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An A*-based routing graph is proposed to assist Rii®or and outdoor navigation with handheld deviddeasurements are provided
by inertial and magnetic sensors together with &6NMeceiver. The novelty of this work lies in piug a realistic motion support that
mitigates the absence of obstacles and enablesatieation of the PDR model even in large spackserer GNSS signal is unavailable.
This motion support is exploited for both predigtipositions and updating them using a particlerfilThe navigation network is used to
correct for the gyro drift, to adjust the step légnghodel and to assess heading misalignment bettheepedestrian’s walking direction
and the pointing direction of the handheld devi®everal data sets have been tested and resultstshbthe proposed model ensures a
seamless transition between outdoor and indoor@mvients and improves the positioning accuracy. drifeis almost cancelled thanks
to heading correction in contrast with a drift 8 8or the non-aided PDR approach. The mean erréiltefed positions ranges from 3 to

5m.

Keywords: A* path-planning; Pedestrian Dead ReckgnMap-aided; Particle filter.

1. Introduction

Pedestrian Dead Reckoning (PDR) is widely adopted in

the field of pedestrian navigation with handheldides. It is
particularly adapted to smartphone-based locatinatas
inertial sensors can be designed in a MEMS (Midexto
Mechanical Sensors) technology, enabling them to
embedded in lightweight devices. Unlike GNSS reeesy
inertial sensors are especially useful indoors hey tallow
standalone localization without sky visibility. Yetue to gyro
drift and step detection limitations, additionafoirmation is
required to assist the PDR positioning process. feot-
mounted sensors, zero velocity update (ZUPT) catiiton is
exploited to adjust the positioning parameters leyecting
stance phases within the gait cycle (static phaseugh, this
calibration is not possible with handheld devicesause of
free hand motion and an increased difficulty toedetthe
stance phase. Outdoors, PDR can still be aidedN§S3[1],
but this is not feasible indoors because of sigmalvailability

and further measurements are needed. These could be

provided by radio beacons or visual information.e Tiirst
approach requires infrastructure deployment aniditrg [2],
while the second necessitates a camera and fuithege
processing for feature recognition [3]. A third pilility is to
constrain the pedestrian’s position using map métion.

Two main paradigms can be retained from previouskwo

Either walkable space is given by 2D maps delimitad
obstacles [4], or it is given by a routing graphwark that
transforms the positioning process into a piecewBemodel
[5]. In the first case, space is better exploretthe map is not
exploited further than for detecting static obsacl(e.qg.
walls). This means that no calibration is perfornugdiess an
obstacle is hit. On the contrary, routing graplesrauch more
constraining because the motion model is diredthgrg by the
graph network. Hence, their use has greater impacthe
shape and accuracy of the trajectory and they havbe
realistic enough to limit positioning errors.

This paper focuses on routing graph-assisted PDR. |
fact, routing graphs involve a simple motion mottheit allows
both obstacle avoidance and the calibration of wwglk
directions within straight line travels [5]. Theise can even
be extended to calibrating the step length mode¢psrted in
our previous work [6]. Though, two major drawbackake
their use quite impractical and sometimes ineféectiFirst,
there is no ubiquitous process that generates cmdhbndoor-
outdoor pedestrian graph networks. Their consiactian be
time-consuming and sometimes inadequate with peaest
motion. While the graph is expected to countertimaRDR
limitations, it may introduce additional errors du®
inconsistencies with real displacement. Secondy the not
handle “pseudo-random” trajectories within obstdue
areas and during the transition between outdoor iaddor
spaces as the freedom of motion increases. In tbases,
routing graphs become inefficient as no motion eggions
can be relied on to design a realistic network.d®ased
models are well-suited for exploring large spacgs Yet, no
calibration is possible with this approach. Thigmveads to
overestimate the travel distance because lineafityovement
is lost due to the grid structure. As a result,RIR process is
no longer assisted and the basic issues of gyrb aind
uncalibrated travel distance not solved.

