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ABSTRACT 

In recent years the interest on monocular-SLAM (Simultaneous 

Localization and Mapping) has increased, this because nowadays 

it is possible to find inexpensive, small and light commercial 

cameras and they provide visual environmental information that 

can be exploited to create 3D maps and camera pose in an 

unknown environment. A smart camera that could deliver 

monocular-SLAM is highly desirable, since it can be the basis of 

several robotics/drone applications. In this article, we present a 

new SLAM framework that is robust enough for indoor/outdoor 

SLAM applications, and at the same time is parallelizable in the 

context of FPGA architecture design. We introduce new feature-

extraction/feature-matching algorithms, suitable for FPGA 

implementation. We propose an FPGA based sensor-processor 

architecture where most of the visual processing is carried out in a 

parallel architecture, and the 3D map construction and camera 

pose estimation in the processor of a SoC FPGA. An FPGA 

architecture is lay down and hardware/software partition is 

discussed. We show that the proposed sensor-processor can 

deliver high performance under several indoor/outdoor scenarios.  

CCS Concepts 

• Computer systems organization ➝ System on a chip. 
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1. INTRODUCTION 
Smart cameras integrate processing close to the image sensor, so 

they can deliver high level information to a host computer/robot 

or high level decision process. Progress in microprocessor power 

and FPGA technology makes feasible to build compact and low 

cost smart cameras, but the actual problem is how to program 

them efficiently given the wide variety of algorithms and the 

custom approach to have a smart camera for a specific 

application, i.e., for a smart video surveillance the camera could 

be detecting and tracking pedestrians, but for a robotic camera, the 

accelerated processing in the camera could be edge and feature 

detection. Commercially some approaches simply offer a path to 

recompile an application developed in OpenCV [1] or any other 

programming environment, into an embedded processor, compact 

x86 compatible processor or DSP processor [2-3]. Some 

companies offer a dedicated IP framework coupled with vision 

processors that accelerate a subset of vision algorithms, mainly 

motivated by automotive industry trends in visual assistance and a 

path for self-guided vehicles technology [33].   

 

 

 

 

A recent trend is the integration of GPU embedded processors in 

platforms that already support a subset of OpenCV like the Jetson 

TK1 and XT1 boards [4-5]. Nevertheless, an FPGA based smart 

camera offer advantages from all the previous approaches: 

possibility to design parallel architectures that accelerate 

processing time, integration of hardware-software architectures 

with the SoC FPGAs, low power consumption for embedded 

applications and lower cost than GPU based embedded solutions. 

The inconvenient to develop an FPGA smart camera is the lack of 

standards to reuse FPGA components, lack of internal standard or 

architecture to facilitate the hardware/software co-processing and 

effective use of memory transfers between all the submodules in 

the vision processing pipeline. The latest is being addressed with 

high level languages and component reuse similar to what is done 

in software. In particular, solutions like CAPH [6], GPstudio [7] 

or OpenCL libraries [8] and vision pipeline standards like 

OpenVX [9] are paving the road to a standard that can help build 

more sophisticated vision processing pipelines. 

1.1 Monocular-SLAM in a smart camera 
Several SLAM solutions such as, EKF-based, graph-based and 

visual-based solutions are available in the literature. However, the 

recent trend is for visual-based solutions, more specifically, 

monocular-SLAM (visual-SLAM with a single camera), since it 

can provides visual information such as texture and color from the 

scene and requires lowest power and cost than other visual-SLAM 

formulations (stereo-based or RGBD-based solutions) [10]. The 

basis of monocular-SLAM is that a single moving camera, can 

obtain 3D information of the environment and deliver a rough 3D 

map that can include texture and color of the elements within the 

map. This is highly used in robotics or autonomous vehicle 

applications since it is possible to navigate and at the same time 

reconstruct in 3D the robot/vehicle positions and the position of 

objects, obstacles, walls, etc., in its surroundings [11-12].  

