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An A*-based routing graph is proposed to assist PDR indoor and outdoor navigation with handheld devices. Measurements are provided 
by inertial and magnetic sensors together with a GNSS receiver. The novelty of this work lies in providing a realistic motion support that 
mitigates the absence of obstacles and enables the calibration of the PDR model even in large spaces where GNSS signal is unavailable. 
This motion support is exploited for both predicting positions and updating them using a particle filter. The navigation network is used to 
correct for the gyro drift, to adjust the step length model and to assess heading misalignment between the pedestrian’s walking direction 
and the pointing direction of the handheld device. Several data sets have been tested and results show that the proposed model ensures a 
seamless transition between outdoor and indoor environments and improves the positioning accuracy. The drift is almost cancelled thanks 
to heading correction in contrast with a drift of 8% for the non-aided PDR approach. The mean error of filtered positions ranges from 3 to 
5m. 
 
Keywords: A* path-planning; Pedestrian Dead Reckoning; Map-aided; Particle filter.  

 
1. Introduction 
 

Pedestrian Dead Reckoning (PDR) is widely adopted in 
the field of pedestrian navigation with handheld devices. It is 
particularly adapted to smartphone-based localization as 
inertial sensors can be designed in a MEMS (Micro-Electro 
Mechanical Sensors) technology, enabling them to be 
embedded in lightweight devices. Unlike GNSS receivers, 
inertial sensors are especially useful indoors as they allow 
standalone localization without sky visibility. Yet, due to gyro 
drift and step detection limitations, additional information is 
required to assist the PDR positioning process. For foot-
mounted sensors, zero velocity update (ZUPT) calibration is 
exploited to adjust the positioning parameters by detecting 
stance phases within the gait cycle (static phase). Though, this 
calibration is not possible with handheld devices because of 
free hand motion and an increased difficulty to detect the 
stance phase. Outdoors,  PDR can still be aided by GNSS [1], 
but this is not feasible indoors because of signal unavailability 
and further measurements are needed. These could be 
provided by radio beacons or visual information. The first 
approach requires infrastructure deployment and training [2], 
while the second necessitates a camera and further image 
processing for feature recognition [3]. A third possibility is to 
constrain the pedestrian’s position using map information. 
Two main paradigms can be retained from previous work. 
Either walkable space is given by 2D maps delimited by 
obstacles [4], or it is given by a routing graph network that 
transforms the positioning process into a piecewise 1D model 
[5]. In the first case, space is better explored but the map is not 
exploited further than for detecting static obstacles (e.g. 
walls). This means that no calibration is performed unless an 
obstacle is hit. On the contrary, routing graphs are much more 
constraining because the motion model is directly given by the 
graph network. Hence, their use has greater impact on the 
shape and accuracy of the trajectory and they have to be 
realistic enough to limit positioning errors. 

 
This paper focuses on routing graph-assisted PDR. In 

fact, routing graphs involve a simple motion model that allows 
both obstacle avoidance and the calibration of walking 
directions within straight line travels [5]. Their use can even 
be extended to calibrating the step length model as reported in 
our previous work [6]. Though, two major drawbacks make 
their use quite impractical and sometimes ineffective. First, 
there is no ubiquitous process that generates combined indoor- 
outdoor pedestrian graph networks. Their construction can be 
time-consuming and sometimes inadequate with pedestrian 
motion. While the graph is expected to counterbalance PDR 
limitations, it may introduce additional errors due to 
inconsistencies with real displacement. Second, they do not 
handle “pseudo-random” trajectories within obstacle-free 
areas and during the transition between outdoor and indoor 
spaces as the freedom of motion increases. In these cases, 
routing graphs become inefficient as no motion assumptions 
can be relied on to design a realistic network. Grid-based 
models are well-suited for exploring large spaces [7]. Yet, no 
calibration is possible with this approach. This even leads to 
overestimate the travel distance because linearity of movement 
is lost due to the grid structure. As a result, the PDR process is 
no longer assisted and the basic issues of gyro drift and 
uncalibrated travel distance not solved.  
 