A solution to the vulnerability of routing graphsasted
PDR navigation in obstacle free spaces is investibat this
study. The proposal is to make use of A* algorithwhjch is
commonly used for path planning within virtual wdslor for
vehicle route guidance, in order to design a réali®uting
graph in obstacle-free spaces. The graph is canstion the
basis of a set of waypoints that are crucial fodgstrian
navigation. In fact, the latter are expected toabe¢ the
absence of geometrical constraints by providingtstic
locations between which path computation with Agaithm
would be relevant. Therefore, the first contribatiof this



study is to mitigate the drift in the PDR approachrein large
spaces. Moreover, the issue of accumulating eduorimg the
transition between indoor and outdoor spaces iseaddd by
improving the routing graph relevance. This is aaplished
through the computation of the likely paths a paikes may
take from outdoor strategic locations to reach dings
entrance doors. In addition, the choice of A* aithon is

well-suited for handling different mobility profée (e.g.
personal disease that impacts the path of the ttarggr) so
that the approach can be customized for the spauifeds of
each pedestrian. Indeed, this is ensured thanka teer-
relative weighting of the map which is directly atved in the
graph construction. This is because A* algorithnrmpates
optimal paths according to walkability rates giv®na map of
navigation (e.g. walkability rate according to sdep
pavement, etc.). For instance, one would take hbetest path
to cross an open area, whereas a disabled perspifioftwav

another path such as walking near walls or dedicageks.

2. A* pathfinding within navigation meshes

2.1. Overview of Navigation Mesh generation. A navigation

mesh (NavMesh) is a set of several 2D or 3D polggon

reachable by some given user [8]. This structure ba
obtained automatically using GIS software. Otheekenuse
of RECAST [9], an open source library within the coamity
of virtual world designers. Several studies weredtwted on
how to construct navigation meshes from raw 3D rfd],
[11]. NavMesh construction allows assigning weigkitst
translate the polygon walkability rates accordirmg some
given characteristics (slope, type = {stairs, fjetund...}) and
to the target user’s mobility profile (ability toalk, to climb,
to take the stairs, etc.). The weighting of the Mash is
pretty important for considering the user’'s moilitrofile in
order to compute suitable routing paths. DETOUR] [$2an
example of open source software that allows A* fiading
calculations on the basis of a NavMesh.

2.2. A shopping mall NavMesh generation. The proposed
method was applied to a shopping m&ig(1). The latter is
mapped in Google Maps with the names of storesntak
principal gates and the set of walkable zones. ¥és \QGIS
2.12.1 software to extract the map in the form cdster with

an 1lcm resolution. Walkable zones were extractgd b

digitalizing the map and eliminating obstacles. ddelay
triangulation was used to create the NavMesh. Alygons

were assigned the same weight as all experimergs ar

conducted by healthy persons. This implies thacémputed
paths will minimize distance and may result in aph that
can be obtained with different approaches [10]].[13

2.3. A* pathfinding algorithm. A* is an improved version of
the Dijkstra algorithm [14] . The latter aims atozdating the
optimal path between two points according to onemicost
function. Optimization applies to the travel distanthe time
of travel, the expended energy, etc. This adaptatllows
dealing with the issue of reduced mobility due tdisease or
handicap. The A* optimization process is a discretarch
scheme where space is modelled by a grid compdseells.
Each cell is explored according to an adjacencylgrénat
models connections within the grid. Once visitedcedl is
stored together with its assigned cost until thgegacell is
reached. The optimal path is given by the sequefcells for
which the sum of costs is minimal. A* is an extemsto the

principle of Dijkstra that calculates the cost dafited cells
according to their distance from the starting pdimhich is
the same as the Dijkstra cost) but also to thesumsd
distance to the target-cell in a heuristic approdtlis the a
priori cost-to-go assumed lower than the actuakiomn)
cost from the current cell to the target cell. A*faster than
Dijkstra algorithm due to the sorted exploration alls
according to their costs-to-go. The A* pathfindischeme is
applicable to any rasterized NavMesh where polygeights
are inherited by the raster cells.

Fig. 1: Walkable zones have been meshed (greegqudy. Blank
spaces are also walkable but the NavMesh is resirto our zone of
interest. The gray blocks are the stores considesabstacles.

3. A* based routing graph generation

3.1. Routing graph generation on the basis of waypoints. A
waypoint is a punctual element that intervenesifagmtly in
the pathfinding process. The significance of a vedypis
related to the role it plays in the pedestrian’sislen making
during her/his travel. Two situations are worth sidering.
The first is when the pedestrian intends to reacknawn
destination within a familiar environment. In thiase, it is
obvious that (s)he follows the itinerary best siite her/his
mobility profile. Generally it is the shortest obet it could be
any path depending on the cost-function that defthe user’s
mobility profile. This situation is handled by A¥gorithm
using a weighted NavMesh. The target destinatidméwn if
it is visible from the pedestrian’s current positidor example
if the pedestrian is located at a graph node thaisible from
her/his target node. The second situation is whbha t
pedestrian’s destination is invisible due to oldstcin this
case, waypoints are built in order to discretize gossible
target destinations which may be either final derimediate
destinations.