Having a smart camera that delivers monocular-SLAM can open 

several research lines and applications, since at a higher level it 

will be possible to integrate cooperative information from several 

cameras, integrate other image understanding algorithms and have 

a better visual representation of the world. Smart cameras with 

monocular-SLAM would be useful in autonomous vehicles, 

drones and mobile robotics, leveraging the central processors of 

those platforms for the high computational cost of the control and 

navigation tasks. The preferred choice for an FPGA-based smart 

camera is to integrate low level image preprocessing tasks and 

deliver the results to a software processor that performs high level 

processing tasks. This approach has proved successful in the past 

[13-14], and it is what we will follow. In previous work only the 

feature-extractor/feature-matching algorithm was implemented in 

the FPGA, while the rest of the data processing is carried on in a 

conventional processor. In our case we explore further integration 

of monocular-SLAM formulation into the FPGA accelerated 

architecture. 



1.2 Related work 
Since the last decade, published articles reflect a tendency for 

using vision as the only external sensorial perception system to 

solve the SLAM problem [15-17]. In some cases, algorithms were 

formulated in the context of a sensor or smart camera. Authors of 

[18] introduced an embedded vision sensor based on 

reconfigurable hardware (FPGA) to perform stereo image 

processing and 3D mapping for sparse features. It was proposed 

an EKF based visual SLAM. The system uses vision as the only 

source of information and achieves a convenient performance for 

small industrial environments. Unfortunately, the approach is 

limited to sparse 3D maps and, the stereo configuration introduces 

some inconvenient due to the cameras synchronization and 

mechanical alignment. In [19] a visual-inertial sensor unit for 

robust SLAM capabilities is presented. Four cameras are 

interfaced through an ARM/FPGA design, an Inertial 

Measurement Unit (IMU) provides gyro and accelerometer 

measurements. The proposed approach delivers a convenient 

fusion of visual and inertial cues with a level of robustness and 

accuracy difficult to achieve with purely visual-SLAM systems. 

The main limitation of the approach is that only the feature 

extraction algorithm was accelerated in the FPGA, this represents 

an inefficient hardware/software partition since other tasks such 

as, feature-matching can be accelerated in the FPGA.  

In [20], the architecture and the processing pipeline of a smart 

camera suited for real time applications is discussed. The authors 

proposed a memoryless computing architecture based on low cost 

FPGA devices. It was proposed a stereo matching approach with 

sub-pixel accuracy. Finally, the results are delivered via USB2.0 

front end. The developed sensor allows to infer, dense and 

accurate depth maps under indoor/outdoor environments. The 

developed camera was used in a SLAM application, nevertheless, 

all the SLAM process is carried out in a CPU implementation. 

This limits the performance for robotics mobile applications in 

which compact systems with low power consumption are 

required. In [21] a smart camera for a real-time gesture 

recognition system was presented. The smart camera was 

designed and implemented in a System-on-a-Chip (SoC) device, 

using reconfigurable computing technology. In this system, the 

gesture images are captured by a CMOS digital camera. After 

some preprocessing steps, images are sent to a Fault Tolerant 

Module (FTM) for the actual recognition process. The FTM 

implements a RAM-based neural network, using three knowledge 

bases. A real-world application was presented, it consists of four 

smart cameras used in SLAM tasks for robotic navigation. The 

proposed system aims to increase the accuracy of the maps 

generated by the SLAM algorithm by using images taken from the 

robot perimeter. Unfortunately, the algorithm is limited to 

landmarks, and the 3D maps are sparse maps that limits the 

environmental understanding. 

2. THE PROPOSED ALGORITHM 
In this work, we are interested in a smart camera that delivers a 

SLAM solution without post-processing steps and that allows a 

relatively simple and compact system design. In Fig. 1 an 

overview of our algorithm is shown. We accelerate the feature 

extraction and feature matching in hardware while the camera 

matrix/camera pose estimation and 3D estimation are 

implemented in software. The hardware/software partition is 

based on what parts of the algorithm can be parallelized, but also 

targeting that the software part can be executed in real-time in a 

processor in a SoC FPGA device. Therefore, the software 

computational load must be low.  