A solution to the vulnerability of routing graph assisted 
PDR navigation in obstacle free spaces is investigated in this 
study. The proposal is to make use of A* algorithm, which is 
commonly used for path planning within virtual worlds or for 
vehicle route guidance, in order to design a realistic routing 
graph in obstacle-free spaces. The graph is constructed on the 
basis of a set of waypoints that are crucial for pedestrian 
navigation. In fact, the latter are expected to balance the 
absence of geometrical constraints by providing strategic 
locations between which path computation with A* algorithm 
would be relevant. Therefore, the first contribution of this 



study is to mitigate the drift in the PDR approach even in large 
spaces. Moreover, the issue of accumulating errors during the 
transition between indoor and outdoor spaces is addressed by 
improving the routing graph relevance. This is accomplished 
through the computation of the likely paths a pedestrian may 
take from outdoor strategic locations to reach buildings 
entrance doors. In addition, the choice of A* algorithm is 
well-suited for handling different mobility profiles (e.g. 
personal disease that impacts the path of the target user) so 
that the approach can be customized for the specific needs of 
each pedestrian. Indeed, this is ensured thanks to a user-
relative weighting of the map which is directly involved in the 
graph construction. This is because A* algorithm computes 
optimal paths according to walkability rates given by a map of 
navigation (e.g. walkability rate according to slopes, 
pavement, etc.). For instance, one would take the shortest path 
to cross an open area, whereas a disabled person may follow 
another path such as walking near walls or dedicated tracks. 

 
2. A* pathfinding within navigation meshes 
 
2.1. Overview of Navigation Mesh generation. A navigation 
mesh (NavMesh) is a set of several 2D or 3D polygons 
reachable by some given user [8]. This structure can be 
obtained automatically using GIS software. Others make use 
of RECAST [9], an open source library within the community 
of virtual world designers. Several studies were conducted on 
how to construct navigation meshes from raw 3D models [10], 
[11]. NavMesh construction allows assigning weights that 
translate the polygon walkability rates according to some 
given characteristics (slope, type = {stairs, flat ground…}) and 
to the target user’s mobility profile (ability to walk, to climb, 
to take the stairs, etc.). The weighting of the NavMesh is 
pretty important for considering the user’s mobility profile in 
order to compute suitable routing paths. DETOUR [12] is an 
example of open source software that allows A* pathfinding 
calculations on the basis of a NavMesh. 
 
2.2. A shopping mall NavMesh generation. The proposed 
method was applied to a shopping mall (Fig. 1). The latter is 
mapped in Google Maps with the names of stores, the mall 
principal gates and the set of walkable zones. We used QGIS 
2.12.1 software to extract the map in the form of a raster with 
an 11cm resolution. Walkable zones were extracted by 
digitalizing the map and eliminating obstacles. Delaunay 
triangulation was used to create the NavMesh. All polygons 
were assigned the same weight as all experiments are 
conducted by healthy persons. This implies that A* computed 
paths will minimize distance and may result in a shape that 
can be obtained with different approaches [10], [13]. 
 
2.3. A* pathfinding algorithm. A* is an improved version of 
the Dijkstra algorithm [14] . The latter aims at calculating the 
optimal path between two points according to one given cost 
function. Optimization applies to the travel distance, the time 
of travel, the expended energy, etc. This adaptability allows 
dealing with the issue of reduced mobility due to a disease or 
handicap. The A* optimization process is a discrete search 
scheme where space is modelled by a grid composed of cells. 
Each cell is explored according to an adjacency graph that 
models connections within the grid. Once visited, a cell is 
stored together with its assigned cost until the target cell is 
reached. The optimal path is given by the sequence of cells for 
which the sum of costs is minimal. A* is an extension to the 

principle of Dijkstra that calculates the cost of visited cells 
according to their distance from the starting point (which is 
the same as the Dijkstra cost) but also to their assumed 
distance to the target-cell in a heuristic approach. It is the a 
priori cost-to-go assumed lower than the actual (unknown) 
cost from the current cell to the target cell. A* is faster than 
Dijkstra algorithm due to the sorted exploration of cells 
according to their costs-to-go. The A* pathfinding scheme is 
applicable to any rasterized NavMesh where polygon weights 
are inherited by the raster cells. 
 

 
Fig. 1: Walkable zones have been meshed (green polygons). Blank 

spaces are also walkable but the NavMesh is restricted to our zone of 
interest. The gray blocks are the stores considered as obstacles. 

