
HAL Id: hal-01627711
https://hal.science/hal-01627711v1

Submitted on 2 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a smart camera for monocular SLAM
Abiel Aguilar-González, Miguel Arias-Estrada

To cite this version:
Abiel Aguilar-González, Miguel Arias-Estrada. Towards a smart camera for monocular SLAM. ICDSC
’16 10th International Conference on Distributed Smart Camera, Sep 2016, Paris, France. pp.128 -
135, �10.1145/2967413.2967441�. �hal-01627711�

https://hal.science/hal-01627711v1
https://hal.archives-ouvertes.fr

Towards a smart camera for monocular SLAM

Abiel Aguilar-González and Miguel Arias-Estrada
Instituto Nacional de Astrofísica, Óptica y Electrónica

Luis Enrique Erro # 1, Tonantzintla, Puebla, México C.P. 72840

{abiel,ariasmo}@inaoep.mx

ABSTRACT

In recent years the interest on monocular-SLAM (Simultaneous

Localization and Mapping) has increased, this because nowadays

it is possible to find inexpensive, small and light commercial

cameras and they provide visual environmental information that

can be exploited to create 3D maps and camera pose in an

unknown environment. A smart camera that could deliver

monocular-SLAM is highly desirable, since it can be the basis of

several robotics/drone applications. In this article, we present a

new SLAM framework that is robust enough for indoor/outdoor

SLAM applications, and at the same time is parallelizable in the

context of FPGA architecture design. We introduce new feature-

extraction/feature-matching algorithms, suitable for FPGA

implementation. We propose an FPGA based sensor-processor

architecture where most of the visual processing is carried out in a

parallel architecture, and the 3D map construction and camera

pose estimation in the processor of a SoC FPGA. An FPGA

architecture is lay down and hardware/software partition is

discussed. We show that the proposed sensor-processor can

deliver high performance under several indoor/outdoor scenarios.

CCS Concepts

• Computer systems organization ➝ System on a chip.

Keywords

SLAM; SoC; FPGA

1. INTRODUCTION
Smart cameras integrate processing close to the image sensor, so

they can deliver high level information to a host computer/robot

or high level decision process. Progress in microprocessor power

and FPGA technology makes feasible to build compact and low

cost smart cameras, but the actual problem is how to program

them efficiently given the wide variety of algorithms and the

custom approach to have a smart camera for a specific

application, i.e., for a smart video surveillance the camera could

be detecting and tracking pedestrians, but for a robotic camera, the

accelerated processing in the camera could be edge and feature

detection. Commercially some approaches simply offer a path to

recompile an application developed in OpenCV [1] or any other

programming environment, into an embedded processor, compact

x86 compatible processor or DSP processor [2-3]. Some

companies offer a dedicated IP framework coupled with vision

processors that accelerate a subset of vision algorithms, mainly

motivated by automotive industry trends in visual assistance and a

path for self-guided vehicles technology [33].

A recent trend is the integration of GPU embedded processors in

platforms that already support a subset of OpenCV like the Jetson

TK1 and XT1 boards [4-5]. Nevertheless, an FPGA based smart

camera offer advantages from all the previous approaches:

possibility to design parallel architectures that accelerate

processing time, integration of hardware-software architectures

with the SoC FPGAs, low power consumption for embedded

applications and lower cost than GPU based embedded solutions.

The inconvenient to develop an FPGA smart camera is the lack of

standards to reuse FPGA components, lack of internal standard or

architecture to facilitate the hardware/software co-processing and

effective use of memory transfers between all the submodules in

the vision processing pipeline. The latest is being addressed with

high level languages and component reuse similar to what is done

in software. In particular, solutions like CAPH [6], GPstudio [7]

or OpenCL libraries [8] and vision pipeline standards like

OpenVX [9] are paving the road to a standard that can help build

more sophisticated vision processing pipelines.

1.1 Monocular-SLAM in a smart camera
Several SLAM solutions such as, EKF-based, graph-based and

visual-based solutions are available in the literature. However, the

recent trend is for visual-based solutions, more specifically,

monocular-SLAM (visual-SLAM with a single camera), since it

can provides visual information such as texture and color from the

scene and requires lowest power and cost than other visual-SLAM

formulations (stereo-based or RGBD-based solutions) [10]. The

basis of monocular-SLAM is that a single moving camera, can

obtain 3D information of the environment and deliver a rough 3D

map that can include texture and color of the elements within the

map. This is highly used in robotics or autonomous vehicle

applications since it is possible to navigate and at the same time

reconstruct in 3D the robot/vehicle positions and the position of

objects, obstacles, walls, etc., in its surroundings [11-12].