 

Figure 1: The proposed algorithm 

2.1 Feature extraction 
Several feature extraction algorithm have been reported in the 

literature, nevertheless, in most cases, performance for FPGA 

implementation is limited. In this work, we present a new feature 

extraction algorithm that uses the maximum Eigenvalues as corner 

metric response. This algorithm is robust enough to detect feature 

points under any types of input images and enables efficient 

FPGA implementation. Considering 𝐼 as a grayscale image, first, 

we propose to compute the 𝑥, y gradients as shown in Eq. 1 and 2, 

respectively.  

𝐺𝑥(𝑖, 𝑗) = (𝐼(𝑖 − 1, 𝑗)) − (𝐼(𝑖 + 1, 𝑗))                (1) 

𝐺𝑦(𝑖, 𝑗) = (𝐼(𝑖, 𝑗 − 1)) − (𝐼(𝑖, 𝑗 + 1))               (2) 

We define the 𝐴,𝐵, 𝐶 matrixes as 𝐴(𝑖, 𝑗) = 𝐺𝑥(𝑖, 𝑗) ∙ 𝐺𝑥(𝑖, 𝑗),
𝐵(𝑖, 𝑗) = 𝐺𝑦(𝑖, 𝑗) ∙ 𝐺𝑦(𝑖, 𝑗) and 𝐶 (𝑖, 𝑗) = 𝐴(𝑖, 𝑗) ∙ 𝐵(𝑖, 𝑗). Once the 

𝐴, 𝐵, 𝐶 matrixes are computed, they have to be convolved with an 

appropriate Gaussian kernel. In [22] we presented an image 

convolution framework that allows flexible 2D convolution and at 

the same time high performance for FPGA implementation. Based 

on our algorithm presented in [22], we proposed a convolution 

kernel as shown in Eq. 3. Then, we convolve the 𝐴, 𝐵, 𝐶 matrixes 

as following: 𝐴 = 𝐴 ∗ 𝑀, 𝐵 = 𝐵 ∗ 𝑀, 𝐶 = 𝐶 ∗ 𝑀, where the 

operator ∗ represents the 2D spatial convolution between an image 

𝐼 and convolution kernel 𝑀. For more details see [22]. 
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(3) 

  Original kernel            Convolution kernel using our algorithm [22]  

In order to detect feature points form an image, we proposed Eq. 

4 as corner response metric, where 𝐴, 𝐵, 𝐶 are the convolved 

matrices and the operator 𝑓{𝑔} is defined as shown in Eq. 5, 

where 𝐶𝑛, 𝐶′𝑛 are constant values for a LUT-based square root 

function [23]. In this case, LUT-based functions can be used for 

hardware implementation for complex operations such as, square 

roots, Euler function, etc., with low hardware consumption and 

real-time processing. 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) = (𝐴(𝑖, 𝑗) + 𝐵(𝑖, 𝑗)) − 𝑓{(𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)).2

+ 4𝐶.2 }                 

(4) 



𝑓{𝑔} = {

𝐶1, 𝑖𝑓 𝑔 ≤  𝐶′1
𝐶2, 𝑖𝑓 𝑔 ≤  𝐶′2

⋮
𝐶𝑛 , 𝑖𝑓 𝑔 ≤  𝐶′2

           

(5) 

Finally, we consider that a pixel (𝑖, 𝑗) from an image 𝐼 is a feature 

point/corner only if  𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) satisfy 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) ≥ 𝛼, 

where 𝛼 is as barrier value provided by the user. For practice, in 

all our experiments we use a barrier value equal to 25, i.e. 𝛼 = 25. 

2.2 Feature matching 
Considering 𝐴 as a video sequence of 𝑠 frames, we can apply our 

feature extraction algorithm (Section 3.1), to obtain 𝑔 initial 

features defined as 𝑥𝑖(𝑔) = 𝑥, 𝑦𝑖(𝑔) = 𝑦; where 𝑥, 𝑦 are the 

spatial position for all extracted points. Then, we propose a new 

feature matching algorithm that searches for a square region 

centered in any feature 𝑔 in frame 𝑖 that is similar or equal than a 

similar size square region in frame 𝑖 +  1, located within a search 

region in frame 𝑖 +  1. In this scenario, we propose Eq. 6 and 7; 

where 𝑥𝑖+1(ℎ), 𝑦𝑖+1(ℎ)  are the spatial locations for all the 

features in frame 𝑖 + 1 and, 𝑖 +  1 satisfy 𝑖 +  1 <=  𝑠. 𝐶 

measures the similarity between patches and is defined as shown 

in Eq. 8, where 𝑟 is the search region size, computed via Eq. 9, 

considering 𝑋, 𝑌 as the horizontal, vertical resolution of the 

imager. 𝐼𝑖 and 𝐼𝑖+1 represent the spatial coordinates of pixels for 

two different images captured by the imager, and 𝛽, 𝜎 are the 

spatial location for all the patches in frame i+1, they ranges 

between –r up to r with increments of 1. 

𝑥𝑖+1(ℎ) = ∑ 𝑚𝑖𝑛𝛽𝐶(𝛽, 𝜎)

ℎ=𝑔

ℎ=1

                

(6) 

𝑦𝑖+1(ℎ) = ∑ 𝑚𝑖𝑛𝜎𝐶(𝛽, 𝜎)

ℎ=𝑔

ℎ=1

               

(7) 

𝐶(𝛽, 𝜎) = ∑ ∑ (𝐼𝑖(𝑥 + 𝑢, 𝑦 + 𝑣)  − 𝐼𝑖+1(𝑥 + 𝛽 + 𝑢, 𝑦

𝑣=𝑟

𝑣=−𝑟

𝑢=𝑟

𝑢=−𝑟

+ 𝜎 + 𝑣))2 
 

(8) 

𝑟 = min{𝑘 ∈ ℤ |√
(𝑋/128)2 + (𝑌/128)2

2
  ≤ 𝑘}                

(9) 

2.3 Camera matrix estimation  
Given two corresponding point sets: 𝑞 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… 

 (𝑥𝑛, 𝑦𝑛)} and 𝑔 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑛, 𝑦𝑛)} (these are 

obtained by applying our feature matching algorithm), a matrix 𝐴 

can be estimated as following:  

𝐴 [

𝑞(𝑥1) ∙ 𝑔(𝑥1)

𝑞(𝑥2) ∙ 𝑔(𝑥2)
⋮

𝑞(𝑥𝑛) ∙ 𝑔(𝑥𝑛)

𝑞(𝑦1) ∙ 𝑔(𝑥1)

𝑞(𝑦2) ∙ 𝑔(𝑥2)
⋮

𝑞(𝑦𝑛) ∙ 𝑔(𝑥𝑛)

𝑔(𝑥1)

𝑔(𝑥2)
⋮

𝑔(𝑥𝑛)

𝑞(𝑥1) ∙ 𝑔(𝑦1)

𝑞(𝑥2) ∙ 𝑔(𝑦2)
⋮

𝑞(𝑥𝑛) ∙ 𝑔(𝑦𝑛)

𝑔(𝑦1) 𝑞(𝑥1) 𝑞(𝑦1) 1

𝑔(𝑦2) 𝑞(𝑥2) 𝑞(𝑦2) 1
⋮ ⋮ ⋮ ⋮

𝑔(𝑦𝑛) 𝑞(𝑥𝑛) 𝑞(𝑦𝑛) 1

],        

let [𝑈 𝑆 𝑉] denote the singular value decomposition (SVD) of 𝐴, 

then, the fundamental matrix 𝐹 can be computed as 

following: 𝐹 = 𝑈 ∙ 𝑑𝑖𝑎𝑔([𝐷(1,1) 𝐷(2,2)] 0) ∙ 𝑉′. Then, the 

essential matrix 𝐸 can be estimated as 𝐸 = 𝐾′𝐹𝐾, where 𝐾 is the 

calibration matrix for the imager. Finally, by applied singular 

value decomposition (SVD) over 𝐸 and solving for a close 

solution, the camera matrix 𝑃 can be estimated. For more details 

about camera matrix estimation see [24]. 