To better understand the implementation of waysoint
space has to be considered in relation to humatiakpa
cognition. Indeed, walkable areas within a buildilogr could
be corridors, rooms or halls. Outdoors, walkabkaarare the
space comprising sidewalks, footpaths, squaregarks, etc.
(Roads belong to the drivable areas.). This intaitiv
classification of space components allows defirsognes and
extends what is called decision scenes to outdpacesand
corridors. Decision scenes have been defined quslyi in
[15] as the places that “can be entered and ledt [ane]
physically bounded by buildings and other solidtables that
prevent movement”. The extension of decision sceftes
corridors and footpaths in this paper is motivatgdthe fact
that these elements have borders (physical bordiers
corridors and geometrical borders for footpathg) tat they
can be accessed and left through specific poiRts. example



two corridors are two separate scenes. They caacbessed
and left through their intersection which is a tinfy corner; a
corridor and hall are also distinct scenes betwelgich traffic
flow is possible through their intersection. Twereents are
important for pedestrian travel inside and betwsmmes. The
first is related to the isovist, which is visiblpage from the
pedestrian’s current position. The isovist is mainffluenced
by the presence of obstacles that have an impadbodim
visibility and the pedestrian’s trajectory [16].cBed element
is the set of portals that allow flows of pedestsidrom scene
to scene [15] such as corridor extremities, buddiyates, store
entries or footpath extremities. Indeed, key elemnen the
pedestrian wayfinding behavior depend mainly ortgierand
obstacle borders (which determine the isovist). yThe
materialize the fact that visibility and purposegtination) are
the parameters that give a shape to one’s trajectorthis
study, the set of waypoints is composed of portetsridor
extremities, footpath extremities, outdoor/indoaors) and
obstacle corners. The graph construction based aypeints
is obviously more realistic than kernel-based méshahere
scenes are modelled by their centers [17], implying
erroneously that the pedestrian walks systemati¢hiough
the center of the scene. Besides, the structurbeofjtaph is
not entirely determined by the geometry of spadehiamdles
behavioral-based paths generated according to istgpand
reflecting pedestrian travel strategies.

Once waypoints have been constructed, they can be
exported in a database that will assist the pathfgnprocess.
Each pair of waypoints are related by a set otitinies that
are generated with A* algorithm and are part of fimal
routing graph. Multi-hypotheses motion is handlesl ia
classical routing graphs by exploring several patmsi
keeping the ones that are best adapted to IMU measunts.
The graph structure is stored in the form of a @#babase
that contains the graph segments identifiers, thgfremity
nodes coordinates, their length and their connestieithin
the graph in a node-connectivity approach. Eacte aedfghe
graph is oriented and has an entry node A and éamede B.
The node connectivity design is involved in the iotmodel
used for filtering.

3.2. A* path planning for seamless transition between outdoor
and indoor spaces and within obstacle-free areas. Previous
work demonstrated that indoor layout-based graphs a
efficient for enhancing the PDR localization within
geometrically constrained areas [5], [6]. Hence, phoposed
method is applied only to the area that precedesntill
principal entrance as well as in the obstacle-frak (Fig. 2).
The latter represent the critical GNSS-deprived:gdawhere
map information fails to provide a calibration teetPDR
positioning process, emphasizing the main issuengbei
addressed in this paper. Outdoors, the routing hyragp
constructed according to the geometry of sidewalks,
crosswalks and footpaths.

Fig. 3 shows the generated routing graph within the test
area. Three waypoints materialize the building arde gate
(drawn is black irFig. 2). The focus is made on the waypoint
where red paths intersect. It represents the ilddt af the mall
entrance. Red paths are the A*-calculated itinesamiating
the left side of the gate to other places of irteich as
stores entries or the building’s main corridorseThatter are
modelled by a series of straight lines accordingdaidors
main directions. Three paths relate the outdoath&indoor
space through the left side of the mall entrance.