Having a smart camera that delivers monocular-SLAM can open

several research lines and applications, since at a higher level it

will be possible to integrate cooperative information from several

cameras, integrate other image understanding algorithms and have

a better visual representation of the world. Smart cameras with

monocular-SLAM would be useful in autonomous vehicles,

drones and mobile robotics, leveraging the central processors of

those platforms for the high computational cost of the control and

navigation tasks. The preferred choice for an FPGA-based smart

camera is to integrate low level image preprocessing tasks and

deliver the results to a software processor that performs high level

processing tasks. This approach has proved successful in the past

[13-14], and it is what we will follow. In previous work only the

feature-extractor/feature-matching algorithm was implemented in

the FPGA, while the rest of the data processing is carried on in a

conventional processor. In our case we explore further integration

of monocular-SLAM formulation into the FPGA accelerated

architecture.

1.2 Related work
Since the last decade, published articles reflect a tendency for

using vision as the only external sensorial perception system to

solve the SLAM problem [15-17]. In some cases, algorithms were

formulated in the context of a sensor or smart camera. Authors of

[18] introduced an embedded vision sensor based on

reconfigurable hardware (FPGA) to perform stereo image

processing and 3D mapping for sparse features. It was proposed

an EKF based visual SLAM. The system uses vision as the only

source of information and achieves a convenient performance for

small industrial environments. Unfortunately, the approach is

limited to sparse 3D maps and, the stereo configuration introduces

some inconvenient due to the cameras synchronization and

mechanical alignment. In [19] a visual-inertial sensor unit for

robust SLAM capabilities is presented. Four cameras are

interfaced through an ARM/FPGA design, an Inertial

Measurement Unit (IMU) provides gyro and accelerometer

measurements. The proposed approach delivers a convenient

fusion of visual and inertial cues with a level of robustness and

accuracy difficult to achieve with purely visual-SLAM systems.

The main limitation of the approach is that only the feature

extraction algorithm was accelerated in the FPGA, this represents

an inefficient hardware/software partition since other tasks such

as, feature-matching can be accelerated in the FPGA.

In [20], the architecture and the processing pipeline of a smart

camera suited for real time applications is discussed. The authors

proposed a memoryless computing architecture based on low cost

FPGA devices. It was proposed a stereo matching approach with

sub-pixel accuracy. Finally, the results are delivered via USB2.0

front end. The developed sensor allows to infer, dense and

accurate depth maps under indoor/outdoor environments. The

developed camera was used in a SLAM application, nevertheless,

all the SLAM process is carried out in a CPU implementation.

This limits the performance for robotics mobile applications in

which compact systems with low power consumption are

required. In [21] a smart camera for a real-time gesture

recognition system was presented. The smart camera was

designed and implemented in a System-on-a-Chip (SoC) device,

using reconfigurable computing technology. In this system, the

gesture images are captured by a CMOS digital camera. After

some preprocessing steps, images are sent to a Fault Tolerant

Module (FTM) for the actual recognition process. The FTM

implements a RAM-based neural network, using three knowledge

bases. A real-world application was presented, it consists of four

smart cameras used in SLAM tasks for robotic navigation. The

proposed system aims to increase the accuracy of the maps

generated by the SLAM algorithm by using images taken from the

robot perimeter. Unfortunately, the algorithm is limited to

landmarks, and the 3D maps are sparse maps that limits the

environmental understanding.

2. THE PROPOSED ALGORITHM
In this work, we are interested in a smart camera that delivers a

SLAM solution without post-processing steps and that allows a

relatively simple and compact system design. In Fig. 1 an

overview of our algorithm is shown. We accelerate the feature

extraction and feature matching in hardware while the camera

matrix/camera pose estimation and 3D estimation are

implemented in software. The hardware/software partition is

based on what parts of the algorithm can be parallelized, but also

targeting that the software part can be executed in real-time in a

processor in a SoC FPGA device. Therefore, the software

computational load must be low.