2.4 Linear triangulation 
Given two corresponding point sets: 𝑞 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… 

(𝑥𝑛 , 𝑦𝑛)}, 𝑔 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑛 , 𝑦𝑛)} and considering 𝑃1, 

 𝑃2 as the camera matrix estimated via the Essential matrix and 

camera matrix centered at the origin, respectively, we can 

compute the following variables: 𝐴1 = 𝑞(𝑥1) ∙ 𝑃1(3, 𝑖) − 𝑃1(1, 𝑖),
𝐴2 = 𝑞(𝑦1) ∙ 𝑃1(3, 𝑖) − 𝑃1(1, 𝑖), 𝐴3 = 𝑞(𝑥1) ∙ 𝑃2(3, 𝑖) − 𝑃2(1, 𝑖), 𝐴3 =

𝑞(𝑦1) ∙ 𝑃2(3, 𝑖) − 𝑃2(1, 𝑖),  𝐴[𝐴1 𝐴2 𝐴3 𝐴4]. Finally, let [𝑈 𝑆 𝑉] 
denote the singular value decomposition (SVD) over 𝐴, the 3D 

positions for all the tracked points (the mapping solution of the 

SLAM process) can be denoted as 𝑉(𝑖, 4). For more details about 

linear triangulation see [24]. 

2.5 Camera pose estimation 
Given two corresponding point sets: 𝑿 = {𝒙𝟏, 𝒙𝟐 …𝒙𝒏}, 𝒑 =
{𝒑𝟏, 𝒑𝟐 …𝒑𝒏}, the Least Squares algorithm [24] estimates the 

translation 𝒕 and rotation 𝑹 that minimizes the sum of the squared 

re-projection error, as shown in Eq. 10, where 𝒙𝒊 and 𝒑𝒊 are 

feature points matching across two different viewpoints captured 

by the imager. 

𝐸(𝑅, 𝑡) =
1

𝑁
∑ ∥ 𝑥𝑖 −  𝑅𝑝𝑖 − 𝑡 ∥2

𝑁𝑝

𝑖=1

                            

(10) 

The algorithm definition assumes that if the correct 

correspondences between feature points are known, the correct 

relative rotation/translation can be calculated in closed form. i.e., 

considering accurate 2D matching (provided by our feature 

tracking algorithm), the next step is to compute the center of mass 

on the input sets 𝑋,𝑝 as shown in Eq. 11 and 12. 

𝜇𝑥 =
1

𝑁𝑥

∑𝑥𝑖

𝑁𝑥

𝑖=1

                            
(11) 

𝜇𝑝 =
1

𝑁𝑝

∑𝑝𝑖

𝑁𝑝

𝑖=1

                            

(12) 

Then, subtract the corresponding center of mass from every point 

in the input sets, as shown in Eq. 13 and 14. 
𝑋′ = {𝑥𝑖 − 𝜇𝑖} = {𝑥′𝑖}                    (13) 

𝑃′ = {𝑝𝑖 − 𝜇𝑝} = {𝑝′𝑖}                    (14) 

Finally, let 𝑊 = ∑ 𝑥′𝑖𝑝′𝑖
𝑇𝑁𝑝

𝑖=1
 denote the singular value 

decomposition (SVD) of 𝑊, defined as shown in Eq. 15; where 

𝑈, 𝑉 are unitary 𝜖ℝ3×3, and 𝜎1 < 𝜎2 <  𝜎3 are the singular values 

of 𝑊. Using camera geometry, it is possible to define 𝑅 = 𝑈𝑉𝑇. 

Thus, If 𝑟𝑎𝑛𝑘(𝑊)  =  3, the optimal solution of 𝐸(𝑅, 𝑡) is unique 

and is given as shown in Eq. 16; where the minimal value of the 

re-projection function at (𝑅, 𝑡) is computed by Eq. 17. For more 

details see [24] 

 

𝑊 = 𝑈 [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

]  𝑉𝑇                
(15) 

𝑡 = 𝜇𝑥 − 𝑅𝜇𝑝                (16) 

𝐸(𝑅, 𝑡) = ∑(∥ 𝑥′
𝑖 ∥2+∥ 𝑝′

𝑖
∥2)

𝑁𝑝

𝑖=1

− 2(𝜎1 + 𝜎2 + 𝜎3)            

 

(17) 

 

  

(17) 

Note that in a SLAM system, the camera rotation and orientation 

computed by the Least Squares algorithm represents the 

localization solution of the SLAM process. In practice, the first 

camera is located at the origin, and the 𝑅, 𝑡 values represent the 

second camera localization with respect to the origin (considering 

feature tracking across frame 1 and 2 from a video sequence 

captured by the imager). This process must be iterated, i.e., to 

localize the next camera the Least Squares algorithm requires 

feature tracking across frames 2 and 3, and then, the third camera 

localization  with respect to the second can be computed.  



