
HAL Id: hal-01627719
https://hal.science/hal-01627719

Submitted on 2 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust feature extraction algorithm suitable for
real-time embedded applications

Abiel Aguilar-González, Miguel Arias-Estrada, François Berry

To cite this version:
Abiel Aguilar-González, Miguel Arias-Estrada, François Berry. Robust feature extraction algo-
rithm suitable for real-time embedded applications. Journal of Real-Time Image Processing, 2017,
�10.1007/s11554-017-0701-8�. �hal-01627719�

https://hal.science/hal-01627719
https://hal.archives-ouvertes.fr

Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Abiel Aguilar-González · Miguel Arias-Estrada
· François Berry

Robust feature extraction algorithm suitable for real-time
embedded applications

Received: date / Revised: date

Abstract Smart cameras integrate processing close to
the image sensor, so they can deliver high-level informa-
tion to a host computer or high-level decision process.
One of the most common processing is the visual fea-
tures extraction since many vision-based use-cases are
based on such algorithm. Unfortunately, in most of cases,
features detection algorithms are not robust or do not
reach real-time processing. Based on these limitations,
a feature detection algorithm that is robust enough to
deliver robust features under any type of indoor / out-
door scenarios is proposed. This was achieved by apply-
ing a non-textured corner filter combined to a subpixel
refinement. Furthermore, an FPGA architecture is pro-
posed. This architecture allows compact system design,
real-time processing for Full HD images (it can process
up to 44 frames/91.238.400 pixels per second for Full
HD images), and high efficiency for smart camera im-
plementations (similar hardware resources than previ-
ous formulations without subpixel refinement and with-
out non-textured corner filter). For accuracy/robustness,
experimental results for several real world scenes are en-
couraging and show the feasibility of our algorithmic ap-
proach.

Keywords · Robust feature extraction · Smart camera
· FPGA · 3D reconstruction.

Abiel Aguilar-González ()

Instituto Nacional de Astrof́ısica Óptica y Electrónica
(INAOE), Luis Enrique Erro # 1, 72840 Tonanzintla,
Puebla, Mexico E-mail: abiel@inaoep.mx

Miguel Arias-Estrada

Instituto Nacional de Astrof́ısica Óptica y Electrónica
(INAOE), Luis Enrique Erro # 1, 72840 Tonanzintla,
Puebla, Mexico E-mail: ariasmo@inaoep.mx

François Berry
Université Clermont Auvergne, Institut Pascal, 4 Avenue
Blaise Pascal, 63178 Aubière, Clermont-Ferrand,France
E-mail: francois.berry@uca.fr

1 Introduction

Smart cameras are image/video acquisition devices with
self-contained image processing algorithms that simplify
the formulation of a particular application. For instance,
algorithms for smart video surveillance could detect and
track pedestrians [23], but for a robotic application, al-
gorithms could be edge and feature detection [2]. In re-
cent years, advances in embedded vision systems such
as progress in microprocessor power and FPGA tech-
nology allowed the creation of compact smart cameras
with low cost and, this increased the smart camera ap-
plications performance, as shown in [11, 6, 7, 8]. In cur-
rent embedded vision applications, smart cameras rep-
resent a promising on-board solution under different ap-
plication domains: motion detection [25], object detec-
tion/tracking [32, 31], inspection and surveillance [16],
human behavior recognition [20], etc. In any case, flex-
ibility of application domain relies on the large variety
of image processing algorithms that can be implemented
inside the camera. Algorithms highly used by smart cam-
eras are feature extraction algorithms since extracted
features represent medium level abstractions of the im-
ages and this can be used as rough reference for scene
understanding. There are two types of features that can
be extracted from an image. Global features describe the
image as a whole; they can be interpreted as a particular
property of the image. On the other hand, local features
aim to detect key points/feature points within the im-
age. In smart cameras context, there is a tendency for
local features (edges, blobs, corners), as the only visual
features extracted by the algorithms inside the camera.
Several distributed vision systems like object tracking
[44, 29], virtual reality [34] and human 3D pose recon-
struction [51, 43] have applied smart camera networks in
which every node provides local image features. In these
configurations, nodes cooperation deliver high level in-
formation to a host computer/robot.

2

1.1 Visual features for smart cameras

Local feature detection is an image processing operation
that aims to deliver medium-level abstractions from an
image, and often it is used as initial step of several com-
puter vision algorithms. In previous work, several local
visual feature detection algorithms were proposed: algo-
rithms such as Canny or Sobel [10], deliver image edges
that often are used in applications like object detec-
tion [13], image labeling[50], image segmentation [27],
stereo vision [41], etc. Other algorithms are corner de-
tection like Shi & Tomasi [36], Harris & Stephens [21],
FAST [35], and they are the cornerstone of several com-
puter vision applications such as, 3D reconstruction [39],
camera calibration [49], Structure from Motion (SfM)
[40], Simultaneous Localization and Mapping (SLAM),
etc. Nowadays desktop computers can process most of
the corner detection algorithms in real-time. Unfortu-
nately, in some cases (mobile applications, autonomous
robotics and compact smart vision systems) such ap-
proaches could be low efficient since they require rel-
atively high computational resources, then power con-
sumption and sizes can be not compatible with an em-
bedded system. One solution to this problem is the use
of dedicated hardware as Field Programmable Gate Ar-
rays (FPGAs). This is because FPGAs are devices with
low power consumption and its size is small (suitable to
embedded/mobile applications). In addition, FPGAs are
structured as a customizable circuit where image pro-
cessing operations can be performed in parallel using
a data-flow formalism. For corner detection , in previ-
ous work several FPGA-based smart cameras have in-
tegrated corner detection algorithms [6, 2, 7] inside the
camera fabric, as result, these cameras can simplify the
formulation of applications like 3D reconstruction, SfM,
object tracking and camera calibration [39, 49, 40]. This
is because in these algorithms the first step is for visual
feature extraction, considering that the sensor (smart
camera) deliver images and feature extraction simulta-
neously, then, the problem become partially solved. i.e.,
in all cases the first step of the algorithmic formulation
become solved.

1.2 Performance of Corner detection algorithms

Previous corner detection algorithms such as Shi-Tomasi
[36] or Harris & Stephens [21] provide good performance
for datasets and/or for geometrical scenes (building im-
ages, text images and calibration patterns). There are
several computer vision applications that used these cor-
ner detection algorithms successfully [39, 49, 40], and
several smart cameras included them in their self- con-
tained algorithms [6, 2]. Unfortunately, in several appli-
cations the corner detection algorithms are not compat-
ible with high textured regions [22] or can not perform
real-time processing on full HD images [24, 33, 4]. We can

mention the three most important limitations affecting
the current corner detection algorithms:

1 Low performance under complex textured regions. One
limitation occurs when the input images have com-
plex textured regions such as tree foliage or flowerbed
(Fig. 1a). In these regions, most algorithms detect
features that have low temporal stability: i.e., its il-
lumination or orientation changes in time and it is
difficult to track. This problem is well documented,
for example, there are several works that study the
SLAM systems scope/performance under different fea-
ture extraction algorithms [18, 30, 47]. In several ap-
plications (3D reconstruction, SfM, SLAM), one so-
lution frequently used is to retain only the features
with high dominance since it is assumed that the re-
tained features should have high stability and should
be easy to track. In practice the stability of high dom-
inant features is not necessarily consistent since re-
tained features still can be located within complex
textured regions, as shown in Fig. 1b. In addition, re-
taining features with high dominance implies the use
of high threshold values but in several cases these val-
ues retain low number of features, and in SfM/SLAM
applications these few features often do not provide
sufficient information for the camera pose estimation,
more details about this problem can found at [17] .

(a) Shi & Tomasi algorithm,
threshold = 0.1.

(b) Shi & Tomasi algorithm,
threshold = 0.8.

