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Abstract 

In this critical review we compare two geometries in partial wetting: a liquid drop on a planar substrate 

and a spherical particle at a planar liquid interface. We show that this comparison is far from being trivial 

even if the same physical interactions are at play in both geometries. Similarities and differences in terms 

of free energies and frictions will be discussed. Contact angle hysteresis, the impact of surface roughness 

and line pinning on wetting will be described and compared to selected experimental findings. 

 

Introduction 

Wetting properties of surfaces are fundamental in many research and industrial fields such as coating, 

microfluidics, thin films, microelectronics, and in membrane and cell biology [1],[2],[3],[4]. Affinity and 

interactions between a liquid and a surface can be quantified by a spreading coefficient or an equilibrium 

contact angle, which defines whether a liquid completely wets a surface or not [5]. Equilibrium contact 

angle eq provides already a clear insight into the wetting properties of a surface with a given liquid, but 

eq alone describes only a small part of the wetting properties of a surface. Surface structure and 

interactions at different length scales dramatically impact static and dynamic wetting properties, which 

may lead to stable, metastable and unstable contact angle regimes [5,6]. It is important to note that in some 

cases, a thermodynamic equilibrium contact angle could be never observed due to kinetic effects. Viscous, 

molecular frictions, and contact line pinning result from the dissipations occurring during the relative 

motion of the liquid and the solid [7]. Thus, the slow motion of the contact line due to these large 

dissipations may also lead to observable contact angles, which are far from the thermodynamic 

equilibrium. These frictions lead to intriguing wetting scenarios, which deserve dedicated investigations in 

order to achieve clear insights into the wetting properties of a surface. Now, it is important to underline 

that wetting is not restricted to planar surfaces and solid-liquid-gas systems. In this article we consider 

also a spherical solid surface geometry like the one of small particles. Solid spherical-like particles like 

grains or nanoparticles are also strongly impacted by wetting in many fields. In flotation, solid spherical 

particles can be separated by adsorption onto gas bubbles due to their wettability [8]. Because of partial 

wetting, particles are also used to obtain very stabilized foams and emulsions, called Pickering emulsions 

[9],[10]. In phase transfer, like in liquid-liquid extraction, particles are required to adsorb onto an interface 

and after undergoing a complete wetting-dewetting dynamics are able to transfer into a target phase [11]. 

To address all these phenomena, many experimental and theoretical investigations on colloids and 

nanoparticles at the liquid-gas or liquid-liquid interfaces have been carried out for many years [12–20]. 

Some unexpected experimental results have been also found, including: (i) discrepancies between the 

contact angle attained by a particle at a planar liquid interface and the contact angle of a liquid drop on a 

substrate made of the same particle material [21],[22] ; (ii) unexpected slow lateral diffusion coefficients 
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of solid particles straddling liquid interfaces [23],[24],[17]. It is worth noting that when dealing with small 

particles at liquid interfaces, partial wetting is often reduced to the simple concept of a particle equilibrium 

contact angle eq. Rarely, contact angle hysteresis, contact line dynamics and roughness effects are 

investigated and discussed. This critical review aims at bridging the wetting knowledge obtained for liquid 

drops at planar solid surface and the wetting of spherical particles at the liquid interface.    

Here we would like also to highlight how rich the wetting of micro- and nano- particles is, and the 

potentials of these particles as probes in partial wetting. In fact, different length scales and interactions can 

be investigated and explored by tuning the size and the surface properties of particles. 

 

1.1 Free energy, force and equilibrium contact angle for planar and spherical surfaces 

We start this review by a description in an ideal world where the surfaces are perfectly smooth and defect 

free, see Figure 1. We focus on drop or particle sizes smaller than the capillary length lc = √
𝛾

𝜌𝑔⁄   2 mm 

(where  is the surface tension of the liquid  is the liquid density and g is the gravitational acceleration) 

but larger than a characteristic length scale of long range surface forces ls =𝛼𝑒𝑞
−2√𝐻

6𝜋𝛾⁄   1…10 nm 

(where eq is the equilibrium contact angle,  H is the Hamaker constant) [25]. We also assume that the 

liquid and the solid are not volatile. Throughout this article we will compare the behaviour of spherical 

solid particle of radius R and a liquid drop having the same radius, initially, when it touches the solid 

substrate, R0(=180°) = R. Hence, the volume of the drop is kept constant for any contact angles, see Fig. 

1. Moreover, here we neglect deformations of the planar solid and liquid interface. Under these 

assumptions, a spherical liquid drop touching an infinite solid substrate will search for an equilibrium 

contact angle, keeping the same volume but changing its shape and area. In the size range considered here, 

the liquid drop adopts a spherical cap profile according to the Laplace equation.  A solid particle touching 

an infinite liquid interface will also search an equilibrium contact angle but it will keep both its volume 

and area constant, see Figure 1. 

 

Figure 1 

  

Equilibrium position of the liquid drop can be found calculating the free energy of the system as a 

function of the contact angle . At the point of contact the drop radius is R0 and the free energy is 

E(=180°) =  SG A + 4R0
2
 , where A is the planar surface area and SG is the solid-gas interfacial 

tension (Figure 1). Note that SG and can be defined as excess interfacial free energies per unit area [26]. 

For liquid and solid interfaces, the liquid-gas surface tension  and the solid-fluid interfacial tension i are 

the derivatives of the free energy with respect to the area (at constant temperature T, total volume V and 

number of molecules n),  ori(
𝑑𝐸

𝑑𝐴𝑖
)

𝑇,𝑉,𝑛
[27].   At an arbitrary contact angle  the free energy of the 

system is: 
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E() = SG A SG A0 SL A0 ALG.       (1) 

Where SL is the solid-liquid interfacial tension. A0 is the area covered by the drop, A0 = R0()
2
sin

2 

ALG is the liquid-gas interfacial area ALG = 2R0()
2
 (1cos) and 𝑅0(𝛼) = 𝑉

1

3 [
𝜋

3
(2 − 3c os𝛼 +

cos3𝛼)]
−

1

3
.The drop base radius is Rd = R0()sin, see Figure 1a 

The thermodynamic equilibrium contact angle can be defined at the position where E()  is minimum, see 

Fig. 2. This minimum is described by the Young-Laplace equation:  

coseq = (SG SL) / .          (2) 

Note that in the limit of zero contact angle, the free energy tends to infinity. In this limit, a finite value of 

the energy will be set by the long-range surface force at play. The liquid may adopt the form of a film 

(molecular or nanometric) or liquid pancake [28]. 