Figure 1: The proposed algorithm

2.1 Feature extraction
Several feature extraction algorithm have been reported in the

literature, nevertheless, in most cases, performance for FPGA

implementation is limited. In this work, we present a new feature

extraction algorithm that uses the maximum Eigenvalues as corner

metric response. This algorithm is robust enough to detect feature

points under any types of input images and enables efficient

FPGA implementation. Considering 𝐼 as a grayscale image, first,

we propose to compute the 𝑥, y gradients as shown in Eq. 1 and 2,

respectively.

𝐺𝑥(𝑖, 𝑗) = (𝐼(𝑖 − 1, 𝑗)) − (𝐼(𝑖 + 1, 𝑗)) (1)

𝐺𝑦(𝑖, 𝑗) = (𝐼(𝑖, 𝑗 − 1)) − (𝐼(𝑖, 𝑗 + 1)) (2)

We define the 𝐴,𝐵, 𝐶 matrixes as 𝐴(𝑖, 𝑗) = 𝐺𝑥(𝑖, 𝑗) ∙ 𝐺𝑥(𝑖, 𝑗),
𝐵(𝑖, 𝑗) = 𝐺𝑦(𝑖, 𝑗) ∙ 𝐺𝑦(𝑖, 𝑗) and 𝐶 (𝑖, 𝑗) = 𝐴(𝑖, 𝑗) ∙ 𝐵(𝑖, 𝑗). Once the

𝐴, 𝐵, 𝐶 matrixes are computed, they have to be convolved with an

appropriate Gaussian kernel. In [22] we presented an image

convolution framework that allows flexible 2D convolution and at

the same time high performance for FPGA implementation. Based

on our algorithm presented in [22], we proposed a convolution

kernel as shown in Eq. 3. Then, we convolve the 𝐴, 𝐵, 𝐶 matrixes

as following: 𝐴 = 𝐴 ∗ 𝑀, 𝐵 = 𝐵 ∗ 𝑀, 𝐶 = 𝐶 ∗ 𝑀, where the

operator ∗ represents the 2D spatial convolution between an image

𝐼 and convolution kernel 𝑀. For more details see [22].

𝑀 =

[

0
0
1

128
0
0

0
1

128
1

64
1

128
0

1

128
1

64
1

8
1

64
1

128

0
1

128
1

64
1

128
0

0
0
1

128
0
0

]

 𝑀 =

[

20

20

20

20

20

27

20

20

20

20

20

20

20

27

20

26

20

27

20

20

20

27

20

26

20

23

20

26

20

27

20

20

20

27

20

26

20

27

20

20

20

20

20

20

20

27

20

20

20

20]

(3)

 Original kernel Convolution kernel using our algorithm [22]

In order to detect feature points form an image, we proposed Eq.

4 as corner response metric, where 𝐴, 𝐵, 𝐶 are the convolved

matrices and the operator 𝑓{𝑔} is defined as shown in Eq. 5,

where 𝐶𝑛, 𝐶′𝑛 are constant values for a LUT-based square root

function [23]. In this case, LUT-based functions can be used for

hardware implementation for complex operations such as, square

roots, Euler function, etc., with low hardware consumption and

real-time processing.

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) = (𝐴(𝑖, 𝑗) + 𝐵(𝑖, 𝑗)) − 𝑓{(𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)).2

+ 4𝐶.2 }

(4)

𝑓{𝑔} = {

𝐶1, 𝑖𝑓 𝑔 ≤ 𝐶′1
𝐶2, 𝑖𝑓 𝑔 ≤ 𝐶′2

⋮
𝐶𝑛 , 𝑖𝑓 𝑔 ≤ 𝐶′2

(5)

Finally, we consider that a pixel (𝑖, 𝑗) from an image 𝐼 is a feature

point/corner only if 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) satisfy 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖, 𝑗) ≥ 𝛼,

where 𝛼 is as barrier value provided by the user. For practice, in

all our experiments we use a barrier value equal to 25, i.e. 𝛼 = 25.