Fig. 1: Shi & Tomasi algorithm: performance for complex textured
regions. (a) Low threshold values detect features that are difficult to
track. (b) High threshold values deliver few features that often are
not compatible with SfM and SLAM applications. Most previous algo-
rithms: Harris & Stephens, FAST, etc., deliver similar results.

2 Location accuracy is low. Most of current feature ex-
traction algorithms determine if a candidate pixel p
is a corner or not, then, if the pixel p is a corner, the
location of the pixel p fits with the location of the
corner. In practice, these locations introduce an im-
precision since the real position of the corner points
can be spatial positions between two or more pixels
(subpixel location). In the case of camera calibration
and 3D reconstruction, these imprecisions have high
impact in the global performance [37], as shown in
Fig. 2. One solution is to add subpixel refinements as
a post-processing step as shown in [48]. However, this
increases the computational requirements and pro-
cessing time.

3

(a) Input scene: interior of the INAOE library. (b) Shi & Tomasi algorithm, threshold = 0.2

(c) 3D reconstruction: front view. (d) 3D reconstruction: top view.

Fig. 2: 3D reconstruction using the Shi & Tomasi algorithm [36]. The extracted features (b) are tracked across different
viewpoints from the same scene. (c) Then, we compute the corresponding 3D reconstruction. (d) In this case, feature locations
without subpixel refinement introduce an imprecision in the 3D reconstruction.

3 Low performance for embedded applications. Nowa-
days computers can process several corner detection
algorithms in real-time. Unfortunately, in embedded
applications such as, mobile applications, autonomous
robotics or compact smart vision systems, the use of
computers is difficult due to their high power con-
sumption and size. The use of FPGA technology is
an alternative, but the architectural design requires a
good background in HDL (Hardware description lan-
guage) and digital design. Furthermore, most accu-
rate algorithms like Shi & Tomasi/Harris & Stephens,
have relatively complex mathematical formulation (quo-
tients, roots, etc.), that require high hardware re-
sources [24, 33, 4], hardware requirements are ×4
more than corner detection algorithms with straight-
forward FPGA implementation. On the other hand,
corner detection algorithms with straightforward FPGA
implementation like FAST [35] have low hardware de-
mand but accuracy and robustness is low.

2 Related work

1. Low performance under complex texture regions. Re-
cent works in [22] proposed a FAST corner detec-
tor modification that defines corners as similarity in
terms of intensity, continuity and orientation in three

different circular areas. Then, by using the area simi-
larities, a cascading tree decision process delivers ro-
bust features under complex texture regions. Unfor-
tunately, the proposed modification has high impact
in the global performance: processing speed is near
double that the original FAST-N algorithm. In [46] it
was introduced a method for selecting a subset of fea-
tures that are highly useful for localization and map-
ping in SLAM/SfM applications. The algorithm is
formulated with temporal observability indexes and
efficient computation strategies for the observabil-
ity indexes that are based on incremental Singular
Value Decomposition (SVD). The proposed method
improves the localization and data association but
computational requirements are increased. The algo-
rithm reaches real-time constraints only with sparse
point clouds/3D reconstructions. In [15] a Spatial-
Temporal Monitor (STM) identifies ”good features
to track” by monitoring their spatiotemporal appear-
ances without any assumptions about motion or ge-
ometry. The STM can be used with any spatial vi-
sual descriptor, like SIFT or SURF and, in particu-
lar HOM, increasing the accuracy and robustness for
SFM and 3D reconstruction applications. However,
the algorithm formulation is exhaustive and real-time
performance is limited to less than 10 corners per
frame.

4

2. Subpixel refinement. In the last decade several works
introduced post-processing steps that increase the ac-
curacy of the extracted corners. In [19]the original
Harris & Stephens algorithm is improved by intro-
ducing sub-pixel locations based on the Gauss sur-
face method on the extracted corner locations. The
detected corners were applied on image tracking ap-
plications in order to prove the higher precision than
the original Harris & Stephens algorithm. In [38] a
corner detection algorithm, which includes subpixel
locations, was proposed. This algorithm detects cor-
ners as the intersection of two or more edges, and
subpixel location is found by using a small neighbor-
hood centered on the estimated corner positions, the
corner orientation and the dihedral angle of the cor-
ner. Experimental results show an average error of
0.36 pixels. In [48] a location method is proposed to
improve the precision of the corners extracted by the
original Harris & Stephens algorithm. First, a least
squares that fits a parabolic function to the image
grayscale surface is employed to determine a weight.
Subpixel locations are obtained by calculating maxi-
mum of the fitting surface. Experimental results show
accuracy of 0.15 pixels. In all cases [19, 38, 48], post-
processing steps deliver subpixel accuracy suitable to
applications like camera calibration or 3D reconstruc-
tion. Nevertheless, a more efficient solution could con-
sist in processing the subpixel refinement within the
corner detection step. In this way, an FPGA archi-
tecture can benefit since data processing is reduced
to a single step and there is no need to transfer inter-
mediate results to a memory. Furthermore, subpixel
refinement and the corner detection could be com-
puted in parallel.

3. Embedded applications. Recent works have studied
the hardware implementation of the original Harris &
Stephens algorithm [5, 4, 12], in all cases, the FPGA
architectures were focused in an efficient hardware re-
sources utilization. In [4], an FPGA implementation
based on sliding processing window for Harris cor-
ner algorithm is presented. The purpose of the slid-
ing window is to avoid storing intermediate results of
processing stages in the external FPGA memory or
to avoid the use of large line buffers typically imple-
mented with BRAM blocks. Therefore, the entire pro-
cessing pipeline benefits from data locality. In [12],
the ”repetitive feature” extraction procedures were
exploited in order to develop a full-parallel FPGA ar-
chitecture. There is other works that have focused on
the FAST-N formulation where direct hardware par-
allelization implies low hardware resources demand,
compact system design and real-time processing with
low-grade FPGAs [9]. Those benefits have been used
in applications such as analysis of traffic images [14]
or mobile robotics [26].

In our case, our work focuses on robust corner de-
tection algorithms suitable for embedded applications.
Thus, a corner detection algorithm is proposed with high
spatio-temporal robustness to complex textured regions.
The keystone of this algorithm consists in applying a
non-textured corner filtering combined to a subpixel re-
finement. The algorithm is fully compliant with a hard-
ware implementation and an FPGA architecture suitable
for real-time embedded applications is proposed. Unlike
to previous works, this new formulation reuses the in-
formation processed by the corner detection algorithm.
Then, subpixel refinement and non-textured corner fil-
tering are a part of the corner detection formulation.
They cannot be considered as post-processing steps.

3 Robust/accurate feature extraction algorithm
suitable for smart cameras.

Our work is based on the Shi-Tomasi formulation[36].
The Shi-Tomasi algorithm is a good trade-off between
performance for real world scenarios and high speed pro-
cessing. As explained above, new feature extraction, sub-
pixel refinement and a non-textured corner filter are com-
bined to increase the performance and robustness of the
original Shi-Tomasi corner extraction algorithm. In Fig. 3
an overview of our algorithm is shown.

Fig. 3: Block diagram of the proposed algorithm

3.1 The preprocessing module

Given a gray scale image I(i, j), horizontal and verti-
cal gradients are given by: Gx(i, j) = |I(i − 1, j) − I(i +

1, j)|, Gy(i, j) = |I(i, j−1)−I(i, j+1)|. Absolute values in the
gradient formulation are used to avoid signed variables
and reduce the hardware resources utilization. Of course,
this modification changes the performance of the origi-
nal Shi-Tomasi algorithm, however, performance detri-
ment is minimum in comparison with the decreasement
of hardware resources. The difference between the formu-
lation using signed values and formulation using absolute
values is around 1% for the corner response image. From
gradients, matrices A,B,C (x, y and xy gradient deriva-
tives) are defined as: A(i, j) = Gx(i, j) · Gx(i, j), B(i, j) =

Gy(i, j), ·Gy(i, j), C(i, j) = Gx(i, j) ·Gy(i, j).