For a spherical particle at a fluid interface the same approach can be used, see Figure 1b. The calculation 

starts considering a colloid completely dry, which touches a free planar liquid interface. The free energy 

of the system (colloid plus free interface) is simply given by the product of the areas and the 

corresponding interfacial tensions: E(=180°) = A + SG4R
2
, where R is the radius of the spherical 

particle and A is the area of the free interface. When the solid particle crosses the interface, a solid-liquid 

interface is created, the energy of the solid-gas interface is reducing and the liquid-gas interface is missing 

an area A0 due to the particle adsorption. The free energy of the system as a function of the particle 

position expressed as cosz/R is (z is the vertical distance between the center of the particle and the 

interface: z > 0 in gas) [29]:    

𝐸(𝛼) = 𝛾𝐴 + 2𝜋𝑅2 [𝜎𝑆𝐺(1 − cos𝛼) + 𝜎𝑆𝐿(1 + cos𝛼) −
1

2
𝛾sin2𝛼].    (3) 

Note that besides wetting no additional interactions are accounted in equation Eq. 3.  

The thermodynamic equilibrium contact angle can be defined at the position where the E() is minimum, 

see Figure 2:  

(SGSL) /z0/R = coseq.          (4) 

Equation 4 is equivalent to Equation 2. Equilibrium of forces acting on the contact line of a partially 

wetted colloid at a fluid interface or a liquid drop partially wetting a solid substrate leads always to: SG = 

SL + coseq.  

 

Figure 2 
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If the drop or the particle is at a position different from eq, the system is out of equilibrium. The 

imbalance due to ≠ eq produces a force Fl =−
𝑑𝐸

𝑑𝑠
, where s represents the displacement of the contact 

line on the solid, acting on the triple line which is proportional to the contact line length.  

For a liquid drop, the displacement of the contact line is radial and parallel to the solid plane (see inset in 

Figure 2B). Using the convention Fl >0 for  > eq, the force acting on the line Fl is:  

𝐹𝑙(𝛼) = 2𝜋𝑅𝑑𝛾(cos𝛼𝑒𝑞 − cos𝛼) = 2𝜋𝑅0(𝛼)sin𝛼 𝛾(cos𝛼𝑒𝑞 − cos𝛼).    (5) 

For a spherical particle, the displacement of the contact line is the longitudinal coordinate s = R (is the 

polar angle in spherical coordinates (see inset in Figure 2B). Using the convention Fl >0 for  > eq, the 

force Fl acting tangential to the solid surface is:  

𝐹𝑙(𝛼) = 2𝜋𝑅 sin𝛼 𝛾(cos𝛼𝑒𝑞 − cos𝛼).         (6) 

Given that R0 is a function of , for liquid drops the force Fl  (equation 5) tends to diverge for very low 

contact angles, see Figure 2. Instead for spherical particles, the force must be zero when the length of the 

contact line is null: =0 and 180° (equation 6), see Figure 2. If we consider a drop and a process leading 

to the equilibrium from a very low contact angle, the force will be high at low angles (0) and smoothly 

decreases when approaching eq. Whereas for a particle, the force acting during a path from low  to  = 

eq shows a non-monotonic behavior, which is qualitatively the same behavior experienced during the 

path from  =180° to  = eq for both drop and particle. Hence, it becomes clear that wetting and 

dewetting dynamics may be very different for drops and particles. The two dynamics may be similar for 

the path from  =180° to  =eq, which is encountered in a typical advancing contact angle experiment. 

The force Fl reflects the changes of the wetted perimeter and the imbalance of the liquid-gas interfacial 

tension. Fl shows a maximum corresponding to the large increase of the wetted perimeter at high angles, 

which is then counterbalanced by the decreasing liquid-gas interfacial tension component. Finally, one 

could calculate the vertical force acting on a spherical particle as Fp =  Fl() sinwhich shows the same 

qualitative behaviour as the one discussed previously (equation 6). 

1.2 Line tension and length scale dependent contact angle 

In Figure 3, we show a local contact angle profile for a drop on a solid accounting for attractive Van der 

Waals interactions of Hamaker constant H. Note that at the nanometric scale ls =𝛼𝑒𝑞
−2√𝐻

6𝜋𝛾⁄   1…10 nm 

the drop profile deviates from the spherical cap profile calculated accounting only for constant surface 

tension. 

Even if the exact profile of the contact angle at length scale l <  ls  is not known, in both drop and particle 

geometries, a thermodynamic equilibrium contact angle eq can be always defined [5]. Assuming that the 

local contact angle profile simply translates in the nanoscale when the drop is shifted by a distance dx, see 

Figure 3, the work associated to an incremental area change dxdL (L is the length of the line considered) 

on the solid reads [5]:   

 SG dxdLSL dxdL dxdL coseq = 0 ,       (7) 
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which leads to the Young-Laplace equation.   

        

Figure 3 

  

If instead of assuming that the local contact angle profile simply translates when the drop is shifted by a 

distance dx, one may introduce a line energy contribution kdL, where k is the line tension. k  is defined as 

the energy per unit contact line length and represents the leading term of the total energy of the system 

after subtracting volume and interface contributions [31]. Hence, the line tension is the derivative of the 

free energy with respect to the contact line L (at constant temperature T, total volume V , area, and number 

of molecules n), k(
𝑑𝐸

𝑑𝐿
)

𝑇,𝑉,𝐴,𝑛
 The addition of a line tension term in Equation 7 [33] leads to: 

SG LdxSL Ldx Ldx cos𝒜𝑒𝑞 kdL= 0 .      (8) 

From Eq. (8) one finds SG = SLcos𝒜𝑒𝑞k dL/(Ldx), where  𝒜𝑒𝑞 is the equilibrium contact angle 

accounting for the line tension k.  

cos𝒜𝑒𝑞
Ldx

dLk
eq


  cos  .        (9) 