2.2 Feature matching
Considering 𝐴 as a video sequence of 𝑠 frames, we can apply our

feature extraction algorithm (Section 3.1), to obtain 𝑔 initial

features defined as 𝑥𝑖(𝑔) = 𝑥, 𝑦𝑖(𝑔) = 𝑦; where 𝑥, 𝑦 are the

spatial position for all extracted points. Then, we propose a new

feature matching algorithm that searches for a square region

centered in any feature 𝑔 in frame 𝑖 that is similar or equal than a

similar size square region in frame 𝑖 + 1, located within a search

region in frame 𝑖 + 1. In this scenario, we propose Eq. 6 and 7;

where 𝑥𝑖+1(ℎ), 𝑦𝑖+1(ℎ) are the spatial locations for all the

features in frame 𝑖 + 1 and, 𝑖 + 1 satisfy 𝑖 + 1 <= 𝑠. 𝐶

measures the similarity between patches and is defined as shown

in Eq. 8, where 𝑟 is the search region size, computed via Eq. 9,

considering 𝑋, 𝑌 as the horizontal, vertical resolution of the

imager. 𝐼𝑖 and 𝐼𝑖+1 represent the spatial coordinates of pixels for

two different images captured by the imager, and 𝛽, 𝜎 are the

spatial location for all the patches in frame i+1, they ranges

between –r up to r with increments of 1.

𝑥𝑖+1(ℎ) = ∑ 𝑚𝑖𝑛𝛽𝐶(𝛽, 𝜎)

ℎ=𝑔

ℎ=1

(6)

𝑦𝑖+1(ℎ) = ∑ 𝑚𝑖𝑛𝜎𝐶(𝛽, 𝜎)

ℎ=𝑔

ℎ=1

(7)

𝐶(𝛽, 𝜎) = ∑ ∑ (𝐼𝑖(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼𝑖+1(𝑥 + 𝛽 + 𝑢, 𝑦

𝑣=𝑟

𝑣=−𝑟

𝑢=𝑟

𝑢=−𝑟

+ 𝜎 + 𝑣))2

(8)

𝑟 = min{𝑘 ∈ ℤ |√
(𝑋/128)2 + (𝑌/128)2

2
 ≤ 𝑘}

(9)

2.3 Camera matrix estimation
Given two corresponding point sets: 𝑞 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)…

 (𝑥𝑛, 𝑦𝑛)} and 𝑔 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑛, 𝑦𝑛)} (these are

obtained by applying our feature matching algorithm), a matrix 𝐴

can be estimated as following:

𝐴 [

𝑞(𝑥1) ∙ 𝑔(𝑥1)

𝑞(𝑥2) ∙ 𝑔(𝑥2)
⋮

𝑞(𝑥𝑛) ∙ 𝑔(𝑥𝑛)

𝑞(𝑦1) ∙ 𝑔(𝑥1)

𝑞(𝑦2) ∙ 𝑔(𝑥2)
⋮

𝑞(𝑦𝑛) ∙ 𝑔(𝑥𝑛)

𝑔(𝑥1)

𝑔(𝑥2)
⋮

𝑔(𝑥𝑛)

𝑞(𝑥1) ∙ 𝑔(𝑦1)

𝑞(𝑥2) ∙ 𝑔(𝑦2)
⋮

𝑞(𝑥𝑛) ∙ 𝑔(𝑦𝑛)

𝑔(𝑦1) 𝑞(𝑥1) 𝑞(𝑦1) 1

𝑔(𝑦2) 𝑞(𝑥2) 𝑞(𝑦2) 1
⋮ ⋮ ⋮ ⋮

𝑔(𝑦𝑛) 𝑞(𝑥𝑛) 𝑞(𝑦𝑛) 1

],

let [𝑈 𝑆 𝑉] denote the singular value decomposition (SVD) of 𝐴,

then, the fundamental matrix 𝐹 can be computed as

following: 𝐹 = 𝑈 ∙ 𝑑𝑖𝑎𝑔([𝐷(1,1) 𝐷(2,2)] 0) ∙ 𝑉′. Then, the

essential matrix 𝐸 can be estimated as 𝐸 = 𝐾′𝐹𝐾, where 𝐾 is the

calibration matrix for the imager. Finally, by applied singular

value decomposition (SVD) over 𝐸 and solving for a close

solution, the camera matrix 𝑃 can be estimated. For more details

about camera matrix estimation see [24].