This representation shows that straight line traae
privileged for practical and fast displacement. flage also
more realistic in regards with pedestrian motionfdct, some
hypotheses are eliminated such as walking towaralts ver
making a series of turns to attend a place thatbeareached
straight ahead. Moreover, this provides a measureroé
walking directions given by the graph segments listacle-
free zones, which would be impossible if a griddshs
approach had been applied, requiring additionarmétion
such as radio beacons signal to compensate forPie
errors.

's:rcfree area

Fig. 2: Main area where A* algorlthm has served for the routing
graph construction

Fig. 3: The highlighted segments of the graph in red color show the
A* itineraries relating a portal waypoint (left side of the building
entrance door) to different destinations. The latter are either
extremities of corridors or footpaths, obstacle corners, or store
entries.

4. IMU fusion with GNSS and the routing graph
with a particlefilter

4.1. Step detection and heading calculation. The step detection
is realized after motion classification accordirg [18] by
detecting peaks on the acceleration signal usingdaptive
threshold algorithm [19]. According to the sameerehce, a
generic model is used to estimate the step lefigtis. model
relies on a set of three parameters trained onijgsts and is
given by

= k. (h(af+b)+c), 1)
wheres is the step lengthj is the user’s height,is the step
frequency{a,b,c} the generic model parameters and k a scale
factor that is expected to calibrate the modelhenpedestrian.



Headings have been calculated with MAGYQ attitude
estimation filter [20] that fuses signals from a-axis
accelerometer, a tri-axis gyroscope and a tri-axis
magnetometer. Heading calculation considers diftere
carrying modes such as the swinging mode or théntex
mode. The device orientation in 3D-space is theniobd and
the yaw angle deduced, giving the orientation @& tievice
relative to the true North.

4.2. Calibration of the PDR parameters using GNSS positions
and the routing graph. The PDR parameters to be calibrated
are the step length and headings. The step lengtielnmeeds
to be adjusted to each user as the model paramaters
dependent on the pedestrian’s physiological featarel gait
cycle, whereas headings are potentially misaligniti the
actual walking direction because of gyro drift ahé device
carrying mode. In fact, the device may be orierttedards a
direction which is different from the walking ditean. These
errors are compensated by fusing the IMU with GN&8 the
routing graph. The fusion is realized thanks taetigle filter
that models the state (vector of unknown variakibgsa set of
particles (a set of sampled state vectors). The stactor
contains necessary variables for determining ther'ais
position and is presented in detail in sectddh

The step length model is adjusted to the pedestisary
both the graph and GNSS positions when availallefadt,
the graph allows keeping the positions on plausgath(s).
This directly impacts the travel distance. Besidé$SS
decreases the particles dispersion by bringing thexh to the
GNSS position. On the other hand, walking direticare
given by path headings. They are particularly bdéieindoors
as the paths are calculated by the A*-algorithrarer directly
given by the corridors main directions. The routigiaph-
derived walking direction is then compared to thdUI
pointing direction and the most likely path is stéel. The
difference between both headings gives the IMU &rgu
misalignment with the pedestrian’s walking direntio

The step length model is calibrated using a scale
factork . The latter is assumed constant as it dependslymain
on the pedestrian’s physiological parameters. maslelled by
a Gaussian variable with 1m mean and low variatamshe
step length is restricted to realistic values casgar between
(0.60m — 1m)k is expected to converge within straight line
travels where an optimal calibration is guaranteed.

Heading misalignmentis the angular difference
between the actual walking direction and the po@ti
direction of the IMU. It is time-dependent becaiisgaries
with hand motion. Uniformly distributed samples tefading
misalignment values are drawn with variations upab.

4.3. Model implementation with a particle filter. The state
vector is given by

{Iid, Dp, d, k, B, w} (2
whereld is the edge identifier in the graph databadg,is the

curvilinear abscissa,represents the travel direction, which
can be 1 if the edge is walked forward (from A todsid -1
otherwise (from B to A), k is the scale factor thalibrates the
step length modelp is the misalignment between the walking
direction and the pointing direction of the handhel
devicewis the particle weight, p and t refer respectivelyhe
particle and time.