 
3. A* based routing graph generation 
 
3.1. Routing graph generation on the basis of waypoints. A 
waypoint is a punctual element that intervenes significantly in 
the pathfinding process. The significance of a waypoint is 
related to the role it plays in the pedestrian’s decision making 
during her/his travel. Two situations are worth considering. 
The first is when the pedestrian intends to reach a known 
destination within a familiar environment. In this case, it is 
obvious that (s)he follows the itinerary best suited to her/his 
mobility profile. Generally it is the shortest one but it could be 
any path depending on the cost-function that defines the user’s 
mobility profile. This situation is handled by A* algorithm 
using a weighted NavMesh. The target destination is known if 
it is visible from the pedestrian’s current position, for example 
if the pedestrian is located at a graph node that is visible from 
her/his target node. The second situation is when the 
pedestrian’s destination is invisible due to obstacles. In this 
case, waypoints are built in order to discretize the possible 
target destinations which may be either final or intermediate 
destinations.  

To better understand the implementation of waypoints, 
space has to be considered in relation to human spatial 
cognition. Indeed, walkable areas within a building floor could 
be corridors, rooms or halls. Outdoors, walkable areas are the 
space comprising sidewalks, footpaths, squares, car parks, etc. 
(Roads belong to the drivable areas.). This intuitive 
classification of space components allows defining scenes and 
extends what is called decision scenes to outdoor space and 
corridors. Decision scenes  have been defined previously in 
[15] as the places that “can be entered and left and [are] 
physically bounded by buildings and other solid obstacles that 
prevent movement”. The extension of decision scenes to 
corridors and footpaths in this paper is motivated by the fact 
that these elements have borders (physical borders for 
corridors and geometrical borders for footpaths) and that they 
can be accessed and left through specific points.  For example 



two corridors are two separate scenes. They can be accessed 
and left through their intersection which is a building corner; a 
corridor and hall are also distinct scenes between which traffic 
flow is possible through their intersection. Two elements are 
important for pedestrian travel inside and between scenes. The 
first is related to the isovist, which is visible space from the 
pedestrian’s current position. The isovist is mainly influenced 
by the presence of obstacles that have an impact on both 
visibility and the pedestrian’s trajectory [16]. Second element 
is the set of portals that allow flows of pedestrians from scene 
to scene [15] such as corridor extremities, building gates, store 
entries or footpath extremities. Indeed, key elements in the 
pedestrian wayfinding behavior depend mainly on portals and 
obstacle borders (which determine the isovist). They 
materialize the fact that visibility and purpose (destination) are 
the parameters that give a shape to one’s trajectory. In this 
study, the set of waypoints is composed of portals (corridor 
extremities, footpath extremities, outdoor/indoor doors) and 
obstacle corners. The graph construction based on waypoints 
is obviously more realistic than kernel-based methods where 
scenes are modelled by their centers [17], implying 
erroneously that the pedestrian walks systematically through 
the center of the scene. Besides, the structure of the graph is 
not entirely determined by the geometry of space but handles 
behavioral-based paths generated according to waypoints and 
reflecting pedestrian travel strategies. 

Once waypoints have been constructed, they can be 
exported in a database that will assist the pathfinding process. 
Each pair of waypoints are related by a set of itineraries that 
are generated with A* algorithm and are part of the final 
routing graph. Multi-hypotheses motion is handled as in 
classical routing graphs by exploring several paths and 
keeping the ones that are best adapted to IMU measurements. 
The graph structure is stored in the form of a GIS database 
that contains the graph segments identifiers, their extremity 
nodes coordinates, their length and their connections within 
the graph in a node-connectivity approach. Each edge of the 
graph is oriented and has an entry node A and an exit node B. 
The node connectivity design is involved in the motion model 
used for filtering. 

 
3.2. A* path planning for seamless transition between outdoor 
and indoor spaces and within obstacle-free areas. Previous 
work demonstrated that indoor layout-based graphs are 
efficient for enhancing the PDR localization within 
geometrically constrained areas [5], [6]. Hence, the proposed 
method is applied only to the area that precedes the mall 
principal entrance as well as in the obstacle-free hall (Fig. 2). 
The latter represent the critical GNSS-deprived places where 
map information fails to provide a calibration to the PDR 
positioning process, emphasizing the main issue being 
addressed in this paper. Outdoors, the routing graph is 
constructed according to the geometry of sidewalks, 
crosswalks and footpaths. 

Fig. 3 shows the generated routing graph within the test 
area. Three waypoints materialize the building entrance gate 
(drawn is black in Fig. 2). The focus is made on the waypoint 
where red paths intersect. It represents the left side of the mall 
entrance. Red paths are the A*-calculated itineraries relating 
the left side of the gate to other places of interest such as 
stores entries or the building’s main corridors. The latter are 
modelled by a series of straight lines according to corridors 
main directions. Three paths relate the outdoor to the indoor 
space through the left side of the mall entrance.  