5

A Gaussian filtering is applied on the A,B,C matrices
to reduce noise and to remove fine-scale structures that
affect the performance of the corner response. In order to
reach high performance for embedded applications, con-
volution steps of our feature extraction algorithm takes
inspiration from our previous work [3] where, in order
to reach straightforward FPGA implementation, a fixed
kernel with values simplified/rounded to fixed point bi-
nary representation was proposed. In this work, we pro-
pose a fixed binary kernel as shown in Eq. 1. This kernel
performs a 5x5 Gaussian kernel with σ = 5/3, and sim-
plifies multiplication in the FPGA implementation by
replacing them with shift register operations. This de-
creases the hardware resources during FPGA implemen-
tation, facilitates parallel/pipeline design and has low
compromise compared with the original Gaussian kernel
accuracy. This because, the average difference between
the original Gaussian kernel and the modified kernel has
a difference of 0.0112 (1.12%) then, it is possible to as-
sume that results using the modified kernel has to be
very close than the results using the original.

8
512

16
512

16
512

16
512

8
512

16
512

32
512

32
512

32
512

16
512

16
512

32
512

32
512

32
512

19
5122

16
512

32
512

32
512

32
512

16
512

8
512

16
512

16
512

16
512

8
512


(1)

3.2 Corner detection

The original Shi & Tomasi corner response Eq. 2, pro-
vides a high response value for corners and low response
otherwise, as illustrated in Fig. 4b. In order to determine
if a pixel P is a corner or not, the maximum values of
the corner response could be retained. Of course, many
pixels around each corner are also detected in spite of a
filtering with a threshold σ. These pixels are false feature
candidates and have low temporal stability.

D(i, j) = (A(i, j) +B(i, j))−
√

(A(i, j)−B(i, j))2 + 4C(i, j)2

(2)

A way of solving the false feature candidates con-
sists in applying a non-maxima suppression step. In our
case, we consider that an appropriate FPGA-based non-
maxima suppression step could be defined as follows:

ψ(u, v) = D(i− 1 : i+ 1 , j − 1 : j + 1) ∗M (3)

γ(i, j) = max(ψ) (4)

where

M =

1 1 1
1 0 1
1 1 1



A thresholding (σ1) is applied on D(i, j) to select the
good corner features.

E(i, j) =

{
1 if σ1 > D(i, j) > γ(i, j)
0 if otherwise

(5)

This process is illustrated in Fig. 4c, where maxi-
mum corner response values E(i, j) with a thresholding
equal to cero are displayed as crosses. On the other hand,
in Fig. 4d, a thresholding (σ1 = 0.1) applied on the
maximum corner response values E(i, j) is shown. Low
values imply many corners as in Fig. 4c, often with a
low stability. On the contrary, higher threshold values
improves the robustness and decreases the number of
detected corners. In practice, a threshold value between
0.01 > σ1 > 0.1 provides good balance between num-
ber of retained corners and robustness (More details are
given in Section-5).

(a) Input image (b) Corner response

(c) Corner detection, σ1 = 0 (d) Corner detection, σ1 = 0.1

Fig. 4: Corner detection

3.3 Non-textured corner filtering

A robust corner is a point/pixel located at the inter-
section of two or more edges. Unfortunately, textured
regions are highly responsive to corner detectors (like
the Shi and Tomasi) and do not represent robust corner
features. In this way, we propose a non-textured corner
filtering based on a triple surrounding patch around each
candidate corner D(i, j). As described in Fig. 5, three
patches, each composed of four regions of interest, are
applied around D(i, j).

Each patch is extracted around D(i, j) and a value
of texturization τ(i, j) is computed such as:

τ12(i, j) =
∑
|patch1(i, j)− patch2(i, j)| (6)

τ23(i, j) =
∑
|patch2(i, j)− patch3(i, j)| (7)

τ(i, j) =
(τ12(i, j) + τ23(i, j))

2
(8)

6

Fig. 5: Patches in the non-textured corner filter. We assume that a
robust corner has to be associated with a geometric shape in which all
pixels must have similar corner response. Then, it has to be similar
corner response across all the patches; otherwise, the detected corner
is an isolated point within a complex textured region.

Finally, the candidate corner is selected by a com-
parison to a threshold (σ2). An example of non-textured
corner filtering is shown is figure 6d.

F (i, j) =

{
1, τ(i, j) < σ2

0, otherwise
(9)

(a) Shi & Tomasi, σ1 = 0.1 (b) Proposed, σ1 = 0.1, σ2 = 0.2

(c) Shi & Tomasi, σ1 = 0.1 (d) Proposed, σ1 = 0.1, σ2 = 0.2

Fig. 6: For input images with no complex texture regions our al-
gorithm detects high number of features (b), similar to the original
Shi-Tomasi formulation (a). For images with complex textured regions
our non-textured corner filtering only retains robust features (d).

3.4 Subpixel refinement module

In previous work, one of the most used approaches uses
the grayscale values of the input image and then, a Gaus-
sian/Quadratic fitting is applied over the extracted cor-
ners in order to refine the location previously computed
[19, 38, 48]. Although Gaussian/Quadratic fitting us-
ing grayscale values achieves relatively high performance,
one solution more suitable for FPGA architectures could
be a mathematical fashion that uses the same input that
the corner extraction step. In this case, the feature ex-
traction and the subpixel refinement could be computed
in parallel, in addition, the use of the same input allows
the use of the same buffer, this could decreases the hard-
ware resources usage.

3.4.1 Subpixel location using the Least Squares Fitting

Considering a group of observed data x1, y1, z1, x2, y2, z2,
. . . , xn, yn, zn,: where x, y are the image pixel location
while z is the corner metric response (Eq. 2), any fit-
ting function f(x, y) should fulfil with the standard least
squares equation:

I =

i=n∑
i=1

(zi − f(xi, yi))
2

where x, y are the independent variables, z is the de-
pendent variable, n ≥ k, k is the number of indepen-
dent parameters in the function f(x, y), and it is also the
least number of samples required [45]. Considering that
the fitting technique can be generalized from a best-fit
line to a best-fit polynomial, if a low-order polynomial is
employed, the fitting accuracy must be bad, while high-
order polynomials may lead to unstable fitting results.
In this work, we select a quadratic polynomial function
(k = 6, i.e., α0, α1, . . . , α5) as shown in Eq. 10 to fit
a parabolic surface, and then, obtain the parameters of
this function through least squares adjustment.

f(x, y) = α0x
2 + α1y

2 + α2xy + α3x+ α4y + α5 (10)

Considering that the generalized adjustment model
could be expressed as follows:

Ln,1 = Bn,k ·Xk,1 + dn,1

where Xk,1 denotes the k independent parameters,
Ln,1 are the n samples and dn,1 is the constant item
in the expression (in this case dn,1 = 0). In such sce-
nario the problem is to set an appropriate weight de-
termination for the independent variables (Bn,k) [45].
One approach to solve this problem is to set a Gaussian
weight distribution as initial solution, then it is necessary
to iterate using an adjustment criterion that refines the
first approximation [48]. In our case, we propose a direct
weight determination using the Vandermonde Matrix as
weight determination for the independent variables. In
the past Vandermonde Matrix has been used under poly-
nomial interpolation procedures obtained promising re-
sults [42] so, in this work we assume that similar per-
formance could be reach under our application domain.
Using the Vandermonde Matrix as weight determina-
tion for the independent variables, then, it is possible
to avoid the iterative procedures required in previous
work and therefore, simplify the hardware implementa-
tion. i.e., given the weight determination for the inde-
pendent variables, (Bn,k) obtained via the Vandermonde
Matrix and considering Xk,1 as corner responses from an
image, then, it is possible to compute subpixel position
within a parabolic surface as Ln,1 = Bn,k ·Xk,1 + 0.