2.4 Linear triangulation
Given two corresponding point sets: 𝑞 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)…

(𝑥𝑛 , 𝑦𝑛)}, 𝑔 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑛 , 𝑦𝑛)} and considering 𝑃1,

 𝑃2 as the camera matrix estimated via the Essential matrix and

camera matrix centered at the origin, respectively, we can

compute the following variables: 𝐴1 = 𝑞(𝑥1) ∙ 𝑃1(3, 𝑖) − 𝑃1(1, 𝑖),
𝐴2 = 𝑞(𝑦1) ∙ 𝑃1(3, 𝑖) − 𝑃1(1, 𝑖), 𝐴3 = 𝑞(𝑥1) ∙ 𝑃2(3, 𝑖) − 𝑃2(1, 𝑖), 𝐴3 =

𝑞(𝑦1) ∙ 𝑃2(3, 𝑖) − 𝑃2(1, 𝑖), 𝐴[𝐴1 𝐴2 𝐴3 𝐴4]. Finally, let [𝑈 𝑆 𝑉]
denote the singular value decomposition (SVD) over 𝐴, the 3D

positions for all the tracked points (the mapping solution of the

SLAM process) can be denoted as 𝑉(𝑖, 4). For more details about

linear triangulation see [24].

2.5 Camera pose estimation
Given two corresponding point sets: 𝑿 = {𝒙𝟏, 𝒙𝟐 …𝒙𝒏}, 𝒑 =
{𝒑𝟏, 𝒑𝟐 …𝒑𝒏}, the Least Squares algorithm [24] estimates the

translation 𝒕 and rotation 𝑹 that minimizes the sum of the squared

re-projection error, as shown in Eq. 10, where 𝒙𝒊 and 𝒑𝒊 are

feature points matching across two different viewpoints captured

by the imager.

𝐸(𝑅, 𝑡) =
1

𝑁
∑ ∥ 𝑥𝑖 − 𝑅𝑝𝑖 − 𝑡 ∥2

𝑁𝑝

𝑖=1

(10)

The algorithm definition assumes that if the correct

correspondences between feature points are known, the correct

relative rotation/translation can be calculated in closed form. i.e.,

considering accurate 2D matching (provided by our feature

tracking algorithm), the next step is to compute the center of mass

on the input sets 𝑋,𝑝 as shown in Eq. 11 and 12.

𝜇𝑥 =
1

𝑁𝑥

∑𝑥𝑖

𝑁𝑥

𝑖=1

(11)

𝜇𝑝 =
1

𝑁𝑝

∑𝑝𝑖

𝑁𝑝

𝑖=1

(12)

Then, subtract the corresponding center of mass from every point

in the input sets, as shown in Eq. 13 and 14.
𝑋′ = {𝑥𝑖 − 𝜇𝑖} = {𝑥′𝑖} (13)

𝑃′ = {𝑝𝑖 − 𝜇𝑝} = {𝑝′𝑖} (14)

Finally, let 𝑊 = ∑ 𝑥′𝑖𝑝′𝑖
𝑇𝑁𝑝

𝑖=1
 denote the singular value

decomposition (SVD) of 𝑊, defined as shown in Eq. 15; where

𝑈, 𝑉 are unitary 𝜖ℝ3×3, and 𝜎1 < 𝜎2 < 𝜎3 are the singular values

of 𝑊. Using camera geometry, it is possible to define 𝑅 = 𝑈𝑉𝑇.

Thus, If 𝑟𝑎𝑛𝑘(𝑊) = 3, the optimal solution of 𝐸(𝑅, 𝑡) is unique

and is given as shown in Eq. 16; where the minimal value of the

re-projection function at (𝑅, 𝑡) is computed by Eq. 17. For more

details see [24]

𝑊 = 𝑈 [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] 𝑉𝑇
(15)

𝑡 = 𝜇𝑥 − 𝑅𝜇𝑝 (16)

𝐸(𝑅, 𝑡) = ∑(∥ 𝑥′
𝑖 ∥2+∥ 𝑝′

𝑖
∥2)

𝑁𝑝

𝑖=1

− 2(𝜎1 + 𝜎2 + 𝜎3)

(17)

(17)

Note that in a SLAM system, the camera rotation and orientation

computed by the Least Squares algorithm represents the

localization solution of the SLAM process. In practice, the first

camera is located at the origin, and the 𝑅, 𝑡 values represent the

second camera localization with respect to the origin (considering

feature tracking across frame 1 and 2 from a video sequence

captured by the imager). This process must be iterated, i.e., to

localize the next camera the Least Squares algorithm requires

feature tracking across frames 2 and 3, and then, the third camera

localization with respect to the second can be computed.

