically
this is done using the delegation future type. The behavioural type collects the
futures of methods that are running in parallel and f , which is annotated with the
synchronising actor name α. This type will allow us to compute the dependencies
of the parallel methods during the analysis.

In the example of the introduction, Line 11 triggers a synchronisation with
the first execution of addToStore. As a consequence of the application of the
rules (T-Expression) and (T-Sync-Invk), n now points to a not-yet-known
future of the form f  g.n; this future will be mapped during analysis to the
first invocation to store.

The rule (T-Invk) creates a new future g corresponding to the invocation
and stores it in Γ , after having computed the instance of the method signature.
The last premise verifies the compatibility between the effects of the invoked
method and those of the other running methods (the current one and the not-
yet synchronised ones). The behavioural type collects futures of methods that
are running in parallel, including g, which is created by the rule. The future g is
not annotated with any actor name because invocation does not introduce any
dependency. The substitution on second line replaces synchronised futures by @

to prevent additional synchronisations on these futures.
The behavioural type of statements is a sum of types that are parallel com-

position of synchronisation dependencies and unsynchronised behaviours. The
rules are almost standard. We discuss the rule for returning a future – rule (T-



Return-Fut). In this case, the returned value is an unsynchronised future f ,
therefore the synchronisation of f is bound to the synchronisation of the method
under analysis. For this reason, the behavioural type is fX , where X is the place-
holder for the active object synchronising the method currently analysed. The
rest of the behavioural type collects the unsynchronised behaviour.

In (T-Method), the premises verify the consistency of the typing of m in the
environment with the typing of its body. In particular, the asynchronous effects
of m must be the sum of the asynchronous ones in its body, i.e. A′, plus the
effects of the invocations that have not been synchronised. We notice that the
behavioural type of the method has arguments that are structureless: object are
removed and replaced by their flattened version, where the fields are removed
and the corresponding values are lifted as arguments, this operation is fulfilled
by the function flat . We also notice that the behavioural type of the body s is
extended with a dependency (X,α). This dependency will be instantiated by the
synchronising object when it is known. The behavioural type of a method has the
shape (Γ � Γ ′ � L). The environment Γ defines fresh names created in the body
of the method, it maps future names to either future results λX.m(g,X, Γ ′′, E)
or delegations f g.x or object types α[a :f ]. The environment Γ ′ records the
updates to the arguments f performed by the method, and L is the behavioural
type of the body of the method. To make the rule TR-Method easier to read we
let Γ and Γ ′ contain more information than we require in the behavioural type
analysis, this is the reason why will be used a simplified form of this environment.
Instead of Γ will be used Θ which does not define a mapping between future
names and object types and future results do not present information about
effects (λX.m(g,X, Γ ′′)), and Γ ′ will be renamed as Φ.

Finally, a behavioural type program is a pair
(
L, Θ � L

)
, where Lmaps method

names m to method behaviours (w,X)→ (ν κ)(Θ′ � Φ � L′), w,X are the formal
parameters of m, Θ′, Φ and L are the same as above. The last two elements ,
namely Θ and L, are the environment and the type of the main body.

The fact that Γ ` {Int x,M}{s} implies that any configuration reached
evaluating the program has deterministic effects.

Example. The behavioural type of the program of Section 1 is of the form:
(L, Θ � f? + fmain + f ′?) where:

Θ = [ f 7→ λX.addToStore(g, @, X, [ g 7→ α[n :@]X ], [ g 7→ [nw] ] ), g′ 7→ f g.n,
f ′ 7→ λX.addToStore(g, @, X, [ g 7→ α[n :g′]X ], [ g 7→ [nw] ] ) ].

We observe that the behavioural type of the main function performs two
invocations of addToStore. The first invocation is performed on the object α
where the field n stores a value (g 7→ α[n :@]X), indeed at that point n = 0. The
second invocation is performed on the same object but n stores the value written
by the first invocation: in Θ we have the delegation g′ 7→ f  g.n and in the
second method invocation the object field n maps to g′. We can also notice that
the first invocation has been synchronized, indeed the presence of the delegation
in the environment indicates that the rule (T-Synch-Invk) has been applied.
Both invocations of the addToStore method write on the field n of the object g,
and the effect of both invocations is [ g 7→ [nw] ].