7

3.4.2 The proposed approach

Considering that a 3 × 3 template window as shown in
Fig. 7, Eq. 10 is used to carry out the least squares fit-
ting. The sample values Xk,1(k = 0, 1, . . . , n) are corner
metric responses, n = 9 is the number of sample val-
ues, and set: Xk,1 = (s0, s1, . . . , sn)T , where s0, s1, . . . , s5

are the six independent parameters in the Least Squares
fitting. Our algorithm selects any six corner responses
at reasonably small distances from the center point as
independent parameters, for practical purpose we used,
S0, S3, S5, S7, S2 and S6. Then, the parameters in the
fitting function can then be calculated as: Ln,1 = Bn,k ·
Xk,1 , where Bn,k is the weight determination for the in-
dependent variables and it is defined as follows: given the
independent parameters as {S0, S3, S5, S7, S2, S6}. x, y
displacements with respect the center S4 could be de-
fined as x = {−1,−1, 1, 0, 1,−1}, y = {−1, 0, 0, 1,−1, 1}.
Then, two different Vandermonde Matrices Eq. 11 and
12 are computed. For poractical prposes we uses the
vander Matlab fucntion to compute the Vx, Vy matrices.
Finally, we defined Bn,k as (Vx∗Vy)/Sn, this because the
matrices multiplication between Vx, Vy provide weigh re-
sponse for the x, y axis using a single matrix [42]. Sn
is the number of observations used in the interpolation
process, in this case {S0, S3, S5, S7, S2, S6}.

Vx =


−1 1 −1 1 −1 1
−1 1 −1 1 −1 1
1 1 1 1 1 1
0 0 0 0 0 1
1 1 1 1 1 1
−1 1 −1 1 −1 1

 (11)

Vy =


−1 1 −1 1 −1 1
0 0 0 0 0 1
0 0 0 0 0 1
1 1 1 1 1 1
−1 1 −1 1 −1 1
1 1 1 1 1 1

 (12)

Fig. 7: Template window for least squares fitting.

After calculating the sample values in the Least Squares
Fitting (Ln,1), we apply the formulation presented in
[48], therefore, the decimal part of the features extracted
can be calculated as:(

∆x

∆y

)
=

(
2L1,1L2,1−L2,1L4,1

(L2,1)2−4L1,1L0,1
2L0,1L4,1−L2,1L3,1

(L2,1)2−4L1,1L0,1

)
(13)

So the sub pixel location of the extracted features is:

xsp(i, j) = i+∆x (14)

ysp(i, j) = j +∆y (15)

where xsp, ysp are the refined subpixel locations, this
process is illustrated in Fig. 8.

(a) Corners with subpixel location (b) Example 1

(c) Example 2 (d) Example 3

Fig. 8: Subpixel refinement by our mathematical formulation

3.5 Output construction module

The final step is the subpixel location of the corners re-
tained after the non-textured filtering. Thus, when E(i, j) =
1 AND F (i, j) = 1, the coordinates of each corner are
computed by:

XCorner(i,j) = i+ xsp(i, j) (16)

YCorner(i,j) = j + ysp(i, j (17)

8

Fig. 9: FPGA architecture for the proposed algorithm. The FPGA architecture computes the vertical/horizontal gradients and the x, y, xy
gradient derivatives in parallel. Also, the corner detection, subpixel refinenemt and non-textured filter are computed in parallel. Circular buffers
attached to the local processors hold temporarily as cache and deliver parallel data to the processors.

4 FPGA architecture for the feature extraction
algorithm.

An overview of the developed FPGA architecture is il-
lustrated in Fig. 9. The structure of the architecture are
composed by four hardware processing elements: image
preprocessing, subpixel refinement, corner detection and
non-textured corner filter. The core of the FPGA archi-
tecture are circular buffers attached to the local proces-
sors that are used to hold local sections of the image and
allow local parallel data access for parallel processing. In
general, input images are processed in stream. First, the
architecture reads/stores data/parts of the frames into
circular buffers that can hold rows temporarily as cache,
store image rows from the input images, and that can
deliver parallel data to the image preprocessing module.
For the image preprocessing module, the architecture
computes the vertical and horizontal gradients. Then it
computes the A(i, j), B(i, j), C(i, j) variables. Circular
buffers delivers image pixels for the smoothing opera-
tions and, reconfigurable convolution units (see [3]) com-
pute the smoothing operation. Finally, the FPGA archi-
tecture computes the corner response metric, D(i, j)) =

(A(i, j) +B(i, j))−
√

(A(i, j)−B(i, j))2 + 4C(i, j)2, for
that, we adapted the architecture developed by Yamin
Li and Wanming Chu [28]. This architecture uses a shift
register mechanism and compares the more significant/less
significant bits, it allows to compute square root with
low hardware resources, therefore, it allows for a conve-
nient square root framework, suitable for our algorithmic
formulation. Using the D(i, j)) computed by the image
preprocessing module, three parallel modules carry out
the corner detection, subpixel refinement and the non-
textured corner filter in parallel. Finally, the output con-
struction module delivers the refined positions for the
corners retained after the non-textured filtering.

4.1 The circular buffers

In [3] we introduced a circular buffer schema in which
input data from the previous N rows of an image can
be stored using memory buffers (block RAMs/BRAMs)
till the moment when a N ×N neighborhood is scanned
along subsequent rows. In this work, we follow a similar
approach to achieve high data reuse and high level of
parallelism. Then, our algorithm is processed in modules
where all image patches can be read in parallel. First, a
shift mechanism (control unit) manages the read/write
addresses of N+1 BRAMs, in this formulation N BRAMs
are in read mode and one BRAM is in write mode in each
clock cycle. Then, data inside the read mode BRAMs can
be accessed in parallel and each pixel within a N × N
region is delivered in parallel (N × N buffer), as shown
in Fig. 10a. For more details see [3].

(a) General formulation of a 3 × 3 circular buffer

(b) FPGA architecture for the circular buffers

Fig. 10: The circular buffers architecture. For a N × N patch, a
shift mechanism (control unit) manages the read/write addresses of
N+1 BRAMs, in this formulation N BRAMs are in read mode and one
BRAM is in write mode in each clock cycle. Then, the N × N buffer
delivers logic registers with all pixels within the patch in parallel.

9

4.2 FPGA architecture for feature extraction

In Fig. 11, the FPGA architecture for feature extraction
is shown. First, a circular buffer delivers parallel data for
a 3x3 processing window. i.e., for all pixel in the input
image, the circular buffer delivers the nine pixels cen-
tered in a 3 × 3 patch in parallel. Using pixels within
the patch, the processor computes the non-maxima sup-
pression step, and then, based on the values obtained, a
thresholding operation determines if the patch center is
a corner or not.

Fig. 11: FPGA architecture for the feature extraction. In a first
instance, a suppression step over the corner response are computed.
Then, a thresholding (σ1) is applied in order to select the ”good” corner
features.

4.3 FPGA architecture for non-textured corner filtering

First, a circular buffer delivers parallel data for the non-
textured corner filtering, in this case, all the pixels within
a 9×9 image patch in parallel, the patch center is the lo-
cation of the pixel being processed. Then, using the pix-
els within the patch, the processor computes the three
patches that surround the tentative corner in parallel, as
shown in Fig. 12. Then, our FPGA architecture carry
out the comparisons between these patches and finally,
this module estimate the geometric robustness of the cor-
ners. Using this geometric robustness and considering a
threshold value provided by the user (σ2), the module
retains only corners with high geometric robustness.

Fig. 12: FPGA architecture for the non-textured corner filter. Three
patches that surround any possible corner are computed. Then, com-
parisons between these patches are computed. Finally, by using the
patches comparisons, the geometric robustness of the corners is esti-
mated.

4.4 FPGA architecture for subpixel refinement

For the subpixel refinement, we implement the proposed
mathematical formulation using a parallel-pipeline ap-
proach, as shown in Fig. 13. First, a circular buffer de-
livers parallel data for the subpixel computation. i.e.,

the circular buffer delivers all pixels within a 3×3 image
patch in parallel, the patch center is the location of the
pixel being processed. Using pixels within the patch, the
processor computes the sample values (α1-α6) in paral-
lel. Then, based on the sample values, the FPGA archi-
tecture computes decimal part (∆x, ∆y) for all possible
corner points in the input image in parallel. In order
to reduce hardware resources consumption, a Look Up
Table (LUT) manages the quotients operations in our
implementation.

Fig. 13: FPGA architecture for the subpixel refinement. First, six
independent parameters for a Least Squares fitting are computed. Then
Least Squares Fitting refines the integer locations.

4.5 Output construction

Using the outputs: E(i, j), F (i, j) and xsp(i, j), ysp(i, j),
the output construction module pplying logic compar-
isons between registers. Then, it computes the subpixel
coordinates of the corner points after the non-textured
filter. In practice, these subpixel coordinates could be
used by any real world application: SfM, SLAM, camera
calibration, etc.

5 Results and discussion

The developed FPGA architecture was implemented in
an FPGA Cyclone IV EP4CGX150CF23C8 of Altera.
All modules were designed via Quartus II Web Edition
version 10.1SP1. All modules were validated via post-
synthesis simulations performed in ModelSim Altera. For
all test, we consider σ1 = 0.1, σ2 = 0.1 since these values
provided high number of ”good” features (it is possi-
ble to obtain more than 10.000 features per frame and
these features have high temporality stability, therefore,
they are easy to track) under large set of different in-
door/outdoor scenarios. In practice, we recommend these
values as reference between high number of detected fea-
tures and high temporality stability. Lower values of σ1, σ2

could detect more features, however, temporality stabil-
ity could be decreased. On the other hand, higher values
of σ1, σ2 should provide more temporality stability but
number of features detected is decreased.

10

5.1 Performance compared with previous work

The full hardware resource consumption of the architec-
ture is shown in Table 1. Our algorithm formulation
allows for a compact system design, it requires 4% of
the total logic elements. For memory bits, our architec-
ture uses 8% of the total resources, this represents 34
block RAMs consumed mainly in the circular buffers.
These hardware utilization enables to target a smaller
FPGA device and therefore could be possible a small
FPGA-based smart camera, suitable for real-time em-
bedded applications.

Table 1: Hardware resource consumption for the developed
FPGA architecture

Resource Demand

Total logic elements 6,507 (4%)
Total pins 52 (12%)
Total Memory Bits 803,104 (8%)
Embedded multiplier elements 0 (0%)
Total PLLs 0 (0%)

In comparison with previous work, in Table 2 we
present hardware resource utilization between our FPGA
architecture and previous FPGA-based feature extrac-
tion algorithms. For the FAST algorithm, there are sev-
eral works [14, 26, 9] which FPGA implementations take
advantages of the mathematical formulation of the FAST
algorithm. For all test, we compared Harris and Shi-
Tomasi formulations in straightforward form. This be-
cause the Shi-Tomasi corner detector is based entirely
on the Harris corner detector. In general, one modifi-
cations on the corner response function makes the Shi-
Tomasi corner detector more robust under illumination
changes (that is useful to track the features). Unfortu-
nately, this modification uses one square root that limit
the hardware implementation. In this work, we com-
pute square roots adapting the algorithm presented in
[28], then, we introduce an FPGA-based implementation
on Shi-Tomasi feature extraction algorithm. In general,
FAST-based approaches not require block RAM cores
since the original FAST formulation allows straightfor-
ward pipeline reformulation. Therefore, the hardware re-
source demand is low compared with our approach (Shi-
Tomasi based approach) and low compared with previ-
ous Harris/Shi-Tomasi based approaches [12, 4, 24, 33].
The reason for FPGA architectures based on the origi-
nal Harris-Stephens/Shi-Tomasi is the low robustness of
the features detected by the FAST algorithm. In gen-
eral, features detected by FAST-based approaches have
high noise sensitivity and have very low performance
for complex texture regions. Compared with previous
Harris-Stephens/Shi-Tomasi based algorithms, our algo-
rithm formulation which replaces quotients by Look-up
Tables and that uses reconfigurable convolution units [3],
our algorithm allows lower hardware consumption than

[24] and [33]. In addition, our algorithm allows similar
hardware requirements than the more efficient Harris-
Stephens implementations [4], and only [4] has lower
hardware requirements than our algorithm but without
subpixel computation and the robustness of our approach.

Table 2: Hardware resource consumption comparisons

Method
Logic el-
ements

Block
RAMs

Approach

Dinh et al [14] 2,960 - FAST
Kraft et al [26] 3,915 - FAST
Brenot et al [9] 4,244 - FAST

Chao and Wong [12] 14,184 69 Harris
Amaricai et al [4] 4,149 23 Harris
Hsiao et al [24] 8,050 36 Harris
Possa et al [33] 8,624 43 Harris

This work* 6,507 28 Shi-Tomasi

*Operating frequency = 100 MHz, image resolution 1200×720

In Table 3, speed processing for the proposed feature
extraction algorithm for different image resolutions is
shown. For that, we synthesized different versions of our
FPGA architecture (Fig. 9), in these versions, we mod-
ified the circular buffers in order to work with all tested
image resolutions. Then, we carried out post-synthesis
simulation in ModelSim Altera. In all cases, our FPGA
architecture allows for real-time processing. When com-
pared with previous work (Table 4), our algorithm pro-
vides the highest speed processing under Full HD images,
it outperforms several previous work [14, 9, 26, 24], and
for HD images, our algorithm reaches speed processing
similar to the more efficient Harris-based approaches [4].

Table 3: Processing speed for different image resolutions

Resolution Frames/s Pixels/s

1920×1080 44 91,238,400
1200×720 105 90,720,000
512×512 346 90,701,824
200×200 2247 89,880,000

*Operating frequency = 100 MHz

Table 4: Processing speed comparisons

Method Resolution Frames/s Pixels/s

Dinh et al [14] 1920×1080 22 45,619,200

Kraft et al [26] 512×512 23 6,029,312

Brenot et al [9] 1920×1080 24 49,766,400

Chao and Wong [12] 640×480 98 30,105,600

Amaricai et al [4] 1200×720 134 114,776,000

Hsiao et al [24] 640×480 50 15,360,000

Possa et al [33] 1024 ×1024 93 97,517,568

This work 1920×1080 44 91,238,400

11

5.2 Performance compared with the original Shi-Tomasi
algorithm

In order to validate the accuracy of our subpixel refine-
ment step, we create a dataset as shown in Fig. 14. This
dataset consist in eight different images of 166 × 150
pixel resolution. In each image we set a testing point
at the 17.60, 129.40 spatial position and, each testing
point where configured to fulfil with all possible config-
urations of the corners points presented in a real world
scenario (0◦ corner, 30◦ corner, 45◦ corner, 60◦ corner,
30◦ solid corner, 45◦ solid corner, 60◦ solid corner, 90◦

solid corner). In order to generate the testing images, we
use Matlab. Thus, we use the Matlab plotting functions
in order to set the testing points and to draw the figures
within the images. The generated images were saved as
.jpg images. Finally, we apply the original Shi-Tomasi
algorithm and our algorithm over the generated images.
For the original Shi-Tomasi algorithm, integer locations
introduce a constant inaccuracy of 0.4 pixels in the x, y
coordinates, respectively, as shown in Table 5. For our
algorithm, the subpixel refinement step decreases the er-
ror in the x, y coordinates, error is near ×10 lower than
the original Shi-Tomasi algorithm.

Fig. 14: Synthetic images used for accuracy validation. Interest
points are marked as crosses: (a) 0◦ corner; (b) 30◦ corner; (c) 45◦

corner; (d) 60◦ corner; (e) 30◦ solid corner; (f) 45◦ solid corner; (g)
60◦ solid corner; (h) 90◦ solid corner.

Table 5: Accuracy comparison between the proposed algo-
rithm and the original Shi-Tomasi algorithm.

Test
Original

Shi-Tomasi (x,y)
This work

(x,y)

(a) 0◦ corner 18, 129 17.68, 129.46
(b) 30◦ corner 18, 129 17.56, 129.47
(c) 45◦ corner 18, 129 17.67, 129.36
(d) 60◦ corner 18, 129 17.58, 129.38

(f) 30◦ solid corner 18, 129 17.64, 129.33
(g) 45◦ solid corner 18, 129 17.67, 129.46
(h) 60◦ solid corner 18, 129 17.54, 129.47
(i) 90◦ solid corner 18, 129 17.54, 129.36

mean error (in
pixels)

0.4, 0.4 0.055, 0.051

In order to validate the non-textured filter perfor-
mance, we measured the repeatability of the corners de-
tected by the original Shi-Tomasi algorithm and our fea-
ture extraction algorithm using our non-textured filter.
For that, we recorded and testing eight different video se-
quences under different real world scenarios, see Table 6.
First, we extract feature points from frame 1, then, we
track feature points using the approach presented in [1].
This approach deliver high accuracy in terms of feature
tracking (more accurate than the most used algorithms
such as SIFT and SURF) but algorithmic formulation
is highly exhaustive and, an FPGA architecture is nec-
essary in order to reach real-time processing. Finally, in
order to measure the repeatability, we measure the re-
lation between the input/output features number in the
feature tracking algorithm. i.e., the feature tracking al-
gorithm assumes that all input features can be tracked,
therefore, input features number must be equal to the
output features number. In practice this is not true and
the correlation function in the feature tracking algorithm
only retains features with high temporal robustness (see
Eq. 8 in paper [1]), i.e., it measure the robustness of the
features detected by any feature extraction algorithm.
For practice, in this work we express this robustness mea-
surement as ρ = ∆out/∆in, where ∆in is the number
of input features in the feature tracking algotimh while
∆out is the output features number. In all tested videos
the original Shi-Tomasi algorithm detect near than 5x
more feature points that our feature extraction algo-
rithm, however, robustness is .1575. i.e., only 15.75%
of the detected features can be tracked with an accept-
able accuracy. Considering commonly used feature track-
ing algorithms (SIFT, SURF), false matches could be a
problem, then, a false matches filtering step (RANSAC)
could be necessary. Using the proposed algorithm, ro-
bustness is .8500, i.e., 85% of the detected features can
be tracked with an acceptable accuracy. In practice, sim-
ple binary descriptors like BRIEF, BRISK, ORB, with-
out RANSAC post-processing step, could take advan-
tage by applying the proposed algorithm since most of
the detected features have high temporal stability and
therefore, they are easy to track.

Table 6: Robustness comparison between the proposed al-
gorithm and the original Shi-Tomasi algorithm.

Test
Original

Shi-Tomasi (ρ)
This work (ρ)

1 1768 / 9658 = .18 1248/1487 = .83
2 1559 / 8778 = .17 824/983 = .83
3 1676 / 8848 = .18 814/924 = .88
4 1183 / 9444 = .12 1187/1384 = .82
5 997 / 7323 = .13 402/445 = .88
6 1259 / 7645 = .16 507/559 = .90
7 1234 / 8287 = .14 827/984 = .84
8 1538 / 8288 = .18 987/1193 = .82

mean robustness (ρ) .1575 .8500

12

In Fig. 15, we show in graphical form the scope and
performance for the non-textured corner filter. For low
threshold values, the original Shi-Tomasi formulation de-
livers high number of features that are difficult to track,
as shown in the left column of Fig. 15. On the other
hand, high threshold values often deliver highly robust
features, as illustrated in the central column of Fig. 15.
However, the number of features are low, and in several
applications such as 3D reconstruction, SfM, SLAM, etc.,
low number of features imply sparse 3D reconstructions
that make difficult to understand the environment. For
SfM, SLAM, low number of features often make difficult
to estimate the camera pose. Using our feature extrac-
tion algorithm, the non-textured corner filter retains a
high number of features (right column of Fig. 15), even
under input images with complex texture, as shown in
Fig. 17.

Finally, for practical real world applications, in Fig. 16
and 17 we show the performance for a 3D reconstruction
application. In both cases squares are the features de-
tected by the feature extractor module while circles are
the features retained after the non-textured corner fil-
ter. The retained features were tracked across different
viewpoints from the same scene. Then, we compute the
corresponding 3D reconstruction following the formula-
tion presented in [2]. In Fig. 16 we show the performance
for indoor scenarios. As shown in Fig. 16d the subpixel
refinement module increases the accuracy of the 3D re-
construction. In Fig. 17 we show the performance for
outdoor scenarios. In this case, low threshold values in
the original Shi-Tomasi formulation deliver high number
of features that are difficult to track while high thresh-
old values deliver low number of features and the 3D
reconstruction is sparse. By using our formulation, it is
possible to retain a higher number of features that are
easy to track and therefore, deliver semi dense 3D re-
construction under input images with complex textured
regions.

A Pseudo code for the proposed algorithm

B Conclusions

In this article, we have introduced a new feature extraction
algorithm suitable for smart camera implementation. Our
algorithm is robust enough to deliver high number of ro-
bust features for image sequences with high number of com-
plex textured regions and at the same time it delivers high
performance for real-time embedded applications. We have
proposed a non-textured corner filter that retain high num-
ber of robust features for images with complex textured re-
gions, and we have proposed its subpixel refinement. Both
algorithms increase the performance and scope of the origi-
nal Shi-Tomasi corner detection algorithm. We proposed an
FPGA architecture that allows real-time processing and com-
pact system design and we validated our FPGA architec-
ture via post-synthesis simulations. Our results are encour-
aging and show the feasibility of our algorithmic approach.

Parameter definition:
I: input image
Xresolution , Yresolution: the size of the imput image
σ1: threshold for the corner detector
σ2: threshold for the non-textured corner filtering

preprocessing step:

For all pixels I(i, j) which satisfy i >= 2; j >= 2 and i <=
Xresolution − 1, j <= Yresolution − 1

1: Compute the horizontal gradient Gx(i, j)
End
For all pixels I(i, j) which satisfy i >= 2; j >= 2 and i <=
Xresolution − 1, j <= Yresolution − 1

2: Compute the vertical gradient Gy(i, j)
End

For all pixels Gx(i, j), Gy(i, j)

3: A = Gx(i, j) ∗Gx(i, j)
4: B = Gy(i, j) ∗Gy(i, j)
5: C = Gx(i, j) ∗Gy(i, j)
6: D(i, j), Eq. 2

End

Corner detection step:

For all pixels D(i, j)

7: ψ(u, v), Eq. 3
8: max(ψ), Eq. 4
9: E(i, j), Eq. 5

End

Non-textured corner filtering:

For all pixels D(i, j)
10: τ12(i, j), Eq. 6
11: τ23(i, j), Eq. 7
12: τ(i, j), Eq. 8
13: F (i, j), Eq. 9

End

Subpixel refinement step:

For all pixels D(i, j)

14: Ln,1, Eq.

15:
(
∆x
∆y

)
, Eq. 13

16: xsp(i, j), Eq. 14
17: ysp(i, j), Eq. 15

End

Output construction:

For all pixels E(i, j), F (i, j), xsp(i, j), ysp(i, j)

18: XCorner(i,j), Eq. 16
19: YCorner(i,j), Eq. 17

End

The FPGA architecture reuses the the corner response val-
ues used in the corner detection module, and computes the
subpixel refinement and the non-textured filtering modules in
parallel. This enables an efficient hardware resources utiliza-
tion, lower than several previous formulations without sub-
pixel refinement and without non-textured corner filter, and
similar hardware resources than the most efficient FPGA-
based Harris corner detection. Finally, our FPGA architec-
ture delivers high speed processing (it can process up to 44
frames/91,238,400 pixels per second for Full HD images),
higher than most previous work and similar speed processing
than the more efficient FPGA-based Harris corner detection
reported. Since many vision algorithms rely on finding and
tracking features, we consider this work can be useful in sev-
eral real-time image-processing applications such as: Struc-
ture from Motion and Simultaneous Localization and Map-
ping. As work in progress, we are implementing the developed
FPGA architecture into the DreamCam, a robust/flexible
smart camera [6].

13

a b c

Fig. 15: Non-textured corner filter performance. (a) Original Shi-Tomasi formulation, red points are the feature extraction
considering σ = 0.01. For low threshold values, several features are detected, however, in most cases, detected features have
low temporal stability. (b) Original Shi-Tomasi formulation, red points are the feature extraction considering σ = 0.1. For
high threshold values, detected features have high temporal stability, but detected features number is low. (c) The proposed
formulation considering σ1 = 0.01, σ2 = 0.2, in this case low threshold values detect high number of features (blue points) but
some of them with low temporal stability. In order to solve this problem, the Non-textured corner filter retain only features
with high temporal stability (red points).

14

(a) Input scene: interior of the INAOE library. (b) Proposed algorithm, σ1 = 0.01, σ2 = 0.2

(c) 3D reconstruction: front view. (d) 3D reconstruction: top view.

Fig. 16: 3D reconstruction using the proposed algorithm. Blue points are the features detected by the feature extractor module, some of them
have low temporal stability. Red points are the features retained after the non-textured corner filter. The retained features in (b) were tracked
across different viewpoints from the same scene. Then, we compute the corresponding 3D reconstruction (c). In this case, subpixel refinement
decreases the inaccuracy in the 3D reconstruction (d). When we compare with the original Shi-Tomasi algorithm (without subpixel refinement)
Fig. 2d, the quality of the 3D reconstruction by our algorithm is higher, close to the ground truth.

(a) Input scene: interior of the INAOE library. (b) Proposed algorithm, σ1 = 0.01, σ2 = 0.2

(c) 3D reconstruction: front view. (d) 3D reconstruction: top view.

Fig. 17: 3D reconstruction using the proposed algorithm. Blue points are the features detected by the feature extractor module, some of them
have low temporal stability. Red points are the features retained after the non-textured corner filter. The retained features in (b) were tracked
across different viewpoints from the same scene. Then, we compute the corresponding 3D reconstruction (c) (d).

15

References

1. Aguilar-González A, Arias-Estrada M (2016) Dense mapping for
monocular-slam. In: Indoor Positioning and Indoor Navigation
(IPIN), 2016 International Conference on, IEEE, pp 1–8

2. Aguilar-González A, Arias-Estrada M (2016) Towards a smart
camera for monocular slam. In: Proceedings of the 10th Interna-
tional Conference on Distributed Smart Camera, ACM, pp 128–
135

3. Aguilar-González A, Arias-Estrada M, Pérez-Patricio M, Camas-
Anzueto J (2015) An fpga 2d-convolution unit based on the caph
language. Journal of Real-Time Image Processing pp 1–15

4. Amaricai A, Gavriliu CE, Boncalo O (2014) An fpga sliding
window-based architecture harris corner detector. In: 2014 24th
International Conference on Field Programmable Logic and Ap-
plications (FPL), IEEE, pp 1–4

5. Aydogdu MF, Demirci MF, Kasnakoglu C (2013) Pipelining harris
corner detection with a tiny fpga for a mobile robot. In: Robotics
and Biomimetics (ROBIO), 2013 IEEE International Conference
on, IEEE, pp 2177–2184

6. Birem M, Berry F (2014) Dreamcam: A modular fpga-based smart
camera architecture. Journal of Systems Architecture 60(6):519–
527

7. Bourrasset C, Maggianiy L, Sérot J, Berry F, Pagano P (2013)
Distributed fpga-based smart camera architecture for computer
vision applications. In: Distributed Smart Cameras (ICDSC), 2013
Seventh International Conference on, IEEE, pp 1–2

8. Bravo I, Baliñas J, Gardel A, Lázaro JL, Espinosa F, Garćıa J
(2011) Efficient smart cmos camera based on fpgas oriented to
embedded image processing. Sensors 11(3):2282–2303

9. Brenot F, Fillatreau P, Piat J (2015) Fpga based accelerator for
visual features detection. In: Electronics, Control, Measurement,
Signals and their Application to Mechatronics (ECMSM), 2015
IEEE International Workshop of, IEEE, pp 1–6

10. Canny J (1986) A computational approach to edge detection. IEEE
Transactions on pattern analysis and machine intelligence (6):679–
698

11. Carey SJ, Barr DR, Dudek P (2013) Low power high-performance
smart camera system based on scamp vision sensor. Journal of
Systems Architecture 59(10):889–899

12. Chao TL, Wong KH (2015) An efficient fpga implementation of
the harris corner feature detector. In: Machine Vision Applications
(MVA), 2015 14th IAPR International Conference on, IEEE, pp
89–93

13. Choi C, Christensen HI (2012) 3d textureless object detection and
tracking: An edge-based approach. In: 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IEEE, pp
3877–3884

14. Dinh TH, Vu DQ, Ngo VD, Ngoc NP, Truong VT (2014) High
throughput fpga architecture for corner detection in traffic images.
In: Communications and Electronics (ICCE), 2014 IEEE Fifth In-
ternational Conference on, IEEE, pp 297–302

15. Feichtenhofer C, Pinz A (2013) Spatio-temporal good features to
track. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops, pp 246–253

16. Fularz M, Kraft M, Schmidt A, Kasiński A (2015) The architec-
ture of an embedded smart camera for intelligent inspection and
surveillance. In: Progress in Automation, Robotics and Measuring
Techniques, Springer, pp 43–52

17. Gauglitz S, Höllerer T, Turk M (2011) Evaluation of interest point
detectors and feature descriptors for visual tracking. International
journal of computer vision 94(3):335–360

18. Gil A, Mozos OM, Ballesta M, Reinoso O (2010) A comparative
evaluation of interest point detectors and local descriptors for vi-
sual slam. Machine Vision and Applications 21(6):905–920

19. Han Y, Chen P, Meng T (2015) Harris corner detection algorithm
at sub-pixel level and its application

20. Haritaoglu I, Harwood D, Davis LS (2000) W 4: Real-time surveil-
lance of people and their activities. IEEE Transactions on pattern
analysis and machine intelligence 22(8):809–830

21. Harris C, Stephens M (1988) A combined corner and edge detector.
In: Alvey vision conference, Citeseer, vol 15, p 50

22. Hasegawa T, Yamauchi Y, Ambai M, Yoshida Y, Fujiyoshi H
(2014) Keypoint detection by cascaded fast. In: 2014 IEEE Inter-
national Conference on Image Processing (ICIP), IEEE, pp 5676–
5680

23. Hengstler S, Prashanth D, Fong S, Aghajan H (2007) Mesheye:
a hybrid-resolution smart camera mote for applications in dis-
tributed intelligent surveillance. In: Proceedings of the 6th inter-
national conference on Information processing in sensor networks,

ACM, pp 360–369
24. Hsiao PY, Lu CL, Fu LC (2010) Multilayered image processing

for multiscale harris corner detection in digital realization. IEEE
Transactions on Industrial Electronics 57(5):1799–1805

25. Köhler T, Röchter F, Lindemann JP, Möller R (2009) Bio-inspired
motion detection in an fpga-based smart camera module. Bioin-
spiration & biomimetics 4(1):015,008

26. Kraft M, Schmidt A, Kasinski AJ (2008) High-speed image feature
detection using fpga implementation of fast algorithm. VISAPP
(1) 8:174–9

27. Li N, Huo H, Zhao Ym, Chen X, Fang T (2013) A spatial clus-
tering method with edge weighting for image segmentation. IEEE
Geoscience and Remote Sensing Letters 10(5):1124–1128

28. Li Y, Chu W (1996) A new non-restoring square root algorithm
and its vlsi implementations. In: Computer Design: VLSI in Com-
puters and Processors, 1996. ICCD’96. Proceedings., 1996 IEEE
International Conference on, IEEE, pp 538–544

29. Liu J, Wark T, Martin S, Corke P, D’Souza M (2011) Distributed
object tracking with robot and disjoint camera networks. In: Per-
vasive Computing and Communications Workshops (PERCOM
Workshops), 2011 IEEE International Conference on, IEEE, pp
380–383

30. Mozos ÓM, Gil A, Ballesta M, Reinoso O (2007) Interest point
detectors for visual slam. In: Conference of the Spanish Association
for Artificial Intelligence, Springer, pp 170–179

31. Norouznezhad E, Bigdeli A, Postula A, Lovell BC (2010) Object
tracking on fpga-based smart cameras using local oriented energy
and phase features. In: Proceedings of the Fourth ACM/IEEE In-
ternational Conference on Distributed Smart Cameras, ACM, pp
33–40

32. Olson T, Brill F (1997) Moving object detection and event recog-
nition algorithms for smart cameras. In: Proc. DARPA Image Un-
derstanding Workshop, vol 20, pp 205–208

33. Possa PR, Mahmoudi SA, Harb N, Valderrama C, Manneback
P (2014) A multi-resolution fpga-based architecture for real-time
edge and corner detection. IEEE Transactions on Computers
63(10):2376–2388

34. Qureshi F, Terzopoulos D (2008) Smart camera networks in virtual
reality. Proceedings of the IEEE 96(10):1640–1656

35. Rosten E, Drummond T (2005) Fusing points and lines for high
performance tracking. In: Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1, IEEE, vol 2, pp 1508–1515

36. Shi J, Tomasi C (1994) Good features to track. In: Computer Vi-
sion and Pattern Recognition, 1994. Proceedings CVPR’94., 1994
IEEE Computer Society Conference on, IEEE, pp 593–600

37. Sroba L, Ravas R, Grman J (2015) The influence of subpixel corner
detection to determine the camera displacement. Procedia Engi-
neering 100:834–840

38. Stock C, Mühlmann U, Chandraker MK, Pinz A (2002) Subpixel
corner detection for tracking applications using cmos camera tech-
nology. Citeseer

39. Tanskanen P, Kolev K, Meier L, Camposeco F, Saurer O, Polle-
feys M (2013) Live metric 3d reconstruction on mobile phones. In:
Proceedings of the IEEE International Conference on Computer
Vision, pp 65–72

40. Torr PH, Zisserman A (1999) Feature based methods for struc-
ture and motion estimation. In: International workshop on vision
algorithms, Springer, pp 278–294

41. Ttofis C, Hadjitheophanous S, Georghiades AS, Theocharides T
(2013) Edge-directed hardware architecture for real-time disparity
map computation. IEEE Transactions on Computers 62(4):690–
704

42. Turner LR (1966) Inverse of the vandermonde matrix w1th appli-
cations

43. Wu C, Aghajan H, Kleihorst R (2008) Real-time human posture
reconstruction in wireless smart camera networks. In: Proceedings
of the 7th international conference on Information processing in
sensor networks, IEEE Computer Society, pp 321–331

44. Yang AY, Maji S, Christoudias CM, Darrell T, Malik J, Sastry SS
(2011) Multiple-view object recognition in smart camera networks.
In: Distributed Video Sensor Networks, Springer, pp 55–68

45. Yuan JY (1996) Numerical methods for generalized least squares
problems. Journal of Computational and Applied Mathematics
66(1):571–584

46. Zhang G, Vela PA (2015) Good features to track for visual slam.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 1373–1382

47. Zhang H, et al (2007) Quantitative evaluation of feature extractors
for visual slam. In: Computer and Robot Vision, 2007. CRV’07.
Fourth Canadian Conference on, IEEE, pp 157–164

16

48. Zhu Q, Wu B, Wan N (2007) A sub-pixel location method for
interest points by means of the harris interest strength. The Pho-
togrammetric Record 22(120):321–335

49. Zhu W, Ma C, Xia L, Li X (2009) A fast and accurate algorithm
for chessboard corner detection. In: Image and Signal Processing,
2009. CISP’09. 2nd International Congress on, IEEE, pp 1–5

50. Zitnick CL, Dollár P (2014) Edge boxes: Locating object pro-
posals from edges. In: European Conference on Computer Vision,
Springer, pp 391–405

51. Zivkovic Z (2010) Wireless smart camera network for real-time
human 3d pose reconstruction. Computer Vision and Image Un-
derstanding 114(11):1215–1222

Author Biographies

Abiel Aguilar-González obtained his B.Eng.
in Mechatronics in June 2012, Universidad Poli-
técnica de Chiapas (UPCH), Tuxtla Gutiérrez,
Mexico. In June 2015 he obtained his M.Sc.
in Mechatronics Engineering with highest hon-
ors, Instituto Tecnológico de Tuxtla Gutiérrez
(ITTG), Tuxtla Gutiérrez, Mexico. He is cur-
rently pursuing his Ph.D. in Computer Science
at the reconfigurable computing laboratory of
the Instituto Nacional de Astrof́ısica Óptica y
Electrónica (INAOE), Cholula, Mexico. His re-
search interests are real-time image processing,
real-time FPGA-based system design and fuzzy

logic applications.

Miguel Arias-Estrada obtained his B.Eng.
in Communications and Electronics, and his
M.Eng in Digital Systems at the FIMEE (Uni-
versity of Guanajuato) in Salamanca, Gto. in
1990 and 1992 respectively. In 1998, he ob-
tained his Ph.D. degree at the Computer Vi-
sion and Systems Laboratory of Universit Laval
(Quebec city, Canada). He was a professor-
researcher at the Computer and Systems Labo-
ratory at Laval University where he worked on

the development of a Smart Vision Camera. Since 1998 he is with the
Computer Science department of INAOE (National Institute of Astro-
physics, Optics and Electronics, Puebla, Mexico) where he continues
his research on FPGA architectures for computer vision. His interests
are Computer Vision, FPGA and GPU algorithm acceleration for 3D
and machine vision.

François Berry received his Doctoral degrees
and the Habilitation to conduct researches in
Electrical Engineering from the University of
Blaise Pascal in 1999 and 2011, respectively.
His PhD was on visual servoing and robotics
and was undertaken at Pascal Institute in Cler-
mont -Ferrand. Since September 1999, he is
currently (Associate Professor) at the Univer-
sity of Blaise Pascal and is member of the
Perception System and Robotics group (within
GRAVIR, Pascal Institute- CNRS). He is re-
searching smart cameras, active vision, embed-
ded vision systems and hardware/software co-

design algorithms. He is in charge of a Masters in Microelectronics and
in head of DREAM Research on Embedded Architecture and Multisen-
sor) group. He has authored and coauthored more than 55 papers for
journals, conferences and workshops. He has also led several research
projects (Robea, ANR, Euripides) and has served as a reviewer and a
program committee member. He has been co-founder of the Workshop
on Architecture of Smart Camera (WASC) and Scabot.

	Introduction
	Related work
	Robust/accurate feature extraction algorithm suitable for smart cameras.
	FPGA architecture for the feature extraction algorithm.
	Results and discussion
	Pseudo code for the proposed algorithm
	Conclusions