Each particle is moved along the current path atingr
to the travel distance given by the step lengthe Pharticle

filter introduces white noise on each parametespgead the
particles and optimize the graph exploration. Thaetige
position is determined by the identifier of the giteedge and
its curvilinear abscissa. If the latter is above #uge length,
one of its connected edges will be explored. Tladition
model is
DU =(k3)[@d. a+n, +Dp_; (3)

where DU is compared to the current edge lengthtd
compute the curvilinear abscidBa(Fig.4), s is the step

length, and; is the modeling error represented by a Gaussian

noise.oa 0 {0,1,2} and determines the number of steps to be
made by one particle. It allows detecting over/oesected
steps.

Fig.4 gives the transition test process that allows
computing the curvilinear abscisBa when an exit node B is

exceeded (i.e. DU > 0). t is the time index. BA/ BB
connectivity translates the search in the graplabdste in
order to determine if the edge being explored isneated to
the exceeded one via an A or a B node. The same lIsgi
adopted if an entry node A is exceeded (i.e. DU <0)

[ BAcunlnectivity ] [ BB cunnlectivity ]
1

(-1, ) w-w, ] 1d, # Id,, )
( op=pu ][ bp=pu-L,, |} Dp=L,-0U-L,) |
[ 8, =6, ] [ 8, =8, ] [ 8, =-8,, ]

Fig. 4: Dp computation according to DU

When GNSS positions are accurate enough, theysae u
together with the graph headings in order to catéboth the
step length model and PDR headings. The graph hgsmadin
provide a measurement of walking directions whiale a
compared to PDR headings, taking into account pietent
angular misalignment. This is performed according t

W =W .GX{—}_[WPDR - Oq +/3)F

2 (Ja,d 2+ Jamz)

+AY ‘%B e
_ EP - EGPS
A_|:NP_NGPS:| (5)
_ 1/ (0, 2+0*? 0

0 1/ (o, 2+ oy’ ?)

whereW, is the particle weigh;, andE s are respectively
the predicted East coordinate of a particle and
corresponding GPS observatidf, andN.s are the same

parameters along the North directi@:1 is the weighting

Z*l

(6)

its

matrix considering the graph and GPS position aies.

Indoors, some GNSS positions are still availabletha
latter are generally unreliable and are rejectdte fiejection
test is made by thresholding the signal to noisi® BNR)
and the horizontal dilution of precision (HDOP). IQrthe



graph headings are exploited in the weighting mec&he
weighting equation indoors is

_lxlePDR_ O\ +ﬁ)|2
2

2 2
(aom +O_0PDR )

\Nt = \Nt—l'exp( (7)

wheref,is the walking direction estimated by the PDR
algorithmsp),, is the predicted heading of the current path,

pis the heading misalignment between the path direend

the PDR estimater,/,Id

heading, and, is the standard deviation of the PDR

walking direction estimate.

Once the particles have been weighted, some of #rem
assigned low weights and become useless in theegsoc
Resampling is performed to duplicate the particléh Wwigh
weights and delete the others. The particles amaukept
constant and their weights equal after each updabeder to
explore enough hypotheses of motion.

5. Experiments

5.1. Data collection with a HSGNSS and IMU in hand. Three
healthy volunteers (2 men, 1 woman) collected daitf
ULISS (Ubiquitous Localization unit with Inertial Sensaand
Satellites) device Hg. 5) held in hand Kig. 6). Data were
collected in both outdoor and indoor environments tivo
different device carrying modes. Two acquisitioresrgvmade
in a texting mode and one in both swinging andnexnodes.
The average duration of acquisitions was about ldutes
and the walking distance for each trial almostkirb

Different scenarios were chosen
experiments. These will be explained in detail éct®on 6.1
where the text is enhanced by figures.

5.2. Input data. ULISS device [21] comprises a 9 degrees of

freedom inertial mobile unit, a high sensitivity GN
(HSGNSS) receiver and antenna, a memory card aadtery.
It delivers measurements that are time-stampedRS Gme.
Inertial sensors and magnetometers provide measutsrat a
200 Hz frequency.

The HSGNSS receiver operates in a standalone nmatle a

delivers positions in real time at a 5 Hz frequeraglivered
positions are time-stamped in GPS time and haverianet
accuracies ranging from 2m up to 10m near buildays tree
shades. In this work, GNSS positions were intetpdlat the
step frequency in order to be fused with the PDiRneses of
headings and step lengths.

Fig. 5: Ubiquitous Localization Unit with Inertial Sensors and
Satellites

is the standard deviation of the path

to perform the

Fig. 6: Data collection by a pedestrian with ULISS unit in hand

5.3. Reference trajectories. Besides collecting data with
ULISS device in hand, all volunteers were equipped \aith
independent GNSS receiver carried in their backpauaid a
small antenna attached to their caps. GNSS measatem
were then post-processed in order to calculatereede
trajectories by differential GNSS. This was perfethusing
RTKLIB 2.4.2p12 software [22]. Measurements from the
embarked GNSS receiver and from a nearby baserstatire
used to perform relative GNSS positioning. Obtaipesitions
had decimetric accuracies up to several meters mghtings
and other elevated features. Afterwards, threshgldivas
applied to three parameters in order to reject sounntier
position estimates. These parameters are firshtimber of
visible satellites, second, the ratio factor of auhy
resolution and final, the horizontal dilution ofegision. The
resulting positions had precisions below 1m and ewer
adequate for accuracy assessment in this work.

6. Results

6.1. Trajectory analysis. Fig. 7, 8 and 9 show the estimated
trajectories (red) with the A*-generated routingugn and the
particle filter described in section 4.3. The blpattern
corresponds to the PDR trajectory, while the grees ie the
reference trajectory obtained by differential GNSS.

Fig. 7 and8 correspond to acquisitions performed in the
texting mode. The starting point for both acquisiti lies on
the top right extremity of the trajectories. Bottbjaets made
a closed loop around the building, with an interiatd
outdoor travel (Bottom side of the figures) befagaahing the
starting point back.

For both acquisitions, the travel distance seembeo
overestimated. Yet, heading determination is mareumate
for the first acquisition as the shape of the tri&jey is more
faithful to the building structure. The drift isdhier for the
second dataset and can be visually observed anthef the
PDR trajectory.

Where the drift is most important, the PDR trajegtor
presents major inconsistencies with the map. Adogrdhe
above figures, the drift has been corrected asestgnated
trajectories are more compliant with the builditigisture and
with footpaths in outdoor space. This has been exeli
thanks to the proposed particle filter and to aoreéased
conformity with pedestrian motion; demonstratingtthihe
positioning accuracy for the texting scenario haserb
significantly enhanced using our approach.
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Fig. 7: Estimated trajectory (in red). The Blue trajectory givesthe
PDR position estimates and the green one gives the reference
trajectory (Only Texting)
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Fig. 8: Trajectories for the second dataset (Only texting)
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Fig. 9: Trajectoriesfor the third dataset (Swinging, texting)

Fig. 9 corresponds to data collected for both the swipgin
and texting modes. The acquisition started at tiom of the
figure where the reference and the filtered trajees overlap.
Starting from this position, the subject entered Huilding
and then went outside through the North-East Ingdi
entrance. This travel was made in the swinging mdte top
right extremity of the trajectory underlines a Urtiefore the

subject entered the building back to reach theistapoint.
This part of the travel was performed in the textinode.

Unlike the two first acquisitions, there is a gapthe
PDR trajectory because the subject did not go ardhed
building as the two first subjects did. This gapegieved in
the filtered trajectory.

Obviously, this scenario implies a less accuratedmeg
determination and even an alteration in the tralistance
estimation. In fact, the walking distance is undéneated for
the swinging mode (First part of the travel unkietsubject
reached the outdoor) and overestimated for thengxhode
(Second part of the travel until the ending poifit)ese errors
can be noticed in the PDR trajectory.

The filtered trajectory shows that the drift hasere
corrected, resulting in a shape that is more canplvith the
map and with the reference trajectory outdoors., ke
positioning accuracy seems to be decreased as cedhpéth
the two first datasets. Following section discusbesaccuracy
of estimated trajectories.