Note that in the partial wetting of a sessile drop, dL = 2(Rd+dx)2Rd = 2dx (where Rd is the droplet 

base radius Rd = R0()sin𝒜𝑒𝑞) and dL/(Ldx) = 1/ Rd is the curvature of the contact line: 

cos𝒜𝑒𝑞coseq k/(Rd

cos𝒜𝑒𝑞 = cos𝛼𝑒𝑞 −
𝑘

𝛾𝑅0(𝛼)

1

sin𝒜𝑒𝑞
 .       (10) 

The previous equation can be also obtained by the derivation of the free energy of the system (equation 

11) as we have shown in the previous section: 

 E() = SGA SGA0 SLA0ALG + k2 R0()sin       (11) 

For solid spherical particles, when the line tension k is accounted, the free energy becomes [34]: 

𝐸(𝛼) = 𝛾𝐴 + 2𝜋𝑅2 [𝜎𝑆𝐺(1 − cos𝛼) + 𝜎𝑆𝐿(1 + cos𝛼) −
1

2
𝛾sin2𝛼 + 𝑘

𝑅
sin𝛼].   (12) 

For both drops and particles, positive (negative) k means that an increase of the length of the contact line 

represents an energy cost (gain). For negative values of k the minimum E() becomes deeper, whereas for 

positive values of k the energy  minimum could even disappear, see Figure 4. By deriving Equation 12 

along the longitudinal coordinate, one calculates the force acting on the contact line:  

𝐹𝑙(𝛼) = 2𝜋𝑅 𝛾 [ (cos𝛼𝑒𝑞 − cos𝛼)sinα + 𝑘

𝛾𝑅
cos𝛼] .      (13) 
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For Fl = 0, the equilibrium angle can be found: 

cos𝒜𝑒𝑞 = 𝑐𝑜𝑠𝛼𝑒𝑞 +
𝑘

𝛾𝑅

cos𝒜𝑒𝑞

sin𝒜𝑒𝑞
 .        (14) 

It is important to remark the difference between Equation 10 and 14. For the droplet geometry and 

positive line tension, the contact angle will always increase in order to reduce the length of the contact line 

and the energy cost associated (keeping the volume of the droplet constant). For a spherical particle the 

decrease of the length of the contact line will depend on the immersion of the particle. A particle that is 

mostly located in the gas phase, in order to reduce the length of the contact line, will increase its contact 

angle; whilst a particle that is mostly immersed in the liquid will decrease its contact angle. 

In Figure 4 we plot the free energies for drop and particle geometries for different values of line tension 

with eq = 65° as in Figure 2a. In both geometries, negative line tensions lead to a deeper energy 

minimum. If the line tension value increases, one observes opposite shifts of the equilibrium contact angle 

𝒜𝑒𝑞. Since positive line tensions represent an energy cost, energy minima could vanish and an energy 

maximum could appear. For the particle geometry, stable, metastable and unstable regions as a function of 

the strength of k/(R) were described by Aveyard and Clint [34] and corrected by Drelich [18]. Note that 

by scrutinising equation 11, one would find stable, metastable and unstable regimes for droplets showing 

positive line tension as well. The existence of an energetic barrier against partial wetting may have serious 

consequences. Drop or particle with relative high line tensions may remain in a complete wetting or dry 

states simply due to the high energetic cost associated to the creation of the contact line.  

 

Figure 4 

 

Berg et al.[35] and Checco et al.[36,37]  investigated the line energy effects for droplets of different 

dimensions down to the nanometer scale. They found negative values of k  (10
11

…10
10

 N) and show 

the significance of the line energy contribution for droplet heights smaller than 20 nm. Checco et al. noted 

that a constant line tension (i.e. length scale independent) is not able to described the obtained results and 

consider also the effect of line pinning [36,37]. Note that, the line tension, as it was introduced here, is not 

a source of contact angle hysteresis (see section 4).  Here we keep the line tension as a purely 

thermodynamic quantity. In analogy with the interfacial tension for low energy system, which is of the 

order of magnitude of kbT/lm
2
  40 mN/m (lm = 0.3 nm is a molecular length) [27], the order of magnitude 

of line tension can be estimated as kbT/ lm  10
11

 N. It is worth noting that line tension k  10
11

 N…10
12

 

have been usually measured in biphasic lipid monolayers [38,39]. For drops or particles, the line tension 

results from two main contributions. Short and long range forces such as Van der Waals and electrostatic 

forces represent the first contribution and they are usually included into the joining/disjoing pressure, 

which competes with the capillary pressure at the nanoscale [40]. The second contribution is represented 

by the increase (for repulsive interactions) or decrease (for attractive interactions) of the liquid-gas 

interfacial area with respect to the spherical cap profile (see Figure 3) [41][42]. It is important to recall 

that line tension could be also tuned by molecular or polymeric species present in the contact line region, 

which act as line active species [43,44].  
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It is quite clear that the magnitude of k/(R) deserves a further discussion in order to illustrate the impact 

of positive line tensions. Only for very small particle of 10 nm radius (and for typical values of contact 

angles and interfacial tensions), a line energy k ≥ 10
10

 N leads to the vanishing of the energy minimum 

across the interface [45]. Latter values of the line tension can be regarded as the upper bound limit value 

of physically meaningful line tension [46,47]. Hence, the line tension effect is expected to play a dramatic 

role only for spherical particle radii smaller than 10 nm or for particles with high aspect ratios [45]. This 

result may be of great importance for the mass transfer of nanoparticles across a fluid interface in liquid-

liquid extraction. As for droplets or bubbles in the submicron scale [48], also for particles some 

experimental results show indeed that the equilibrium contact angle changes with the size. Experiments on 

silica particles of radii between 70 and 500 nm showed systematic change of the contact angle at the liquid 

polystyrene-air interface [49]. Line tension k  10
9

 N has been reported, which is somewhat higher than 

the theoretical expectation. High line tensions are usually suspected to account for dissipations rather than 

for energetic contributions. Note also that if line tension is introduced as a thermodynamic quantity, it 

does not imply any distribution of stable contact angles, i.e. 𝒜𝑒𝑞 is a single value. Isa et al. have measured 

the contact angle of different nanoparticles of radii between 10 nm and 1.4 µm at the oil-water interface. 