This representation shows that straight line travels are 
privileged for practical and fast displacement. They are also 
more realistic in regards with pedestrian motion. In fact, some 
hypotheses are eliminated such as walking towards walls or 
making a series of turns to attend a place that can be reached 
straight ahead. Moreover, this provides a measurement of 
walking directions given by the graph segments in obstacle-
free zones, which would be impossible if a grid-based 
approach had been applied, requiring additional information 
such as radio beacons signal to compensate for the PDR 
errors.  

 

 
Fig. 2: Main area where A* algorithm has served for the routing 

graph construction 
 

 
Fig. 3: The highlighted segments of the graph in red color show the 
A* itineraries relating a portal waypoint (left side of the building 

entrance door) to different destinations. The latter are either 
extremities of corridors or footpaths, obstacle corners, or store 

entries. 
 

4. IMU fusion with GNSS and the routing graph 
with a particle filter 
 
4.1. Step detection and heading calculation. The step detection 
is realized after motion classification according to [18] by 
detecting peaks on the acceleration signal using an adaptive 
threshold algorithm [19]. According to the same reference, a 
generic model is used to estimate the step length. This model 
relies on a set of three parameters trained on 10 subjects and is 
given by  
                   s  =  k. (h (a f + b) + c),                  (1) 
where s is the step length, h is the user’s height, f is the step 
frequency, {a,b,c} the generic model parameters and k a scale 
factor that is expected to calibrate the model on the pedestrian. 



Headings have been calculated with MAGYQ attitude 
estimation filter [20] that fuses signals from a tri-axis 
accelerometer, a tri-axis gyroscope and a tri-axis 
magnetometer. Heading calculation considers different 
carrying modes such as the swinging mode or the texting 
mode. The device orientation in 3D-space is then obtained and 
the yaw angle deduced, giving the orientation of the device 
relative to the true North. 
4.2. Calibration of the PDR parameters using GNSS positions 
and the routing graph. The PDR parameters to be calibrated 
are the step length and headings. The step length model needs 
to be adjusted to each user as the model parameters are 
dependent on the pedestrian’s physiological features and gait 
cycle, whereas headings are potentially misaligned with the 
actual walking direction because of gyro drift and the device 
carrying mode. In fact, the device may be oriented towards a 
direction which is different from the walking direction. These 
errors are compensated by fusing the IMU with GNSS and the 
routing graph. The fusion is realized thanks to a particle filter 
that models the state (vector of unknown variables) by a set of 
particles (a set of sampled state vectors). The state vector 
contains necessary variables for determining the user’s 
position and is presented in detail in section 4.3. 

The step length model is adjusted to the pedestrian using 
both the graph and GNSS positions when available. In fact, 
the graph allows keeping the positions on plausible path(s). 
This directly impacts the travel distance. Besides, GNSS 
decreases the particles dispersion by bringing them next to the 
GNSS position. On the other hand, walking directions are 
given by path headings. They are particularly reliable indoors 
as the paths are calculated by the A*-algorithm or are directly 
given by the corridors main directions. The routing graph-
derived walking direction is then compared to the IMU 
pointing direction and the most likely path is selected. The 
difference between both headings gives the IMU angular 
misalignment with the pedestrian’s walking direction. 

The step length model is calibrated using a scale 
factork . The latter is assumed constant as it depends mainly 
on the pedestrian’s physiological parameters. It is modelled by 
a Gaussian variable with 1m mean and low variations as the 
step length is restricted to realistic values comprised between 
(0.60m – 1m).k is expected to converge within straight line 
travels where an optimal calibration is guaranteed. 

Heading misalignmentβ is the angular difference 
between the actual walking direction and the pointing 
direction of the IMU. It is time-dependent because it varies 
with hand motion. Uniformly distributed samples of heading 
misalignment values are drawn with variations up to 30°. 

 
4.3. Model implementation with a particle filter. The state 
vector is given by 

{ ,  ,  ,  ,  ,  }p
tId Dp δ k β w

 
(2) 

whereId is the edge identifier in the graph database, Dp is the 

curvilinear abscissa,δ represents the travel direction, which 
can be 1 if the edge is walked forward (from A to B) and -1 
otherwise (from B to A), k is the scale factor that calibrates the 
step length model, β is the misalignment between the walking 
direction and the pointing direction of the handheld 
device,w is the particle weight, p and t refer respectively to the 
particle and time. 