Figure 2: An FPGA-based smart camera for monocular-SLAM

3. FPGA ARCHITECTURE
In Fig. 2 an overview of the proposed hardware-software partition

is presented. The architecture is centered on a SoC FPGA where

all recursive/parallelizable algorithms are accelerated in the FPGA

fabric while non-recursive algorithms are implemented in the

embedded processor of the SoC FPGA. In this scenario, feature

extraction/matching algorithms are implemented in hardware.

Algorithms such as: camera pose estimation and 3D

reconstruction are non-parallelizable since they require iterative

elements and complex mathematics, then a software

implementation is more suitable. In general, the basis of the

proposed smart camera is the data control unit (see Fig. 2), this

unit operates as process-sequencer, where the image subsections

are feed to/from the external SDRAM memory using a DMA; as

well as the image read out into the circular buffers used to hold

local sections of the image and allow for local parallel access and

facilitate parallel processing.

Images from the image sensor are stored in an external SDRAM

that holds at least 2 frames from the sequence, and later the

SDRAM is read by the FPGA to cache parts of the frames into

circular buffers. A memory management interface is responsible

for data transfers in segments of the image (usually several rows

of pixels) to/from the SDRAM. The core of the FPGA

architecture are the circular buffers attached to the local

processors that can hold temporarily as cache, the image sections

from two frames, and that can deliver parallel data to the

processors. Two separate image processing accelerators

implemented in parallel-pipeline form address the feature

extraction/matching step.

Data results from the FPGA processors (the computed feature

correspondences between the two frames) is post-processed by the

SoC microprocessor to obtain the camera pose and 3D

reconstruction for a pair of frames. Finally the SLAM results are

sent to a host computer using the Ethernet communication.

3.1 The circular buffers
Several image processing applications process pixel data from

small neighborhoods from an image, and carrying out a

calculation at each position of the neighborhood. For processing

purposes, the conventional approach is to store the entire input

image into a frame buffer, access the neighborhood’s pixels and

apply the operation needed to produce the output image.

Considering the convolution kernel used in the feature extractor,

25 pixel values are needed to perform the computations each time

the kernel is moved and each pixel in the image is read several

times. In this case, the memory bandwidth constraints make

impossible to obtain all pixels stored in the memory in only one

clock cycle, unless any kind of local caching is performed. In [22]

we introduced a circular buffer schema in which input data from

the previous 𝑁 rows can be stored using the memory buffers till

the moment when the neighborhood is scanned along subsequent

rows. To reuse hardware resources when new image data is

processed, a shift mechanism between buffer rows is used. Data

inside the buffer can be accessed in parallel and each input pixel is

fed only once to the FPGA device. In this work, we follow a

similar approach to achieve high data reuse and high level of

parallelism. Then, feature extraction/matching is carried out in

modules where all pixels for the convolution kernel and within the

search region can be read in parallel.

Figure 3: The FPGA architecture for the feature extraction algorithm

3.2 The feature extraction accelerator
In Fig. 3 an overview of the proposed FPGA architecture for the

feature extraction accelerator is shown. The main objective is to

process all data in stream, this approach has proved successful in

the past, allowing real-time processing and compact system

design [25-26]. First, the pixels from a frame 𝑖 are stored in a

circular buffer that can deliver all pixels centered in 2x2 pixel

regions in parallel. Then, the 𝑥, y gradients are computed in

parallel. Using the gradients, the 𝐴, 𝐵, 𝐶 matrixes can be

computed. Then, the circular buffers can deliver all pixels

centered in 5x5 pixel regions in parallel. Using these regions, a

2D spatial convolution can be computed as a stream. In order to

achieve high performance for FPGA implementation, we

propose the use of reconfigurable convolution units, similar to

[22]. Finally, using the convolved images, the Eq. 4 detects the

corresponding feature points. Based on the formulation of the

reconfigurable convolution processors [22], any pixel in the

output images have to be defined by integer values. This is

highly useful since Eq. 4 is formulated with integer operations,

reducing the hardware resources required for the

implementation.