 
Figure 2: An FPGA-based smart camera for monocular-SLAM 

3. FPGA ARCHITECTURE  
In Fig. 2 an overview of the proposed hardware-software partition 

is presented. The architecture is centered on a SoC FPGA where 

all recursive/parallelizable algorithms are accelerated in the FPGA 

fabric while non-recursive algorithms are implemented in the 

embedded processor of the SoC FPGA. In this scenario, feature 

extraction/matching algorithms are implemented in hardware. 

Algorithms such as: camera pose estimation and 3D 

reconstruction are non-parallelizable since they require iterative 

elements and complex mathematics, then a software 

implementation is more suitable. In general, the basis of the 

proposed smart camera is the data control unit (see Fig. 2), this 

unit operates as process-sequencer, where the image subsections 

are feed to/from the external SDRAM memory using a DMA; as 

well as the image read out into the circular buffers used to hold 

local sections of the image and allow for local parallel access and 

facilitate parallel processing.  

Images from the image sensor are stored in an external SDRAM 

that holds at least 2 frames from the sequence, and later the 

SDRAM is read by the FPGA to cache parts of the frames into 

circular buffers. A memory management interface is responsible 

for data transfers in segments of the image (usually several rows 

of pixels) to/from the SDRAM. The core of the FPGA 

architecture are the circular buffers attached to the local 

processors that can hold temporarily as cache, the image sections 

from two frames, and that can deliver parallel data to the 

processors.  Two separate image processing accelerators 

implemented in parallel-pipeline form address the feature 

extraction/matching step.  

Data results from the FPGA processors (the computed feature 

correspondences between the two frames) is post-processed by the 

SoC microprocessor to obtain the camera pose and 3D 

reconstruction for a pair of frames. Finally the SLAM results are 

sent to a host computer using the Ethernet communication.  

3.1 The circular buffers 
Several image processing applications process pixel data from 

small neighborhoods from an image, and carrying out a 

calculation at each position of the neighborhood. For processing 

purposes, the conventional approach is to store the entire input 

image into a frame buffer, access the neighborhood’s pixels and 

apply the operation needed to produce the output image. 

Considering the convolution kernel used in the feature extractor, 

25 pixel values are needed to perform the computations each time 

the kernel is moved and each pixel in the image is read several 

times. In this case, the memory bandwidth constraints make 

impossible to obtain all pixels stored in the memory in only one 

clock cycle, unless any kind of local caching is performed. In [22] 

we introduced a circular buffer schema in which input data from 

the previous 𝑁 rows can be stored using the memory buffers till 

the moment when the neighborhood is scanned along subsequent 

rows. To reuse hardware resources when new image data is 

processed, a shift mechanism between buffer rows is used. Data 

inside the buffer can be accessed in parallel and each input pixel is 

fed only once to the FPGA device. In this work, we follow a 

similar approach to achieve high data reuse and high level of 

parallelism. Then, feature extraction/matching is carried out in 

modules where all pixels for the convolution kernel and within the 

search region can be read in parallel.  



Figure 3: The FPGA architecture for the feature extraction algorithm  

3.2 The feature extraction accelerator  
In Fig. 3 an overview of the proposed FPGA architecture for the 

feature extraction accelerator is shown. The main objective is to 

process all data in stream, this approach has proved successful in 

the past, allowing real-time processing and compact system 

design [25-26]. First, the pixels from a frame 𝑖 are stored in a 

circular buffer that can deliver all pixels centered in 2x2 pixel 

regions in parallel. Then, the 𝑥, y gradients are computed in 

parallel. Using the gradients, the 𝐴, 𝐵, 𝐶 matrixes can be 

computed. Then, the circular buffers can deliver all pixels 

centered in 5x5 pixel regions in parallel. Using these regions, a 

2D spatial convolution can be computed as a stream. In order to 

achieve high performance for FPGA implementation, we 

propose the use of reconfigurable convolution units, similar to 

[22]. Finally, using the convolved images, the Eq. 4 detects the 

corresponding feature points. Based on the formulation of the 

reconfigurable convolution processors [22], any pixel in the 

output images have to be defined by integer values. This is 

highly useful since Eq. 4 is formulated with integer operations, 

reducing the hardware resources required for the 

implementation.  

3.3 The feature matching accelerator  
Fig. 4 shows the feature matching accelerator architecture. 

Similar to the extraction process, this module also delivers all 

results as a data stream. The module works as follows: first, the 

pixels from a frame 𝑖 and frame 𝑖 + 1 are stored in a circular 

buffer that can deliver all pixels centered in size 𝑟2 + 1 ×  𝑟2 +
1, where 𝑟 is the search region size. For each feature 𝑞 in frame 

𝑖 one square patch of size 𝑟 (which is the size of the search 

window) centered on the 𝑞 spatial location have to be compared 

with several square patches in frame 𝑖 + 1. Then, the patch in 

frame 𝑖 + 1 that minimizes a cost function (Eq. 8) will be the 

corresponding match with the current location of the feature 𝑞 in 

frame 𝑖 + 1. For an FPGA implementation, all pixels/patches 

can be compared in parallel, as illustrated in Fig. 5. Considering 

that the cost function is the most computational intensive 

operation, we propose a pixel-parallel/patch-parallel formulation 

to accelerate the process.  

Finally, in order to estimate the current position of a feature 𝑞 

(Eq. 6 and 7), a CASE structure allows simple solution of the 

feature matching problem. i.e., if the cost function response for 

all 𝛽, 𝜎 values are known, a CASE structure operates as a 

multiplexer implemented in hardware. This allows to detect the 

indexes that minimizes the 𝛽, 𝜎 values in simple form (indexes 

that minimizes the 𝛽, 𝜎 values represent the current position of 𝑞 

in frame 𝑖 + 1).   

 

Figure 4: The FPGA architecture for the feature matching 

algorithm  

 

Figure 5: Parallel-pipeline implementation of the proposed 

feature matching algorithm.  

4. RESULTS 
In this section preliminary results are presented for the feature 

extraction algorithm, the matching algorithm and the SLAM 

formulation, with a short discussion about the smart camera 

context.  

4.1 The feature extraction algorithm  
The algorithm was tested with several image sequences and 

different barrier values. The resulting images are shown in Fig. 

6 (detected features are centered in the circles), it demonstrates 

the flexibility with respect to the corner detection operation. In 

Tab. 1 performance comparisons with respect to others feature 

extraction algorithms commonly used in SLAM formulations 

are shown. In all cases we program the tested algorithm in a 

Matlab script. Previous algorithm such as, Harris & Stephens 

[27] or Shi–Tomasi [28] require exhaustive and complex 

mathematical operations, then, they require more processing 



time that our algorithm. In case of the FAST algorithm [29], its 

main advantage is low processing time. Although it have lowest 

processing, the mathematical formulation of our algorithm 

allows efficient FPGA implementation. Thus, the proposed 

FPGA accelerator have to manage highest processing time and 

lowest hardware requirements that any FPGA-based accelerator 

for the FAST algorithm. 

Table 1. General performance for feature extraction 

algorithms used in SLAM formulations. 

Harris [27] Shi-Tomasi [28] FAST [29] proposed 

540 ms 280 ms 120 ms 200 ms 

 * For this test 16 different images with a 1920x1080 pixel resolution were used 

 

(a) α = 64   

  

(b) α = 32    

Figure 6: Feature extraction algorithm applied over two 

consecutive frames from a video sequence. 

4.2 The feature matching algorithm  
In order to present performance comparisons, we implemented 

several feature matching algorithms suitable for SLAM 

formulations via Matlab scripts. We matched the features shown 

in Fig. 6b with the following frame of the video sequence. In 

Fig. 7, feature matching performance by applying our algorithm 

is shown. 

 

 

Figure 7: Feature-matching algorithm applied over two 

consecutive frames form a video sequence. 