They show a distribution of stable particle contact angles for each particle size. The width of the contact 

angle distribution becomes large if the particle size decreases. These important experimental findings have 

been discussed accounting for line tension (k  10
10

…10
9

 N) and Brownian motion. One might wonder 

if the distribution of 𝒜𝑒𝑞 could result from stable and metastable contact angles; but in this case the 

contact angle distribution would be bimodal or ill-defined and rather high (see Figure 4B). Brownian 

motion could explain a distribution of stable contact angle for small nanoparticles but not for large 

particles. Hence, observation of particle contact angle distributions may deserve further analysis and 

discussion in terms of contact line pinning (see section 4) [50]. Finally, line tension can be seen as an 

excess quantity, which is the first order correction to the surface energy [35]. As shown in figure 3 for a 

liquid drop, the local profile in the vicinity of the contact line deviates from the spherical cap shape 

(described by the Young-Laplace equation) due to long-range surface forces [51],[30]. Two distinct 

profiles can be described. For eq < 90°, attractive long range forces lead to local contact angles that 

increase to 90° when approaching the contact line, see Figure 3. Repulsive long range forces lead to local 

contact angles which tend to zero at the nanoscale.[41] In the latter case, drops or particles are in 

equilibrium with a molecular film liquid adsorbed on the solid surface [25],[52,53]. For large drops or 

particles R, R0 > 0.1 µm, line tension effects are in general negligible and the equilibrium contact angle 

remains the same if the size of the system is increased. For small drops or particles R, R0 < 0.1 µm, 

equilibrium contact angle may become length scale dependent [30] and stable, metastable and unstable 

states could manifest. Note that reference [30] contains a mistake: attractive forces and repulsive forces 

should be interchanged [54].  

2. Roughness and inhomogeneity effects on Partial Wetting 

In order to describe partial wetting systems closer to the ones encountered in experiments, we should start 

describing the effects of surface defects. We start by considering the case of an homogeneous solid with 

roughness.  

2.1 Roughness effects on Partial Wetting. Here, we assume that roughness is due to random 

topographical defects and could be modelled by geometrical functions. The main assumption here is that 

the liquid wets the solid such that no air trapping occurs, see Figure 5. Moreover the roughness is 
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randomly distributed on the solid surface in a length scale much smaller than the system size. This 

approach is well-known in partial wetting of planar surface and named after “Wenzel” [55].    

 

Figure 5 

 

For a liquid drop, in presence of surface roughness, the surface As of the solid-liquid and solid-gas 

interfaces becomes larger than the flat area A0, As = r A0, where r is the ratio between the real area and the 

projected flat area. Thus the free energy becomes: 

E() =SGA  SGAsSLAsALG .       (15) 

For a solid particle at a liquid-gas interface, decorated by defects as described before, the free energy 

reads: 

𝐸(𝛼) = 𝛾A + 2𝜋𝑅2 [𝑟 𝛾𝑆𝐿(1 + cos𝛼) + 𝑟 𝛾𝑆𝐺(1 − cos𝛼) −
1

2
𝛾sin2𝛼].    (16) 

In order to illustrate the effect of roughness on wetting, we model the roughness as composed by 

cylindrical defects of radius Rs and height hs, which are homogenously present on the substrate with a 

surface fraction s.  

𝐴𝑠 = 𝐴0(1 + 2𝜙𝑠
ℎ𝑠

𝑅𝑠
),          (17) 

Where s = nsRs
2
/(area of the solid surface) is the defect concentration (ns is the number of defects) and 

the roughness is simply r = (1 + 2𝜙𝑠
ℎ𝑠

𝑅𝑠
) .  In Figure 6 we plot the free energies for drop and particle 

geometries for different defect concentrations. Both for drop and particle geometries the energy minimum 

defines an equilibrium contact angle that follows the Wenzel equation [55]: 

 cosW = r cos, where r = As/A0  .       (18) 

 

Figure 6 

  

Plotting the energy profiles for different defect concentrations at hs/Rs = 1, we note that for the drop 

geometry, an increase of r leads to a deeper energetic minimum. On the contrary, for the solid particle the 

energy minimum becomes shallower and could even vanish if r increases as for a particle decorated with 

surface defects covering 40% of the whole surface in Figure 6 [56]. This result is rarely accounted in the 

literature and has a clear impact on the location [57] and irreversibility of particle adsorption onto the 

surface. It is important to recall that the Wenzel equation is not valid at all length scales. For solid surface 

showing large structures (l>ls), the liquid drop may “feel” an effective flat solid interface composed by the 

solid and the infiltrated liquid. The latter case corresponds to a Cassie-Baxter state. For larger surface 
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structures and equilibrium contact angle eq >c = arcos1−𝜙𝑠
𝑟−𝜙𝑠

 , the Wenzel equation is valid. For eq < c 

the Cassie-Baxter model introduced in the next section should be used [27].   

2.2 Inhomogeneity effects on Partial Wetting 

Beside roughness, a second scenario accounting for flat but heterogeneous solid surface can be 

discussed. If the solid surface is composed by two materials showing different surface energies randomly 

distributed on the whole surface, one refers to the “Cassie-Baxter” wetting state [27]. For planar solids 

with area fractions  of materials 1 and 2, 1 + 2 = 1: 

E() = 1(S1GA S1GA0 S1LA0) 2(S2GA S2GA0 + S2GA0)ALG  .   (19) 

At the energy minimum, the “Cassie-Baxter” contact angle is defined as [27]: 

cosCB = 1coseq,1 + 2coseq,2 .        (20) 

Note that the previous equations are equivalent to the equations for homogenous solid surfaces if written 

in terms of effective surface energies, SMG = S1G1 + S2G2 and SML = S1L1 + S2L2 : 

E() = SMGA SMGA0SMLA0ALG  .       (21) 

The same analysis applies to the spherical particle geometry. Two remarks can be now made. First, 

assuming that inhomogeneity is randomly distributed in a small scale compared to the system size we are 

always assuming that on average the contact line touches the two regions 1 and 2 with the same fraction as 

the area fraction. Note that if inhomogeneity is either on a scale comparable to the system size or 

structured in defined patterns, equations 19 and 20 do not hold anymore [58,59]. An exemplar case is 

represented by a drop sitting on a substrate with a single circular domain made of a different material [60]. 

If the drop sits inside the domain the equilibrium contact angle is the one of the material’s domain. If the 

drop is larger than the domain and the domain is included in the drop, the equilibrium contact angle is the 

one of the substrate even if there is a large area fraction of the domain. For these particular cases where 

the heterogeneity length scale is large, it becomes clear that the relevant fractions  in Equation 20 are not 

the area but the line fractions [60]. A long debate exists in the literature about this topic and the validity of 

Wenzel and Cassie-Baxter models  [60],[61],
 
[34–37],[66].  

To further discuss the wetting of heterogeneous surfaces, and illustrate whether line or area fractions 

should be used in equation 20, we consider the cases of the partial wetting of Janus and patchy particles. A 

very rich behavior can be discussed when considering a Janus particle composed by two hemispherical 

faces with different contact angles at a liquid-gas interface [67,68]. If one Janus face possesses an 

equilibrium contact angle larger than 90° and the other face lower than 90°, the free energy shows a 

minimum and a singular point at 90°, corresponding to a four-phase contact line where the two solid faces, 

the liquid and the gas meet [68]. If both faces show equilibrium contact angles lower (or higher) than 90°, 

stable, unstable and metastable wetting states can be described depending on the orientation of the 

particle, see Figure 7. When the Janus boundary is not crossing the liquid-gas, the contact line touches 

only one face of the Janus particle. When the contact line touches the face with the highest contact angle 

eq,1, the Janus particle finds a stable contact angle at eq,1 [69]. If, instead, the contact line touches the 

face with the lowest contact angle eq,2, the Janus particle may remain at metastable contact angle equal to 
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eq,2 [56]. Note that in this geometry the heterogeneity has the same size of the particle and Cassie-Baxter 

model does not apply. If the Janus particle is oriented with the Janus boundary crossing the liquid-gas 

interface, no equilibrium can be found if the liquid-gas interface keeps flat [56],[70]. A different scenario 

can be discussed for patchy particles. If a patchy particle possesses randomly distributed regions of two 

materials of sizes much smaller than the particle size, the contact line will intimately touch both regions. 

In this case a Cassie-Baxter regime can be expected and the stable particle contact angle will be defined 

by Equation 20.    

 

Figure 7 

 

3. Energy of planar solids and liquid interfaces covered by particles 

In this section we consider the surface energies of composite interfaces. We start with some simple 

considerations gained from the previous sections. We begin by considering the planar surface geometry. 

The total energy of a dry homogenous and flat solid surface is simply E = SGA, see Figure 8a [5]. If the 

solid is rough,   E = SG rA (see equation 15 and Figure 8b). If instead it is composed by two materials (see 

equation 20):  

E  = S1G1A S2G2A.           (22) 

Antonow’s rule describes the energy of a system composed by a macroscopic liquid film on a solid 

surface in complete wetting [5,72]:  

E = SLA + A.            (23) 

If the liquid film is not macroscopic, interaction between liquid-gas and solid-liquid interface should be 

accounted and the energy of the system is [27]: 

E = SLA + A+ P(h)A          (24) 

The Derjaguin joining/disjoining pressure  is related to P(h) by dP/dh. Note that if h is large, P(h) 

= 0 and we recover Equation 23, whereas if h = 0, P(h) = SG SL    [27]. 

Now we turn our attention on the free energy of a liquid interface (Fig. 8d) in presence of solid spherical 

particles, Figure 8e. The total energy of the system (bulk plus interface) can be calculated as: 

𝐸𝑇𝑂𝑇(𝛼) = 𝛾𝐴 + 𝑁𝑆2𝜋𝑅2 [𝜎𝑆𝐺(1 − cos𝛼) + 𝜎𝑆𝐿(1 + cos𝛼) −
1

2
𝛾sin2𝛼] + 𝑁𝐵4𝜋𝑅2𝜎𝑆𝐿  (25) 

Where NS is the number of particles at the interface and NB is the number of particles in the volume: NS + 

NB = constant. Now we may ask if the number of particles in the bulk affects the free energy of a liquid-

gas interface covered by particles and the effective interfacial tension of the liquid-gas interface. The 

answer is clearly no because in a purely wetting perspective, particles are not surfactant molecules. For 

surfactants equilibrium between bulk and surface holds and the interfacial tension depends on the bulk 

concentration via the Gibbs equation. In a purely wetting perspective, particles in the bulk are not in 
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equilibrium with the ones at the surface as the adsorption is irreversible and particles in the volume 

eventually sediment or float. Moreover, experiments pointed out that the interfacial tension measured for 

particle dispersions remains constant in absence of particle adsorption or in diluted interfacial regimes 

[9],[73,74]. The change of the effective interfacial tension measured in experiments seems to depend only 

on the lateral interactions between particles [75],[76]. Then, the interfacial energy of a liquid surface 

covered by particles is: 

𝐸𝐼(𝛼) = 𝛾𝐴 + 𝑁𝑆2𝜋𝑅2 [𝜎𝑆𝐺(1 − cos𝛼) + 𝜎𝑆𝐿(1 + cos𝛼) −
1

2
𝛾sin2𝛼] 

𝐸𝐼(𝛼)

𝐴
= 𝛾 + 2𝜙 [𝜎𝑆𝐺(1 − cos𝛼) + 𝜎𝑆𝐿(1 + cos𝛼) −

1

2
𝛾sin2𝛼]     (26) 

Note that if  = 90° and the particle surface coverage is maximum  = NSR
2
/A 0.91, one finds that EI 

should approach the Antonow’s rule for a liquid-solid-gas system E = SLAP + SGAP, where AP = NS2R
2
, 

see Figure 8f. In general, if particles are in a diluted interfacial regime, and no lateral interactions occur, 

the interface can be seen as a pure liquid interface populated with isolated particles. Note that standard 

fluid interfacial tension techniques probe only the interactions mediated by the liquid interface and the 

presence of isolated non-interacting particles does not affect the interfacial tension  𝛾 measurements. In 

fact, pendant drop profile measurements are based on Laplace equation, and 𝛾 is calculated from the liquid 

surface curvature. In force measurements, like the Wilhelmy plate technique, 𝛾 is calculated from the 

force exerted by the liquid meniscus on the plate. Hence in both techniques, the interfacial tension 

measured in the presence of isolated non-interacting particles is the one of the pure liquid as reported in 

several articles [75][77][78][79]. Given the particle irreversible adsorption, a fluid area change does not 

lead to a fluid interfacial tension change in dilute particle regimes. Note that in presence of particles, the 

composite interface may show wetting properties related to both roughness (see section 2.1) and 

inhomogeneity (see section 2.2). 

In literature a different description of the interfacial free energy was proposed by Du et al [80],[81]. They 

write the “total interfacial energy” as: 

𝐸𝐼(𝛼) = 𝛾𝐴 + 𝑁𝑆Δ𝐸 = 𝛾𝐴 + 𝑁𝑆[𝐸(𝛼) − 𝐸(𝛼 = 0° 𝑜𝑟 180°)]     (27) 

Note that the previous energy is neither the total energy of the system, Equation 25, nor the free energy of 

the liquid surface covered by particles, equation 26. The previous equation also predicts that the free 

energy of the interface depends on the adsorption path of the particles, i.e. in which medium they were 

first dispersed. Equation 27 was also used to model the effective interfacial tension eff measured in 

pendent drop experiments: eff = EI/A =  + NSE/A [80]. It is important to recall again that the interfacial 

tension measurement in pendant drop experiments is based on the Laplace equation, which applies strictly 

for liquid surfaces. Hence, the presence of solid particles, in absence of lateral interactions, is not expected 

to vary the interactions along the interface and thus should not affect the measurement of the interfacial 

tension in pendant drop experiments. For nanoparticles, assuming equilibrium between bulk and interface, 

some other models and interface equations of state have been proposed [82],[83],[84]. 

Finally, note that the interfacial energy of a liquid surface covered by particles written in equation 26 

predicts both a decrease and an increase of the energy.    
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Figure 8  

 

4. Contact line pinning: Hysteresis and Frictions  

Roughness and inhomogeneity of the surface have major impacts not only on the static but also on the 

dynamic of partial wetting. Contact line pinning occurs whenever a defect is present on the solid surface. 

Hence the liquid interface deforms around the physical or chemical defect dissipating energy and leading 

to contact angle hysteresis.  

 

4.1 Deformation of the liquid interface. Even in absence of surface defects the contact line may show 

some weak distortions, e.g. due to thermal motion. As described by Joanny and de Gennes [6], we 

consider a distortion of the contact line on the solid along the x-axis, whose displacement is u(x) (at y=0) 

and its wave vector q, see Fig. 9 a and b. As the line is displaced on the solid, also the liquid surface will 

be perturbed. The distortion along the x-axis and the Laplace’s equation lead to a liquid surface 

displacement: 

 𝑧(𝑥, 𝑦) = 𝛼𝑦 + 1

2𝜋
∫ 𝑢𝑞e𝑖𝑞𝑥e−|𝑞|𝑦𝑑𝑞

+∞

−∞
.        (28) 

Significant distortion of the liquid surface happens over a distance q
1

 close to the solid comparable to the 

periodicity of the distortion of the contact line on the solid. The amplitude of the distortion uq is also fixed 

by the displacement u(x). 

Now we summarize the calculation of the displacement of the contact line assuming an heterogeneous 

surface, showing weak defect forces that act as random fluctuating forces f(x). In Figure 9b, fluctuations of 

the contact line are sketched, they follow [6]: 

 < [u(x) u(0)]
2
 >=2D|x|          (29) 

Where 𝐷 =
1

𝛾2𝛼4 ∫ < 𝑓(0)𝑓(𝑥) > 𝑑𝑥
+∞

0
. These contact line fluctuations can be significant. The amplitude 

of the distortion scales as 𝑢2~𝐿𝜉 , where is the correlation length of the defect and L is the system size 

[6]. Considering both a planar surface and a solid particle geometries, if  1 nm and L = 1 µm, the 

amplitude of the contact line displacement is about 30 nm. Note that the latter value is much greater than 

the amplitude of thermal capillary waves[85] (0.2 nm) or the characteristic displacement in the 

Molecular-kinetic model for friction of partial wetting (0.1-1 nm) [7]. 

In presence of an isolated defect of size d and force fd =d [cos(d)cos], (where d is the contact angle 

on the defect, see Figure 9) the contact line on the solid takes the form, see Figure 9c [6]:  

𝑢(𝑥) = 𝑓𝑑
𝜋𝛾sin2𝛼

ln ( 𝐿

|𝑥|
),          (30) 
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Where L is a macroscopic distance, which could be either the system size or the distance between two 

adjacent pinning points. 

 

4.2 Weak or strong pinning 

Weak or strong pinning of the contact line on a single defect may occur depending on the amplitude of the 

defect force FD = f1(ymyd) with respect to the restoring force FR =K(ymyL) of the liquid tail, see Figure 9c. 

ym is the actual position of the line, yd is the defect position, K = sin
2/ln(L/d) (see equation 30) is the 

spring constant of the restoring force and yL is the position of the contact line in absence of the defect, see 

Figure 9c [6],[86].  

For weak defects, f1/K is small and no hysteresis of the contact angle is expected. For strong defects, f1/K 

is large and contact angle hysteresis occurs. The contact line is pinned on the defects and only if enough 

energy is injected into the system, a line displacement will occur towards a new position. The limiting 

values of stable macroscopic contact angles are the advancing A and receding R contact angles. For a 

spherical colloid, A is the stable angle reached after a displacement of the contact line resulting in an 

increase of the colloid wetted area; whereas R is the angle reached after a displacement of the contact line 

resulting in a decrease of the wetted area of the colloid [56], see Figure 9 d and e.  