Each particle is moved along the current path according 
to the travel distance given by the step length. The particle 

filter introduces white noise on each parameter to spread the 
particles and optimize the graph exploration. The particle 
position is determined by the identifier of the graph edge and 
its curvilinear abscissa. If the latter is above the edge length, 
one of its connected edges will be explored. The transition 
model is 

1( ) . G tDU k s δ α n Dp −= ⋅ ⋅ + +        (3) 
where DU is compared to the current edge length LId to 
compute the curvilinear abscissaDp (Fig.4), s is the step 

length, and Gn is the modeling error represented by a Gaussian 

noise. α ∈ {0,1,2} and determines the number of steps to be 
made by one particle. It allows detecting over/mis-detected 
steps. 

Fig.4 gives the transition test process that allows 
computing the curvilinear abscissaDp when an exit node B is 
exceeded (i.e. DU > 0). t is the time index. BA/ BB 
connectivity translates the search in the graph database in 
order to determine if the edge being explored is connected to 
the exceeded one via an A or a B node. The same logic is 
adopted if an entry node A is exceeded (i.e. DU <0). 
 

 
Fig. 4: Dp computation according to DU 

 
When GNSS positions are accurate enough, they are used 

together with the graph headings in order to calibrate both the 
step length model and PDR headings. The graph headings 
provide a measurement of walking directions which are 
compared to PDR headings, taking into account potential 
angular misalignment. This is performed according to  
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where tw is the particle weight, PE and GPSE are respectively 

the predicted East coordinate of a particle and its 
corresponding GPS observation.PN and GPSN are the same 

parameters along the North direction. 1−∑ is the weighting 

matrix considering the graph and GPS position accuracies. 
 

Indoors, some GNSS positions are still available but the 
latter are generally unreliable and are rejected. The rejection 
test is made by thresholding the signal to noise ratio (SNR) 
and the horizontal dilution of precision (HDOP). Only the 



graph headings are exploited in the weighting process. The 
weighting equation indoors is 
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where PDRθ is the walking direction estimated by the PDR 

algorithms, Idθ is the predicted heading of the current path, 

β is the heading misalignment between the path direction and 

the PDR estimate,
Idθ

σ is the standard deviation of the path 

heading, and
PDRθσ is the standard deviation of the PDR 

walking direction estimate. 
Once the particles have been weighted, some of them are 

assigned low weights and become useless in the process. 
Resampling is performed to duplicate the particles with high 
weights and delete the others. The particles amount is kept 
constant and their weights equal after each update in order to 
explore enough hypotheses of motion. 

 
5. Experiments 
 
5.1. Data collection with a HSGNSS and IMU in hand. Three 
healthy volunteers (2 men, 1 woman) collected data with 
ULISS (Ubiquitous Localization unit with Inertial Sensors and 
Satellites) device (Fig. 5) held in hand (Fig. 6). Data were 
collected in both outdoor and indoor environments for two 
different device carrying modes. Two acquisitions were made 
in a texting mode and one in both swinging and texting modes. 
The average duration of acquisitions was about 14 minutes 
and the walking distance for each trial almost 1.5 km.  

Different scenarios were chosen to perform the 
experiments. These will be explained in detail in section 6.1 
where the text is enhanced by figures. 

 
5.2. Input data. ULISS device [21] comprises a 9 degrees of 
freedom inertial mobile unit, a high sensitivity GNSS 
(HSGNSS) receiver and antenna, a memory card and a battery. 
It delivers measurements that are time-stamped in GPS time. 
Inertial sensors and magnetometers provide measurements at a 
200 Hz frequency. 

The HSGNSS receiver operates in a standalone mode and 
delivers positions in real time at a 5 Hz frequency. Delivered 
positions are time-stamped in GPS time and have metric 
accuracies ranging from 2m up to 10m near buildings and tree 
shades. In this work, GNSS positions were interpolated at the 
step frequency in order to be fused with the PDR estimates of 
headings and step lengths.  