BT-fun
Θ(f) = λX.m(f,X, Γ )

L(m) = (w, Y )→ (ν κ)(Θ
′ � Φ � L)

κ is either ? or an object name

κ′ fresh Θ
′′

= Θ +Θ
′
[
κ′
/κ ][

flat(f,Γ )
/w]

L′ = L[κ
′
/κ ][

κ
/Y ][

flat(f,Γ )
/w]

Θ � C[ fκ ]→ Θ
′′ � C[ L′ ]

BT-field
Θ(f) = f

′ g.x Θ(f
′
) = λX.m(f,X, Γ )

L(m) = (w, Y )→ (ν κ)(Θ
′ � Φ � L)

Φ
′
= Φ[

κ′
/κ ][

flat(f,Γ )
/w] Φ

′
(g.x) = h

Θ � C[ fκ ]→ Θ � C[hκ ]

Fig. 4: Behavioural type reduction rules

As stated above, L stores the behavioural type for each method of the pro-
gram, then we have an entry for addToStore and store.
L(addToStore) = (β, this, g, f,X)→ (ν f ′)(Θadd � Φadd � Ladd) where
Ladd = ( gα + f ′? + f ′X ) N(X,β) Φadd = [ this 7→ β[n :f ′] ]
Θadd = [ f ′ 7→ λX.store(this, f, @, X, [ this 7→ β[n :g]X ],∅) ]

The behavioural type shows that the method addToStore performs three
main actions. The first action is the possible synchronization, expressed by gα,
where g is one of the parameters. The second action is the invocation of the
method store corresponding to future f ′. The third action returns the result of
the invocation of store; expressed by the term f ′X stating that the f ′ is returned.

Concerning store we have: L(store) = (γ, this, f, g,X)→ (∅ � ∅ � (X, γ)).

4 Behavioural type soundness and analysis

The type system defined in Section 3 can be extended to configurations, see [11]:
the judgment we use is Γ ` cn : K where K is a parallel composition of Θ � L,
one for each configuration element. The soundness of the type system is demon-
strated by a subject reduction theorem expressing that if a runtime configuration
cn is well typed and cn → cn ′ then cn ′ is well typed as well. While the theorem
is almost standard, we cannot guarantee type-preservation, instead we exhibit
a relation between the type of cn and the type of cn′. Informally, this relation
connects (i) the presence of a deadlock in a configuration with the presence of
circularity in a type and (ii) the presence of a circularity in the evaluation of K′

with the circularities of the evaluation of K.
The evaluation of a behavioural types is defined by a transition relation

between types Θ � L that follows the rules in Figure 4 and includes a specific
rule for delegation types. We use type contexts:

C[ ] ::= [ ] | LN C[ ] | C[ ] N L | L + C[ ] | C[ ] + L

Overall, BT-fun and BT-field indicate that the behavioural type seman-
tics is simply the unfolding of function invocations and the evaluation of del-
egations. More precisely, rule BT-fun replaces a future with the the body
of the corresponding invocation. The environment Θ is augmented with the
names defined in this body. Note that Θ′′ is well-defined because dom(Θ) ∩
dom(Θ′[κ

′
/κ ][flat(f,Γ )/w]) = ∅ and (flat(f, Γ ) ∪ w) ∩ κ′ = ∅. The behavioural

type L′ is defined by a classical substitution. The substitution [flat(f,Γ )/w] re-
places active object and future names in w. This substitution can generate terms
of the form @α, those terms can safely be replaced by 0. Rule BT-field computes



futures f bound to delegations f ′ g.x, i.e. when the invocation corresponding
to f ′ has updated the field x of the argument g; it retrieves the instance of Φ in
the method of f ′ and infers h, the future written in the accessed field.

Definition 3. Let L ≡d L′ whenever L and L′ are equal up-to commutativity and
associativity of “N” and “+”, identity of 0 for N and +, and distributivity of N
over +, namely LN(L′ + L′′) = LN L′ + LN L′′.

The behavioural type L has a circularity if there are α1, · · · , αn and C[ ] such
that L ≡d C[ (α1, α2) N · · ·N(αn, α1) ].

A type Θ � L has a circularity if Θ � L→∗ Θ′ � L′ and L′ has a circularity.

Below we write Γ ` cn : Θ � L to say that the configuration cn has type Θ � L
in the environment Γ . This judgment requires an extension of the type system
in Figures 3 to configurations (see [11]). The main properties of the type system
and its extension to configurations are stated below.

Theorem 1. Let P be a gASP program and suppose that Γ ` P : (L, Θ � L), then:
1. Γ ` cn : Θ � L where cn is the initial configuration;
2. if cn →∗ cn’ then there are Γ ′, Θ′ and L′ such that Γ ′ ` cn’ : Θ′ � L′ and if

Θ′ � L′ has a circularity then also Θ � L has a circularity.
3. if Θ � L has no circularity then P is deadlock-free.

Our technique reduces the problem of detecting deadlocks in a gASP program
to that of detecting circularities in a behavioural type. It is worth to notice that
these types have models that are infinite states because of recursion and creation
of new names. Notwithstanding this fact, the problem of absence of circularities
in a behavioural type is decidable. The solver uses a fixpoint technique that is
defined in [13,7], which has been adapted to the types of this paper in [6].