 

Figure 9 

 

 

4.3 Contact angle Hysteresis 

In the case of strong defects, stable contact angles can be defined by balancing the work  Fly done by the 

force Fl (equation 5 and 6), which tends to move the line towards eq after a displacement y, and the 

energy dissipated by the defects. For isolated non-interacting defects [27]: 

𝐹𝑙Δ𝑦 = 𝜙Δ𝑦𝑅𝑖sinα 𝑊          (31) 

Where 𝜙 is the number of defects per unit area, Δ𝑦𝑅𝑖sinα is the area defined by the displacement y, 

where Ri = R0() for the drop, and Ri = R for the particle geometry respectively. W is the specific energy 

of a defect, which can be calculated at the maximum elongation um = K
1

fm (see equation 30) before the 

line snaps from the defect. Considering the case of isolated defects of size d, see Figure 9c [6]:  

 𝑊 =
1

2
𝐾𝑢𝑚

2 =
𝑓𝑚

2 ln (𝐿/𝑑)

𝛾𝜋sin2𝛼
.          (32) 

In the case of surface roughness, instead, the specific energy W of  a topographical defect of size d and 

height h can be written as [5]:  
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𝑊 =
𝛾𝑑2sin2(

dℎ

d𝑦
) ln (𝐿/𝑑)

2𝜋
.          (33) 

Where 
dℎ

d𝑦
 is the derivative of the profile height along the y-axis. Assuming that energies dissipated during 

a contact line advancing and receding steps are the same, one writes the contact angle hysteresis as: 

cos𝛼𝑅 − cos𝛼𝐴 = 𝜙 2𝑊,         (34) 

which increases linearly with the defect concentration 𝜙. For concentrated interacting defects the linear 

dependency does not hold anymore [87]. 

Many theoretical and experimental investigations have been carried out for drop contact angle hysteresis 

on solid substrates in presence of defects of different sizes and structures [6,88–90]. For spherical solid 

particles at the liquid interface very rarely contact angle hysteresis has been investigated or discussed 

[22],[56],[91]. Many experimental investigations report on particle contact angle[92] but very few 

experiments have described distributions of particle contact angles, which we believe are very important 

to describe line pinning [93],[50].  

4.4 Dynamics and Frictions 

For the planar surface geometry and as well for a particle at a liquid interface, two main sources of 

dissipations in partial wetting dynamics have been discussed in the literature [94],[7],[95],[21]. We are 

now concerned with the dynamics of drops or particles occurring during the path from a non-wetting state 

( =0 or 180°) to an equilibrium position (eq). We assume that the velocity vy and the capillary number 

Ca =  vy / are small, where  is the dynamic viscosity of the liquid. Two main length scales define the 

sources of dissipations, which are due to the viscous stresses and molecular frictions. For length scales 

larger than the molecular size (or ls), viscous flows and stresses are generated upon the relative motion 

between a liquid and a solid with a velocity vy.   

The power dissipated as a function of the contact angle can be written as [96]: 

Ω = 4𝑔(𝛼)𝜂𝑣𝑦
2ln (

𝑅𝑖

𝑎
) 2𝜋𝑅𝑖sinα        (35) 

Where Ri = R0() is the drop radius for the planar surface geometry and Ri = R is the particle radius for the 

particle geometry; a is a molecular size and g() is a function of the contact angle: g()0.756/0.084 

[96]. For small contact angles °, g() = 3/(4) and Ω =
3𝜂𝑣𝑦

2

𝛼
ln (

𝑅𝑖

𝑎
) 2𝜋𝑅𝑖sinα [27]. If one writes 

 as a force Fvisc times a velocity, a viscous friction coefficient, visc = Fvisc / vy = /vy
2
 , can be written as: 

𝜁𝑣𝑖𝑠𝑐 = 4𝑔(𝛼)𝜂ln (
𝑅𝑖

𝑎
) 2𝜋𝑅𝑖sinα        (36) 

Note that this friction does not depend neither on the interfacial tension nor the equilibrium contact angle 

but it depends only on the viscosity and the geometric contact angle (or dynamic contact angle) 

experienced during the path from a non-wetting state ( =0 or 180°) to an equilibrium position (eq). It is 

important to mention that an additional source of viscous dissipation occurs in the presence of a precursor 

film, which is particularly relevant in complete wetting [97],[5]. To the best of our knowledge, the 
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existence of such a precursor film has been never discussed in the complete wetting of solid particles. The 

existence of such film may occur when hydrophilic particles are deposited on top of a liquid surface in a 

dry state or using a spreading solvent.  

The second source of dissipation is due to molecular frictions. When dealing with length scale comparable 

to the thermal length lT =[𝑘𝑏𝑇

𝛾
]

1/2
, a molecular kinetic theory should be applied to evaluate the dissipation. 

Thermal agitation energy 𝑘𝑏𝑇 leads to contact line jumps over distances  occurring at a characteristic 

time This molecular line friction reads [7,98,99]: 

𝜁𝑙𝑖𝑛𝑒 =  𝑘𝑏𝑇

𝜆3 𝜏 2𝜋𝑅𝑖sinα           (37) 

and 𝜏 ≅
𝜂𝑣𝑚

𝑘𝑏𝑇
exp

𝐸𝑎

𝑘𝑏𝑇
 

Where vm is the molecular volume of the liquid and 𝐸𝑎 is the activation energy needed for the line jump. 

Usually 𝐸𝑎 is written in the form of an adhesion energy 𝐸𝑎 = 𝜆2𝛾(1 + cos𝛼𝑒𝑞) [7]. However, it is 

important to remark that the line jump occurs at the molecular level whereas the equilibrium contact angle 

in the adhesion energy is defined in the macroscopic level. Thus, one may wonder if instead of eq one 

should consider the local contact angle which account for long range surface forces selected at a length 

scale set by see Figure 3. 

In Figure 10 we plot the viscous and line frictions for drop and particle as a function of  Viscous friction 

is extremely high for the drop geometry at low contact angles given that the drop radius is very high. If  

increases, the friction decreases significantly and it becomes comparable to the Stokes friction (6R) of a 

rigid sphere immersed in a liquid. For a particle, the viscous friction is also high at low contact angles but 

it does not decrease so sharply as for the drop geometry given that the length of the contact line is 0 at  = 

0 and maximum at  = 90° . Line friction coefficients depend strongly on  and the activation energy, 

which depends on  and eq. For a typical values  0.6 nm and eq = 90° [7], line frictions can be 

smaller than the viscous frictions at low contact angles but they become higher than the viscous frictions 

for   > 20°. For the particle geometry it is important to remark that the highest line friction is reached at 

  = 90°, where the line length is at maximum.  