 

 
Fig. 5: Ubiquitous Localization Unit with Inertial Sensors and 

Satellites 
 

  
Fig. 6: Data collection by a pedestrian with ULISS unit in hand 

 
5.3. Reference trajectories. Besides collecting data with 
ULISS device in hand, all volunteers were equipped with an 
independent GNSS receiver carried in their backpacks and a 
small antenna attached to their caps. GNSS measurements 
were then post-processed in order to calculate reference 
trajectories by differential GNSS. This was performed using 
RTKLIB 2.4.2p12 software [22]. Measurements from the 
embarked GNSS receiver and from a nearby base station were 
used to perform relative GNSS positioning. Obtained positions 
had decimetric accuracies up to several meters near buildings 
and other elevated features. Afterwards, thresholding was 
applied to three parameters in order to reject some outlier 
position estimates.  These parameters are first the number of 
visible satellites, second, the ratio factor of ambiguity 
resolution and final, the horizontal dilution of precision. The 
resulting positions had precisions below 1m and were 
adequate for accuracy assessment in this work. 
 
6. Results 
 
6.1. Trajectory analysis. Fig. 7, 8 and 9 show the estimated 
trajectories (red) with the A*-generated routing graph and the 
particle filter described in section 4.3. The blue pattern 
corresponds to the PDR trajectory, while the green one is the 
reference trajectory obtained by differential GNSS.  

Fig. 7 and 8 correspond to acquisitions performed in the 
texting mode. The starting point for both acquisitions lies on 
the top right extremity of the trajectories. Both subjects made 
a closed loop around the building, with an intermediate 
outdoor travel (Bottom side of the figures) before reaching the 
starting point back. 

For both acquisitions, the travel distance seems to be 
overestimated. Yet, heading determination is more accurate 
for the first acquisition as the shape of the trajectory is more 
faithful to the building structure. The drift is higher for the 
second dataset and can be visually observed at the end of the 
PDR trajectory.  

Where the drift is most important, the PDR trajectory 
presents major inconsistencies with the map. According the 
above figures, the drift has been corrected as the estimated 
trajectories are more compliant with the building structure and 
with footpaths in outdoor space. This has been achieved 
thanks to the proposed particle filter and to an increased 
conformity with pedestrian motion; demonstrating that the 
positioning accuracy for the texting scenario has been 
significantly enhanced using our approach. 
 



 
    Fig. 7: Estimated trajectory (in red). The Blue trajectory gives the 

PDR position estimates and the green one gives the reference 
trajectory (Only Texting) 

 

 
Fig. 8: Trajectories for the second dataset (Only texting) 

 
 

 
Fig. 9: Trajectories for the third dataset (Swinging, texting) 
 
Fig. 9 corresponds to data collected for both the swinging 

and texting modes. The acquisition started at the bottom of the 
figure where the reference and the filtered trajectories overlap. 
Starting from this position, the subject entered the building 
and then went outside through the North-East building 
entrance. This travel was made in the swinging mode. The top 
right extremity of the trajectory underlines a U-turn before the 

subject entered the building back to reach the starting point. 
This part of the travel was performed in the texting mode. 

Unlike the two first acquisitions, there is a gap in the 
PDR trajectory because the subject did not go around the 
building as the two first subjects did. This gap is retrieved in 
the filtered trajectory.  

Obviously, this scenario implies a less accurate heading 
determination and even an alteration in the travel distance 
estimation. In fact, the walking distance is underestimated for 
the swinging mode (First part of the travel until the subject 
reached the outdoor) and overestimated for the texting mode 
(Second part of the travel until the ending point). These errors 
can be noticed in the PDR trajectory. 

The filtered trajectory shows that the drift has been 
corrected, resulting in a shape that is more compliant with the 
map and with the reference trajectory outdoors. Yet, the 
positioning accuracy seems to be decreased as compared with 
the two first datasets. Following section discusses the accuracy 
of estimated trajectories. 

 
6.2. Error computation. In order to assess the accuracy of our 
positioning method, filtered positions were compared to the 
reference positions interpolated at the step frequency. The 
average plane error ranges from 4 to 5 meters for the three 
datasets (Fig. 10). Accuracy is dependent on the quality of the 
PDR trajectory. Therefore, computed errors are more 
important for the second dataset considering the texting 
scenario. For the third acquisition that includes both swinging 
and texting, the accuracy is significantly decreased and more 
outliers (precisions above 15m) are detected due to 
mismatching errors (i.e. choosing wrong edges of the graph). 
These errors are mainly due to uncalibrated PDR parameters 
and are discussed in the following sections. 
 