3.3 The feature matching accelerator
Fig. 4 shows the feature matching accelerator architecture.

Similar to the extraction process, this module also delivers all

results as a data stream. The module works as follows: first, the

pixels from a frame 𝑖 and frame 𝑖 + 1 are stored in a circular

buffer that can deliver all pixels centered in size 𝑟2 + 1 × 𝑟2 +
1, where 𝑟 is the search region size. For each feature 𝑞 in frame

𝑖 one square patch of size 𝑟 (which is the size of the search

window) centered on the 𝑞 spatial location have to be compared

with several square patches in frame 𝑖 + 1. Then, the patch in

frame 𝑖 + 1 that minimizes a cost function (Eq. 8) will be the

corresponding match with the current location of the feature 𝑞 in

frame 𝑖 + 1. For an FPGA implementation, all pixels/patches

can be compared in parallel, as illustrated in Fig. 5. Considering

that the cost function is the most computational intensive

operation, we propose a pixel-parallel/patch-parallel formulation

to accelerate the process.

Finally, in order to estimate the current position of a feature 𝑞

(Eq. 6 and 7), a CASE structure allows simple solution of the

feature matching problem. i.e., if the cost function response for

all 𝛽, 𝜎 values are known, a CASE structure operates as a

multiplexer implemented in hardware. This allows to detect the

indexes that minimizes the 𝛽, 𝜎 values in simple form (indexes

that minimizes the 𝛽, 𝜎 values represent the current position of 𝑞

in frame 𝑖 + 1).

Figure 4: The FPGA architecture for the feature matching

algorithm

Figure 5: Parallel-pipeline implementation of the proposed

feature matching algorithm.

4. RESULTS
In this section preliminary results are presented for the feature

extraction algorithm, the matching algorithm and the SLAM

formulation, with a short discussion about the smart camera

context.

4.1 The feature extraction algorithm
The algorithm was tested with several image sequences and

different barrier values. The resulting images are shown in Fig.

6 (detected features are centered in the circles), it demonstrates

the flexibility with respect to the corner detection operation. In

Tab. 1 performance comparisons with respect to others feature

extraction algorithms commonly used in SLAM formulations

are shown. In all cases we program the tested algorithm in a

Matlab script. Previous algorithm such as, Harris & Stephens

[27] or Shi–Tomasi [28] require exhaustive and complex

mathematical operations, then, they require more processing

time that our algorithm. In case of the FAST algorithm [29], its

main advantage is low processing time. Although it have lowest

processing, the mathematical formulation of our algorithm

allows efficient FPGA implementation. Thus, the proposed

FPGA accelerator have to manage highest processing time and

lowest hardware requirements that any FPGA-based accelerator

for the FAST algorithm.

Table 1. General performance for feature extraction

algorithms used in SLAM formulations.

Harris [27] Shi-Tomasi [28] FAST [29] proposed

540 ms 280 ms 120 ms 200 ms

 * For this test 16 different images with a 1920x1080 pixel resolution were used

(a) α = 64

(b) α = 32

Figure 6: Feature extraction algorithm applied over two

consecutive frames from a video sequence.

4.2 The feature matching algorithm
In order to present performance comparisons, we implemented

several feature matching algorithms suitable for SLAM

formulations via Matlab scripts. We matched the features shown

in Fig. 6b with the following frame of the video sequence. In

Fig. 7, feature matching performance by applying our algorithm

is shown.

Figure 7: Feature-matching algorithm applied over two

consecutive frames form a video sequence.

In Tab. 2, we present the mean accuracy for several algorithms

previously used in SLAM formulation. In case of the SIFT/ORB

algorithms, they allow feature matching along large trajectories

in simple form. However, the image degradation between

viewpoints introduces data inconsistences that introduce

erroneous matches. In order to achieve accuracy required by

SLAM applications, statistically robust methods like Random

Sample Consensus (RANSAC) have to be implemented to filter

erroneous matches. Our algorithm allows high accuracy,

superior to SIFT/ORB, suitable for SLAM applications and

without any filter or post-processing step. The only limitation

compared with SIFT/ORB is that a frame by frame feature

matching approach is an exhaustive task. Therefore, the

processing time have to be highest than two viewpoint

approaches (SIFT/ORB). This can be observed in Tab. 3, were

our algorithm and the KLT algorithm, both frame by frame

feature-matching algorithms, have highest processing time than

SIFT/ORB. Nevertheless, our algorithm has an important

advantage because its mathematical formulation allows simple

FPGA implementation, suitable for real-time processing. In

comparison with previous work we consider that our feature-

matching approach can provides a convenient framework for

SLAM formulations since it enables high accuracy and allows

simple FPGA implementation for real-time processing.