In Tab. 2, we present the mean accuracy for several algorithms 

previously used in SLAM formulation. In case of the SIFT/ORB 

algorithms, they allow feature matching along large trajectories 

in simple form. However, the image degradation between 

viewpoints introduces data inconsistences that introduce 

erroneous matches. In order to achieve accuracy required by 

SLAM applications, statistically robust methods like Random 

Sample Consensus (RANSAC) have to be implemented to filter 

erroneous matches. Our algorithm allows high accuracy, 

superior to SIFT/ORB, suitable for SLAM applications and 

without any filter or post-processing step. The only limitation 

compared with SIFT/ORB is that a frame by frame feature 

matching approach is an exhaustive task. Therefore, the 

processing time have to be highest than two viewpoint 

approaches (SIFT/ORB). This can be observed in Tab. 3, were 

our algorithm and the KLT algorithm, both frame by frame 

feature-matching algorithms, have highest processing time than 

SIFT/ORB. Nevertheless, our algorithm has an important 

advantage because its mathematical formulation allows simple 

FPGA implementation, suitable for real-time processing. In 

comparison with previous work we consider that our feature-

matching approach can provides a convenient framework for 

SLAM formulations since it enables high accuracy and allows 

simple FPGA implementation for real-time processing.  

Table 2. General performance for feature matching 

algorithms used in SLAM formulations (accuracy) 

KLT [30] ORB [31] SIFT [32] proposed 

99% 88% 77% 96% 

*For this test 16 different images with a 1920x1080 pixel resolution were used 

Table 3. General performance for feature matching 

algorithms used in SLAM formulations (processing speed) 

KLT [30] ORB [31] SIFT [32] proposed 

2730 ms 417 ms 839 ms 1480 ms 

*For this test 16 different images with a 1920x1080 pixel resolution were used 

4.3 The smart camera for monocular SLAM  
In order to validate the performance, we tested via Matlab 

several indoor/outdoor video sequences. Although there are 

several datasets, in most cases several environmental restrictions 

such as, controlled illumination, uniform camera movements 

and less image degradation between frames are considered. 

Environmental restrictions limit the real-world applications 

performance since these restrictions often not be present. For our 

experiments we recorded short video sequences from our local 

library. In Fig. 8, the 3D map and camera pose obtained with 

our monocular SLAM approach for two viewpoints from a video 

sequence (Fig. 7) is presented.  The location and matching of 

feature points were carried out with our formulation. An 

acceptable 3D point location is obtained, qualitatively similar to 

what can be obtained with previous state of the art monocular-

SLAM algorithms. Therefore, the approach is suitable for 

satisfactory real-world use. In Tab. 4, numerical results for the 

test shown in Fig. 8 are presented, similar results were obtained 

for additional indoor/outdoor video sequences. 

Table 4. General performance for our SLAM algorithm 

3D density  Camera pose error Processing time  

341 features 0.017% 3716 ms 

*For this test, two different viewpoints form a video sequence of 1920x1080 pixel 

resolution were used. Similar results were obtained for 16 additional sequences.  



 

Figure 7: Results for the proposed SLAM algorithm.  Left: front view of the 3D reconstruction and the camera pose for 2 frames. 

Right: top view of the 3D environment showing the cameras and tracked object. 

 

5. CONCLUSIONS 
In this article, we introduced new feature extraction and feature 

matching algorithms suitable for FPGA implementation, 

complemented with software processing in the context of an 

SoC FPGA. The proposed feature extraction and matching 

algorithms were validated with simulation, and a high level 

FPGA architecture was introduced. The SLAM implementation 

delivers satisfactory results similar to previous work, and the 

hardware-software partition will allow for a compact FPGA 

smart camera. Since many vision algorithms rely on finding and 

tracking robust features, we consider the work can be extended 

to environments with several cameras that can collaborate 

creating complex 3D maps from the environment. Furthermore, 

the current hardware/software architecture can serve as a 

framework for additional vision processing integration that can 

enrich the monocular SLAM process. As work in progress, the 

actual FPGA implementation is being explored and a smart 

camera validation will be presented in a future forum.  
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