 
Fig. 10: Plane errors for each dataset 

 
6.3. Heading misalignment estimation. The figures below 
show the estimated heading misalignment values for each 
dataset. For the first trial (Fig. 11), angular misalignment is 
comprised between -10° and +10° and varies around an 
approximate mean value of 0°. According to this distribution, 
the angular difference between walking directions and the 
pointing direction of the device is minimal. Hence, applied 
corrections compensate only for the gyro drift; which is rather 
logical regarding the texting mode scenario. 
 



 
Fig. 11: Full Texting scenario (1) 

 
For the second dataset (Fig. 12), estimated heading 

misalignment values are comprised between -15° and +12°. 
They are not equally distributed around 0° (e.g. between the 
1st and 2nd minutes the mean value is over 5°). From this 
analysis, non-negligible hand motion can be assumed even if 
the subject intended to perform the experiment in the texting 
mode. 

 
Fig. 12: Full texting scenario (2) 

 
Fig. 13 gives the estimated heading misalignment for the 

third trial. The first part (until 9.5min) of the travel was 
performed in the swinging mode. Hence, the estimated values 
vary significantly (-15° to +20°). Afterwards, oscillations 
between ± 5° over a mean value of 0° are retrieved, reflecting 
the texting mode of the acquisition. 

 

 
Fig. 13: Swinging-Texting scenario 

 
6.4. Step length model calibration. In this paper, a scale factor 
was introduced on the step length in order to calibrate the 
walking distance. Though, due to degraded GNSS signal and 
to short walking periods in outdoor space, the scale factor was 
not calibrated. In fact, regular and accurate GNSS positions 
are needed through straight line travels as cited in our 
introduction in order to calibrate the walking distance. These 
conditions were not verified during our experiments. 

As a result, only corrected headings were relied on in the 
selection process. Therefore, distance calibration occurred 
only at junctions of the graph when a change in heading was 

detected. This explains the fact that the accuracy of filtered 
trajectories is still enhanced and compliance with the map 
improved.  

Though, the uncalibrated walking distances caused some 
mismatching errors because direction change was detected too 
late or too early in the process. This can be noticed in the 
Northern part of Fig. 9. Indeed, while the pedestrian was 
intending to exit the building, the filtered trajectory indicates 
that he was walking towards a corridor. This happened for two 
reasons. First, the real trajectory is quite unusual in terms of 
pedestrian behavior. In fact, there is a change in heading 
(observed in the PDR trajectory) that is independent from 
space configuration, invalidating the assumptions that allowed 
constructing our navigation network. Second, the uncalibrated 
walking distance prevented the particles from reaching 
outdoor space at the right time. Another mismatching error 
occurred at the middle of the building (Between 300m and 
400m North) because direction change was detected too late 
due to uncalibrated walking distance. Later on, the particle 
filter corrected for this error and converged over the right 
corridor thanks to the particle dispersion over the graph and to 
the multi-hypothesis approach. 
 
7. Conclusions 
 

A map-aided PDR approach where a routing graph is 
used as motion model has been proposed. Main contribution 
of this paper is A* algorithm adaptation to elaborate a 
pedestrian network that is capable of cancelling the gyro drift 
and the misalignment between the device orientation and the 
walking direction even in large spaces. These are GNSS-
deprived and obstacle free areas where the limitations of map-
aided PDR algorithms are most important. In fact, widespread 
map-aided PDR approaches do not compensate for these 
errors when pedestrian motion is unconstrained, mainly during 
the transition between outdoor and indoor spaces and when 
obstacles are absent. The A*-based routing graph mitigates the 
lack of obstacles thanks to a set of waypoints implemented 
according to human spatial cognition and to a weighted 
navigation mesh. This allows building a realistic motion 
model that meets the requirements of map-aided localization. 
Indeed, the proposed routing graph is well exploited because it 
gives prior knowledge about the pedestrian’s destination and 
provides reliable measurements of walking directions. Results 
show that it is adequate for a seamless transition between 
outdoor and indoor environments and for enhancing the 
positioning accuracy even in large spaces. Achieved 
accuracies range from 3 to 5 meters and the drift is almost 
cancelled with the help of the routing graph. Though, some 
mismatching errors due to uncalibrated walking distance, 
especially while carrying the device in the swinging mode, 
might induce important positioning errors. Indeed, proper 
conditions of sky visibility and sufficient period of outdoor 
walking are prerequisite for the step length calibration before 
the pedestrian reaches indoor space. 
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