Now we can briefly discuss the equation of motion of the contact line on the solid for a drop or a particle 

considering the particular case of driving force plotted in Fig. 2 for eq = 65°. For a drop starting at  = 

180° the viscous and line friction are low and the force increases if  decreases, hence the line will move 

towards the equilibrium contact angle. It may approach but never reach the equilibrium in a reasonable 

experimental time, given that the force decreases and the frictions increases when  gets close to eq. For 

a particle starting at eq = 180° the motion may slow down well before eq because line friction is 

maximum at  = 90°.  Also for a particle starting at  = 0° it is important to remark that the driving force 

is low and the viscous friction is very high at low contact angles.  

Partial wetting dynamics for drops have been largely explored theoretically and experimentally and 

combined viscous and line friction models have been also used [100,101],[5,27]. On the contrary, very 

few experiments have been carried out for the dynamics of particle at the liquid interface. The slow 

dynamics of a particle breaching an oil-water interface have been recently investigated by Kaz et al. [21]. 
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They indeed observed that particles either are not able to breach the interface or they move very slowly at 

the interface. These results agree with our discussion before, see Fig. 10. Dynamics of dewetting is also 

largely reported in the literature for liquids on solid substrates [102,103]. Nucleation of dry region on the 

solid surface may occur due to surface defects or by the amplification of capillary waves [104]. Also in 

this case, we are not aware of experimental studies on details of dewetting mechanisms for particles at the 

liquid interface.    

 

Figure 10 

 

Finally, viscous and line frictions do not affect only the contact line motion during a partial wetting 

dynamic towards equilibrium. For particles straddling an interface at a constant contact angle, even if the 

contact angle does not vary, the contact line may fluctuate and a line friction could manifest. Recent 

experiments on particle lateral and the rotational motions show the strong influence of the viscous and line 

frictions due to contact line fluctuations, which decrease the particle diffusion coefficients [23,105],[56].    

 

5. Conclusions and Outlook 

In this review, we describe fundamental aspects of the partial wetting for drops and particles. Even if 

theoretical and experimental works have been extensively done, many new investigations deserve 

consideration. For smooth surfaces, line tension could affect the wetting of drop or particles of small sizes 

in a very different way (section 1.2). New experiments for nanodrops and for particles of different aspect 

ratios (ellipsoids or disks) and contact angles could be designed in order to address line tension effects. It 

would be also interesting to gain some control on the sign and value of the line tension by using line-

active molecules able to tune line tension in the partial wetting of drops and particles. For particles, the 

impact of surface roughness could be severe. Note that not only the contact angle may shift, but also that 

the adsorption energy minima ∆𝐸 = 𝐸(𝛼) − 𝐸(𝛼 = 0° 𝑜𝑟 180°) could reduce or even vanish. Patchy and 

Janus particles could be used for experimental investigations in order to elucidate on the applications of 

the Cassie-Baxter equation (Section 2). Some open questions remain on the information provided by the 

effective interfacial tension measure in experiments for liquid covered by particles (Section 3). Finally, 

new experiments on contact angle distributions and dynamics of particles at the water surface may provide 

new insights into the physics of contact line pinning and line frictions, that can be compared to the results 

obtained for drops (see Section 4).    
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Figure 1 Sketch of a liquid drop on a solid substrate (a) and a solid spherical particle on a liquid interface (b) 

reaching an equilibrium contact angle in partial wetting from a dry state,  = 180°. G = gas, S = solid, L = liquid.   

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2 A) Free energy ratio E()/E() (eq = 65° and = 72 mN/m, A is a constant of the system and its 

contribution was subtracted to E) as a function of  for drop and particle geometries. B) Force Fl normalized by the 

constant term R (eq = 65°, = 72 mN/m and R = R0(=180°))  as a function of  for drop and particle geometries. 
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Figure 3 Local contact line profile for a droplet showing attractive VdW long range forces [30].  

 

 

 

 

 

 

 

 

 

 

Figure 4 A) Free energy ratio E()/E()  (eq = 65° and = 72 mN/m, A is a constant of the system and its 

contribution was subtracted to E) as a function of  for the drop geometry and different line tension values. B) Free 

energy ratios E()/E()  (eq = 65° and = 72 mN/m, A is a constant of the system and was subtracted to E) 

as a function of  for the particle geometry and different line tension values. 
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Figure 5 Wenzel model for drop and particle geometries. 

 

 

 

 

 

 

 

 

 

 

Figure 6 A) Free energy ratio E()/E()   (eq = 65° and = 72 mN/m, hs/Rs = 1, A is a constant of the system 

and its contribution was subtracted to E) as a function of  for the drop geometry and different defect concentrations 

s. B) Free energy ratio E()/E()   (eq = 65° and = 72 mN/m, hs/Rs = 1, A is a constant of the system and 

its contribution was subtracted to E) as a function of  for the particle geometry and different defect concentrations 

s. In the x-axis, data points show the equilibrium contact angles calculated using the the Wenzel equation.  
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Figure 7 Free energy (= 72 mN/m, R = 1 µm, A is a constant of the system and its contribution was subtracted to 

E) of a Janus particle as a function of the orientation  (defined in the left bottom corner) for two different position 

corresponding to the equilibrium contact angles of each face of the Janus particle [71]. 
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Figure 8 Sketches of solid planar surfaces (a, b, c) and liquid interfaces (d, e, f) populated by a different material as 

discrete particles (b, e) or films (c, f).  
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Figure 9 a) Side view of a drop wedge at a given contact angle  and directions of advancing and receding contact 

lines b) Top view of the contact line region in absence of strong defects. c) Top view of the contact line region in 

presence of a strong defect inducing line pinning. d) Side view of a solid particle immerging in a liquid with an 

advancing contact line. e) Side view of a solid particle emerging from a liquid with a receding contact line.   
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Figure 10 A) Viscous friction coefficient as a function of the dynamic angle  for the drop and particle geometries 

(Pa.s, R = R0(=180°) = 1 µm). B) Line friction coefficients for drop and particle geometries for two 

different values of eq (= 72 mN/m, R = R0(=180°) = 1 µm).  
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