Table 2. General performance for feature matching

algorithms used in SLAM formulations (accuracy)

KLT [30] ORB [31] SIFT [32] proposed

99% 88% 77% 96%

*For this test 16 different images with a 1920x1080 pixel resolution were used

Table 3. General performance for feature matching

algorithms used in SLAM formulations (processing speed)

KLT [30] ORB [31] SIFT [32] proposed

2730 ms 417 ms 839 ms 1480 ms

*For this test 16 different images with a 1920x1080 pixel resolution were used

4.3 The smart camera for monocular SLAM
In order to validate the performance, we tested via Matlab

several indoor/outdoor video sequences. Although there are

several datasets, in most cases several environmental restrictions

such as, controlled illumination, uniform camera movements

and less image degradation between frames are considered.

Environmental restrictions limit the real-world applications

performance since these restrictions often not be present. For our

experiments we recorded short video sequences from our local

library. In Fig. 8, the 3D map and camera pose obtained with

our monocular SLAM approach for two viewpoints from a video

sequence (Fig. 7) is presented. The location and matching of

feature points were carried out with our formulation. An

acceptable 3D point location is obtained, qualitatively similar to

what can be obtained with previous state of the art monocular-

SLAM algorithms. Therefore, the approach is suitable for

satisfactory real-world use. In Tab. 4, numerical results for the

test shown in Fig. 8 are presented, similar results were obtained

for additional indoor/outdoor video sequences.

Table 4. General performance for our SLAM algorithm

3D density Camera pose error Processing time

341 features 0.017% 3716 ms

*For this test, two different viewpoints form a video sequence of 1920x1080 pixel

resolution were used. Similar results were obtained for 16 additional sequences.

Figure 7: Results for the proposed SLAM algorithm. Left: front view of the 3D reconstruction and the camera pose for 2 frames.

Right: top view of the 3D environment showing the cameras and tracked object.

5. CONCLUSIONS
In this article, we introduced new feature extraction and feature

matching algorithms suitable for FPGA implementation,

complemented with software processing in the context of an

SoC FPGA. The proposed feature extraction and matching

algorithms were validated with simulation, and a high level

FPGA architecture was introduced. The SLAM implementation

delivers satisfactory results similar to previous work, and the

hardware-software partition will allow for a compact FPGA

smart camera. Since many vision algorithms rely on finding and

tracking robust features, we consider the work can be extended

to environments with several cameras that can collaborate

creating complex 3D maps from the environment. Furthermore,

the current hardware/software architecture can serve as a

framework for additional vision processing integration that can

enrich the monocular SLAM process. As work in progress, the

actual FPGA implementation is being explored and a smart

camera validation will be presented in a future forum.

6. REFERENCES
[1] OPENCV (Open source Computer Vision): 2015.

http://opencv.org/. Accessed: 2016- 15- 05.

[2] Batlle, J., Marti, J., Ridao, P., & Amat, J. 2002. A new

FPGA/DSP-based parallel architecture for real-time image

processing. Real-Time Imaging, 8(5), 345-356.

[3] Pulli, K., Baksheev, A., Kornyakov, K., & Eruhimov, V.

2012. Real-time computer vision with OpenCV.

Communications of the ACM, 55(6), 61-69.

[4] Rud, M. N., & Pantiykchin, A. R. 2014. Development of

GPU-accelerated localization system for autonomous

mobile robot. In Mechanical Engineering, Automation and

Control Systems (MEACS), 2014 International Conference

on (pp. 1-4). IEEE.

[5] Vega, A., Lin, C. C., Swaminathan, K., Buyuktosunoglu,

A., Pankanti, S., & Bose, P. 2015. Resilient, UAV-

embedded real-time computing. In Computer Design

(ICCD), 2015 33rd IEEE International Conference on (pp.

736-739). IEEE.

[6] Sérot, J., Berry, F., & Ahmed, S. 2013. Caph: A language

for implementing stream-processing applications on

FPGAs. In Embedded Systems Design with FPGAs (pp.

201-224). Springer New York.

[7] GPStudio: 2015. http://gpstudio.univ-bpclermont.fr/.

Accessed: 2016- 15- 05.

[8] OpenCL (Open Computing Language): 2015.

https://www.altera.com/products/design-

software/embedded-software-developers/opencl/

overview.html/. Accessed: 2016- 15- 05.

[9] OpenVX: 2015. https://www.khronos.org/openvx/.

Accessed: 2016- 15- 05.

[10] Fuentes-Pacheco, J., Ruiz-Ascencio, J., & