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This work deals with the characterization of functional properties, including determi-
nation of mechanical and electrical losses, of piezoelectric materials using only one
sample and one measurement. First, the natural resonant frequencies of a piezoelec-
tric parallelepiped are calculated and the electrical admittance is determined from
calculations of the charge quantity on both electrodes of the parallelepiped. A first
validation of the model is performed using a comparison with Mason’s model. Results
are reported for a PMN-34.5PT ceramic cube and a good agreement is found between
experimental admittance measurements and their modeling. The functional proper-
ties of the PMN-34.5PT are then extracted. C© 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4863090]

I. INTRODUCTION

Ultrasonic Resonance Spectroscopy allows the characterisation of piezoelectric materials thanks
to the study of their mechanical and electrical resonances.1–5 This method examines the vi-
bration modes of a piezoelectric cube and relates mechanical resonances to electromechanical
properties.2–4, 6–9 Taking advantage of the inverse piezoelectric effect, Delaunay et al.3 proposed an
ultrasonic characterization method of ceramic cubes with a experimental set-up based on vibration
measurements thanks to Laser interferometry. This method is here modified to obtain the elec-
tromechanical properties of piezoelectric ceramics from electrical measurements only. Properties
are deduced from the study of the electrical admittance of the sample. First, following the approach
adopted by Holland and Nisse,10 the eigen frequencies and eigen modes of a piezoelectric cube with
electrodes on two faces are calculated. The calculation of the charge quantity on these two electrodes
is then expressed and allows the electrical admittance to be calculated. Experimental admittance
measurements on a PMN-34.5PT piezoceramic cube are carried out and compared to theoretical
calculations. In addition, the symmetry of electrical vibration modes is identified by laser interfer-
ometry using a wide band excitation. These results are discussed and the validity of the method is
demonstrated. Finally, functional properties of the PMN-34.5 PT piezoceramic are extracted and
compared to the data published in the literature.

II. ADMITTANCE OF A PIEZOELECTRIC PARALLELEPIPED SAMPLE

A. Resonant frequencies

Consider the piezoelectric parallelepiped presented in Figure 1. Its dimensions are 2L1, 2L2 and
2L3 and the origin of the axes is taken at the center of the sample. The top and bottom faces x3 = L3

and x3 = −L3 are metalized and normal to the material polarization axis.
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FIG. 1. Piezoelectric parallelepiped with dimensions 2L1, 2L2 and 2L3 poled along x3.

To compute the electrical admittance of the piezoelectric element, the vibration eigenmodes of
the parallelepiped are first identified thanks to the procedure proposed in.3 The system’s stationary
points are sought by minimizing the Lagrangian where the mechanical displacements,−→uı , and the
electrical potential, φ, inside the sample are expressed through the Rayleigh-Ritz method as a linear
combination of trial functions

−→
ψp and ϕr :

−→uı =
N∑

p=1

ap
−→
ψp (1)

φ =
M∑

r=1

brϕr (2)

where coefficients ap and br are obtained by calculating the stationary points of the Lagrangian.
Minimization of the Lagrangian leads to an eigen values system whom eigenvector are the coefficients
ap and br and whom eigenvalues are the resonant frequencies of parallelepiped.

To take into account the two electrodes, they are here modified to correspond to the short
circuit or zero potential boundary condition on the metalized faces. Although this is not a necessary
condition, it increases the computation convergence and simplifies the calculation of the interaction
matrices. The proposed basis functions of displacement and electrical potential are respectively:

−→
ψp = 1√

L1L2L3
Pλ

(
x1

L1

)
Pμ

(
x2

L2

)
Pν

(
x3

L3

)
−→eı (3)

φr = 1√
L1L2L3

Pξ

(
x1

L1

)
Pζ

(
x2

L2

)
fη

(
x3

L3

)
(4)

with

fη

(
x3

L3

)
= (−1)η

(
1 − x3

L3

)
Pη

(
x3

L3

)
(5)

The pth and rth basic functions ψp and φr are defined by the triplets, (λ,μ, ν) and (ξ, ζ, η), respec-
tively. Pα (x) is the normalized Legendre function of order α and −→eı is the unit displacement vector
in xl direction, 1√

L1 L2 L3
is a normalization term.2, 4, 5

B. Calculation of electrical admittance

Once the evolution of the mechanical displacement and the electrical potential are known for
each resonance frequency, the free charge, Q(p), on one electrode p can be computed. This free
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FIG. 2. Piezoelectric parallelepiped with dimensions 2L1 = 2L2 � 2L3 and poled along x3.

charge on the electrode p, is defined by:

Q(p) =
∫∫

A

�N3
(
e3kluk,l − εS

3nφ,n
)

d �A (6)

where e3kl are the piezoelectric coefficients along the x3 axis and εS
3n is the clamped dielectric

constant along the x3 axis. Indices k, l and n run from 1 to 3.
To calculate the admittance matrix formulas, it is necessary to express the short circuit current,

I, between the top and the bottom electrode:

I = − jω
∫∫

A

�N3
(
e3kluk,l − εS

3nφ,n
)

d �A (7)

where N3 is the normal vector along x3. The term in brackets represents the electrical displacement.
The electrical admittance is given by the following expression:

Y = ∂ I

∂φ
(8)

Performing the indicated differentiation on the current (Eq. (5)) leads to the electrical admittance
matrix:10, 11

Y = jω
∑

μ

Q(1)
μ Q(2)

μ

ω2
μ − ω2

+ jωC S (9)

where μ is the number of the mode and C S is the clamped capacitance between the top and the
bottom electrode :

C S = εS
33

A

2L3
(10)

C. Convergence criteria and validation of electrical admittance modeling

In order to study the convergence of this electrical admittance model, it will be compared to
an existing one. Since here there is no 3-dimensionnal analytical model of electrical admittance
found in the literature, the comparison will done using a 1-dimensionnal one, i.e Mason’s model.12

Figure 2 shows the considered sample for this validation study:
Mason’s model determines the frequency evolution of the admittance (or impedance) of thin

ceramic plates. According to this model the impedance of the plate which is presented in Figure 2
is expressed by:13

Zelec = U

I
= 1

jC0ω

[
1 − k2

t

tan (kd/2)

kd/2

]
(11)
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TABLE I. Computed resonance and antiresonance of PMN34,5-PT plate ceramic.

Mason’s Model Antiresonances frequencies (fa) 239290 717880 1196500 1675100
fa/fa(1) 1 3 5 7

Variationnal Model Antiresonances frequencies (fa) 236600 716800 1200000 1893800
fa/fa(1) 1 3 5 8

FIG. 3. Impedance and admittance of a PMN34,5-PT plate ceramic calculated with Mason’s model.

The computation of this expression, using the values in section III and dimensions 2L1 = 2L3

= 1000 mm against 2L3 = 10 mm, gives the electrical impedance and admittance spectra on
Figure 3.

The peaks of the impedance spectrum are the antiresonance frequencies and the peaks of
the admittance are the resonance frequencies. These frequencies are listed in the following table
(Table I) and will be compared to those given by the variationnal admittance model.

Mason’s model shows that only the odd harmonics of the antiresonance frequency are not
null. The variationnal model (computed with N = 9) shows that the three first resonances are the
same as those predicted by Mason’s model. Only the odd harmonics are not null. However the
fourth resonance is not correctly predicted by the two models. In this configuration, only thickness
modes are predicted. Figure 4 shows that the predicted displacements at the face x3 = L3 for all the
resonance frequencies indeed represent thickness modes.

For each one of frequencies, one can plot the particle displacements along x3 axis.
Figure 5 shows that the evolution of the particle displacements along x3 is homogeneous to a

sin(nx) where n is the number of the harmonic for the first three frequencies, but not for the fourth one.
The resonance frequencies and antiresonance frequencies are different in piezoceramics. Because
of the fourth resonance is not precisely predicted the resonance and the antiresonance frequencies
are similar. This shows that the maximum degree for approximated Legendre polynomials taken in
this study is only valid up to the 3th resonance.

If this computation is repeated with a higher degree, for instance with N = 14, the all four
resonance frequencies from the two models fit perfectly. Figure 6 presents the obtained admittance
and impedance spectra with N = 14 and it’s comparison with results using Mason’s model.

The agreement between the two models is satisfactory. If one wants to determine precisely the
frequency of higher frequency harmonic, the maximum degree of Legendre polynomials needs to
be increased. The antiresonance frequencies of the first three modes are unchanged only the fourth
changed. In order to determine the degree in a frequency range we can calculate for many degrees
and compare the given frequencies. If between two consecutives degrees the resonant frequencies
are not changed the lower degree will be chosen because the computational time increases when the
degree increases. This validates the convergence criteria and provides a first validation of our model.
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FIG. 4. Particle displacements calculated at the resonance frequency and its odd harmonics on face x3 = L3.

FIG. 5. Particle displacements calculated along x3 axis at the resonance frequency and its harmonics.
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FIG. 6. Comparison between impedance and admittance of a PMN34.5PT plate ceramic calculated with Mason’s model and
with variationnal model (N = 14).

FIG. 7. Computed modulus of the electrical admittance of the PMN34.5PT cube.

D. Computation of the electrical admittance of a piezoceramic cube

The frequency evolution of the admittance of a 10 ∗ 10 ∗ 10 mm3 PMN-34.5PT piezoelectric
cube computed from equation (6) is presented in Figure 7. The electromechanical characteristics of
the material are taken from ref. 3.

In the considered frequency range, only five electrical resonances are observed; however the
number of existing modes is much greater than five. The presence of electrodes on both sides of
the piezoceramic cube drastically restricts the number of modes to those that are piezoelectrically
coupled.

E. Admittance of a piezoelectric resonator with electrical and mechanical losses

Assuming viscous losses and dielectric losses in the ceramic, two dissipating energy terms
appear in the expression of the Lagrangian of the system which must be subtracted from the total
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energy. These dissipation terms can be rearranged to so that complex elastic and dielectric constants
can be considered instead of real constants. Calculations are thus carried out considering a complex
eigen value problem.

The mechanical losses are then introduced in the elastic tensor at constant electric field.14

C E = C E (1 + jδm) (12)

Electrical losses are also introduced in the dielectric tensor at constant strain:

εS = εS (1 + jδme) (13)

where, in both expressions, the tensorial notation was omitted for simplicity.
The mechanical displacement and electrical field have an imaginary part which is related to the

damping of the material. The electrical admittance now has a real part also

Y = jω
∑

μ

Q(2)
μ

ω2
μ − ω2

+ jωC S (14)

where Q(p)
μ

= Q′(1)
μ + j Q′′(p)

μ · Q′(1)
μ is the charge quantity on the surface of the electrode and Q′′(p)

μ

is a term including both mechanical and electrical losses that lead to a real part of the admittance.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A PMN34.5PT piezoceramic sample with dimension 10 × 10 × 10 mm3 fully metalized on
its top and bottom faces was characterized both electrically by impedance/admittance measure-
ments and mechanically by laser measurements. Its properties are3 C11 = 174.7, C12 = 116.6,
C13 = 119.3, C33 = 154.8, C44 = 26.7, C66 = 29 in GPa; e15 = 17,1, e31 = −6.4, e33 = 27.3 in C/m2;
ε1 = 21.0105, ε33 = 25.0125 in pF/m where elastic constants are at constant electric field and di-
electric constants are at constant strain. They will be used as an initial guess tensor for the material’s
tensor.

A. Electrical admittance measurements

Electrical admittance measurements were carried out on an Omicron Bode 100 analyzer using
a specific sample holder. The modulus of the admittance is presented in Figure 8.

Resonance frequencies and quality factor are determined from the admittance curve. Assuming
that electric losses are weak which is the case in our ceramic sample, the quality factors, Q, of the
electrical resonances are mainly related to mechanical losses δm = δ = 1/Q. Table II summarizes the
theoretical and experimental resonance frequencies as well as the loss factor of each resonance. A
sensitivity study of the resonance location to input parameters has shown that high frequency peaks
were very sensitive to C66 and C33. These C66 and C33 input values are close to the actual coefficients
of the ceramics.

As for the theoretical admittance in Figure 7, which was calculated with real constants, five
resonances are observed in the admittance curve (Figure 8) in the frequency range of analysis.
The third resonance located at 239 kHz is very small; however its presence is confirmed by normal
velocity measurements presented in the next section. Loss factor of this resonance was not determined
because the signal to noise ratio (SNR) is not good. Experimental frequencies are slightly different
from those measured by the Laser interferometer due to the fact that optimal transfer of energy is
not necessarily located on the electrical resonant frequency.

The comparison between theoretical and experimental resonance frequencies shows that discrep-
ancies on frequencies are low, the worst case being 7.24% for the first resonance. These discrepancies
can be due to the fact that the constants used in the simulations do not exactly correspond to the
electromechanical properties of our PMN34.5PT sample. The experimental resonances presented in
Figure 8 are clearly affected in amplitude by the loss factors. They are not identical for all the peaks,
as each mode does not involve the same weighting for piezoelastic coefficients.
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FIG. 8. Measured electrical admittance of PMN34.5PT cube.

TABLE II. theoretical (fth) and experimental (fexp) admittance resonant frequencies and mechanical losses of PMN-34.5PT
cube.

Mode 1 2 3 4 5

Theoretical frequency, fth (kHz) 117.7 167.3 234.6 242.7 255.4
Experimental frequency fexp (kHz) 126.9 177.5 239.5 244.6 260.8
(fexp -fth)/ fexp (%) 7.24 5.71 1.99 0.75 2.11
Mechanical losses(%) 0.5 0.9 0.9 0.3

In next section theoretical and experimental particle displacements at predicted resonance
frequencies are compared in order to increase the confidence to our model.

Finally, dielectric losses were estimated from the quasi-static capacitance Y = jωC S in
equation (13):

Y = G + j B (15)

where G = ωδeC S and B = ωC S . Outside of the resonances at 300 kHz, the determination of G
gives a first estimation of the dielectric losses δe = 1,38 ∗ 10−2.

B. Normal mode measurements

The normal particle displacements of the face x3 = L3 were measured using a Laser vibrom-
eter (Polytech OFV-505). Resonant frequencies are identified and are associated to mode shapes.
Figure 9 shows the experimental set up. The sample is set on a plastic holder and the electri-
cal contact is ensured by a metallic strip fixed on a spring so that free mechanical boundary
conditions at the surfaces of the cube are fulfilled. The piezoelectric cube is excited by a wide
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FIG. 9. (a) Experimental set-up for laser vibration measurements, (b) ceramic sample.

band voltage pulser (Panametrics 5052 PR) to simultaneously excite all the coupled piezoelectric
modes.

The interferometer is positioned at 50 cm from the sample. The velocity decoder sensitiv-
ity is either 5 mm/s/V or 25 mm/s/V, depending on the cut-off frequency, respectively 250 kHz
and 1,5 MHz. The measured signals are sent to a computer via a digital oscilloscope. In the
100–300 kHz frequency range, the particle displacement exhibits many modes (see video) but only
five are predicted by the admittance measurement. Figure 10 shows a comparison between theoretical

http://dx.doi.org/10.1063/1.4863090.1


017121-10 Diallo et al. AIP Advances 4, 017121 (2014)

FIG. 10. Computed and measured face deformation of the first five piezoelectrically coupled modes (enhanced). [URL:
http://dx.doi.org/10.1063/1.4863090.1]

http://dx.doi.org/10.1063/1.4863090.1
http://dx.doi.org/10.1063/1.4863090.1
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FIG. 11. Computed and measured electrical admittance.
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TABLE III. Properties of a ceramic PMN 34,5PT deduced from the electrical admittance model.

Properties Initial Values Final Values Units Relative variation (%)

elastic C E
11 174.7 192.79 GPa 9.38

C E
12 116.6 136.2 14.38

C E
13 119.3 123.62 3.49

C E
33 154.8 156.96 1.38

C E
44 26.7 24.98 − 6.89

C E
66 29 28.27 − 2.58

dielectric ε S
11 21.0105 18.9646 nF/m − 10.73

ε S
33 25.0125 23.5766 − 6.4

piezoelectric e15 17.1 17.24 C/m2 0.81
e31 − 6.92 − 7.29 12.21
e33 27.3 28.76 5.08

and experimental particle displacements at the frequencies predicted by theoretical and experimental
admittance. These measured modes shapes agree well with predicted ones.

In theory and in the experiments, the sample is electroded on the top and bottom faces which
mean that a symmetrical excitation is applied. This should lead to the generation of centro-symmetric
modes only, which is indeed confirmed on both theoretical and experimental results. The choice
of basis functions (eq. (2)) with appropriate shape, i.e. zero potential on the top and bottom faces,
increases the rapidity of the convergence towards the approximate solution. Here a degree equal to
7 for the trial function was used in the calculation.

Some discrepancies appear between theoretical and experimental frequencies. Their origin could
lie in the values of the input piezoelectric tensor and in the values of loss factors.

IV. MATERIAL CHARACTERIZATION: EFFECTIVE PROPERTIES OF THE PMN-34.5PT

In this section material characteristics are determined assuming average mechanical and dielec-
tric losses in the material. We have seen that taking into account the loss factor before piezoelastic
constant determination is a crucial issue.

From the trial loss factor, dielectric and mechanical losses are fitted in order to have the same
Q-factor, amplitude and threshold in the modelled electrical admittance as in the experimental
admittance. After calculation one obtains δm = 5.4 ∗ 10−3 and δe = 8.85 ∗ 10−3. However, real
piezoelastic constants have to be adjusted to properly locate the theoretical resonances, which will
allow the determination of the piezoelastic properties. The piezoelastic tensor is then modified
using a Simplex routine15, 16 so that theoretical admittance spectra is fitted to experimental one. The
determination of the real part of the piezoelastic tensor is then deduced.

Results of the fitting are presented in Figure 11 on the real and imaginary parts of the admittance.
The new data set of properties is given in Table III.

Looking at the comparison between our calculated piezoelastic tensor and the original data set,
elastic parameters C11, C12, ε11 and e31 are higher than the original ones, while other properties are
close to the initial values. This can be explained by the fact that original properties were determined
from the same sample but with a single metallised face and it has been observed that electrical
boundary conditions strongly affect these constants.

V. CONCLUSION

In this paper we have studied the eigen-vibration modes of piezoelectric cubes. We have
calculated the electrical admittance of the cube and shown that electrical boundary conditions
strongly influence the piezoelectrically coupled modes. In the frequency bandwidth of the study, there
is a good agreement between the theoretical and experimental particle displacements at the surface
of the studied cube. However, resonance frequencies are not located exactly at the expected values
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due to their strong sensitivity to the material electromechanical parameters. We have introduced
electrical and mechanical losses in order to compute the amplitude of the admittance and quantify
their influence on the resonances. Then, the inverse problem was solved to identify the properties of
the material and the new tensor is compared to initial estimations.

In further studies we plan to:

� extend this method to other ceramics(PZ52PT,..),
� extend this method to other shapes(cylinder. . . ),
� determine the effect of the size of electrodes on the piezoelectrically coupled resonances.
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