6.2. Error computation. In order to assess the accuracy of our
positioning method, filtered positions were complate the
reference positions interpolated at the step frequeThe
average plane error ranges from 4 to 5 metershiertiree
datasetsKig. 10). Accuracy is dependent on the quality of the
PDR trajectory. Therefore, computed errors are more
important for the second dataset considering thdinge
scenario. For the third acquisition that includethbswinging
and texting, the accuracy is significantly decrdased more
outliers (precisions above 15m) are detected due to
mismatching errors (i.e. choosing wrong edges efgtaph).
These errors are mainly due to uncalibrated PDRnpeters
and are discussed in the following sections.
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Fig. 10: Plane errors for each dataset

6.3. Heading misalignment estimation. The figures below
show the estimated heading misalignment valuesefwh
dataset. For the first triaFig. 11), angular misalignment is
comprised between -10° and +10° and varies aroumd a
approximate mean value of 0°. According to thigribation,

the angular difference between walking directiomsl dhe
pointing direction of the device is minimal. Henapplied
corrections compensate only for the gyro drift; ethis rather
logical regarding the texting mode scenario.
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Fig. 11: Full Texting scenario (1)

For the second dataseFid. 12), estimated heading
misalignment values are comprised between -15° +¢ifRf.
They are not equally distributed around 0° (e.gwken the
1% and 29 minutes the mean value is over 5°). From this
analysis, non-negligible hand motion can be assueved if
the subject intended to perform the experimenhin texting
mode.
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Time [m]
Fig. 12: Full texting scenario (2)

Fig. 13 gives the estimated heading misalignment for the
third trial. The first part (until 9.5min) of theaivel was
performed in the swinging mode. Hence, the estichatdues
vary significantly (-15° to +20°). Afterwards, oBations
between + 5° over a mean value of 0° are retriexaftecting
the texting mode of the acquisition.

)

Icading misalignment

. . . .
4 6 8 10 12 14 16 18
Time [min]

Fig. 13: Swinging-Texting scenario
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6.4. Step length model calibration. In this paper, a scale factor
was introduced on the step length in order to caiéb the
walking distance. Though, due to degraded GNSSatignd
to short walking periods in outdoor space, theestattor was
not calibrated. In fact, regular and accurate GN#®Sitions
are needed through straight line travels as citedour
introduction in order to calibrate the walking diste. These
conditions were not verified during our experiments

As a result, only corrected headings were reliedhahe
selection process. Therefore, distance calibratieourred
only at junctions of the graph when a change irdmegawas

detected. This explains the fact that the accucfiltered
trajectories is still enhanced and compliance viite map
improved.

Though, the uncalibrated walking distances causetks
mismatching errors because direction change wastget too
late or too early in the process. This can be edtim the
Northern part ofFig. 9. Indeed, while the pedestrian was
intending to exit the building, the filtered trajery indicates
that he was walking towards a corridor. This haggefior two
reasons. First, the real trajectory is quite unuguderms of
pedestrian behavior. In fact, there is a changéeading
(observed in the PDR trajectory) that is independenin
space configuration, invalidating the assumptidrag &allowed
constructing our navigation network. Second, thealibrated
walking distance prevented the particles from reagh
outdoor space at the right time. Another mismatghénror
occurred at the middle of the building (Between 30&mna
400m North) because direction change was detecedate
due to uncalibrated walking distance. Later on, plaeticle
filter corrected for this error and converged ovee right
corridor thanks to the particle dispersion overdhaph and to
the multi-hypothesis approach.

7. Conclusions

A map-aided PDR approach where a routing graph is
used as motion model has been proposed. Main batitm
of this paper is A* algorithm adaptation to elatieraa
pedestrian network that is capable of cancellirggiro drift
and the misalignment between the device orientadiuth the
walking direction even in large spaces. These aNS&
deprived and obstacle free areas where the limitatof map-
aided PDR algorithms are most important. In factiespread
map-aided PDR approaches do not compensate foe thes
errors when pedestrian motion is unconstrainedniyaiuring
the transition between outdoor and indoor spaces vemen
obstacles are absent. The A*-based routing grapibates the
lack of obstacles thanks to a set of waypoints émgnted
according to human spatial cognition and to a weidh
navigation mesh. This allows building a realisticotion
model that meets the requirements of map-aideditatian.
Indeed, the proposed routing graph is well expibiiecause it
gives prior knowledge about the pedestrian’s dattn and
provides reliable measurements of walking directidResults
show that it is adequate for a seamless transibietween
outdoor and indoor environments and for enhancing t
positioning accuracy even in large spaces. Achieved
accuracies range from 3 to 5 meters and the drifilinost
cancelled with the help of the routing graph. Thougome
mismatching errors due to uncalibrated walking atise,
especially while carrying the device in the swirggimode,
might induce important positioning errors. Indegapper
conditions of sky visibility and sufficient perioof outdoor
walking are prerequisite for the step length caliion before
the pedestrian reaches indoor space.
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