Example. We show how a circularity appears when we apply the reduction rule
on the illustrative example. The behavioural type of the example was shown in
Section 3, we start from the behavioral type of the main function and describe
the main reduction steps.

We focus on the third term (f ′?) that refers to the second method invocation
of addToStore. The rule BT-Fun replaces the behavioural type of method invo-
cation f ′? with the body of addToStore properly instantiated. Here the method
invocation related to f ′ is Θ(f ′) = λX.addToStore(· · · ), we take the behavioural
type Ladd, build the substitution [h/f ′ ][

?/X ][α,g,g
′,@/β,this,g,f ] that instantiates

the parameters adequately, and obtain the behaviour: (g′α + h? + hX ) N(?, α),
additionally Θ′ = Θ + Θ′add where Θ′add is obtained from Θadd applying the
same substitution. Finally we can apply BT-Fun and obtain the reduction
Θ � (f? + fmain + f ′?)→ Θ′ � (f? + fmain + (g′α + h? + hX ) N(?, α)).

We then focus on the term g′α that refers to the synchronization of the field
n during the execution of the second invocation of addToStore. The type as-
sociated to g′ (Θ′(g′) = f  g.n) denotes that, when typing, we don’t know
the method invocation related to the future stored in n, we only know that
the method invocation related to f has stored a future inside n. To solve this
delegation and then discover the name of the future stored in the that field
we apply the rule Bt-Field and obtain: Θ′ � (· · ·+ (g′α + h? + hX ) N(?, α))→



Θ′ � (· · ·+(h′α+h?+hX ) N(?, α)). This reduction only replaces g′α with h′α where
h′ = Φ′add(g.n) and Φ′add corresponds to the instantiation of Φadd accordingly to
the invocation related to f : Θ(f) = λX.addToStore(g, @, X, [ g 7→ α[n : @]X ]])
with the substitution [h/f ′ ][

α,g,@,@/β,this,g,f ].
Now we focus on the term h′α and, as in the first step, we can apply the

rule BT-Fun we replace h′α with the behavioral type of store opportunely
instantiated and obtain: Θ′ � (· · ·+(h′α+h?+hX ) N(?, α))→ Θ′ � (· · ·+((α, α)+
h? + hX ) N(?, α)) as the behavioural type of store is reduced to a pair.

The circularity (α, α) highlights a potential deadlock in our program. Indeed
the method store is called on α and then the result of this invocation is awaited
in the method addToStore in α, as no further order is ensured on the execution
of these requests, this circularity indeed reveals a potential deadlock.

5 Concluding remarks

This article defines a technique for analysing deadlocks of stateful active ob-
jects that is based on behavioural type systems. The technique also takes into
account stateful objects that store futures in their fields. This required us to
analyse synchronisation patterns where the future synchronisation occurs in a
different context from the asynchronous invocation that created the future. The
behavioural types that are obtained by the type system are analysed by a solver
that detects circularities and identifies potential deadlocks.

To deal with implicit futures, we use a novel paradigm in our analyses, that
consider “every element as a future”. This also allows us to deal with aliasing
and with the fact that the future updates are performed on place at any time.

Related Work. Up-to our knowledge, the first paper proposing effect systems
for analysing data races of concurrent systems dates back to the late 80’s [14].
In fact, our approach of annotating the types to express further intentional
properties of the semantics of the program is very similar to that of Lucassen
and Gifford. The first application of a type and effect system to deadlock analysis
is [3]. In that case programmers must specify a partial order among the locks
and the type checker verifies that threads acquire locks in the descending order.
In our case, no order is predefined and the absence of circularities in the process
synchronisations is obtained in a post-typing phase. In [5], the authors generate
a finite graph of program points by integrating an effect and point-to analysis for
computing aliases with an analysis returning (an over-approximation of) points
that may run in parallel. In the model presented in [5], future are passed (by-
value) between methods only as parameters or return values, the possibility of
storing future in object field is treated as a possible extension and not formalized.
Furthermore this aspect is not considered combined to the possibility of having
infinite recursion. However, [5] analyses finite abstraction of the computational
models of the language. In our case, the behavioural type model associated to
the program handles unbounded states.

Model checking is often used to verify stateful distributed systems. In par-
ticular, [17] uses the characteristics of actor languages to limit, by partial order
reduction, the model to check. [1] provides an parametrised model of an active



object application that is abstracted into a finite model afterwards. Contrarily
to us, these results are restricted to a finite abstraction of the state of the sys-
tem. Two articles [2,9] translate active objects into Petri-nets and model-check
the generated net; these approaches cannot verify infinite systems because they
would lead to an infinite Petri-net or an infinite set of colours for the tokens.

We refer the interested reader to [8] (Section 8) for a further comparison of
alternative analysis techniques.
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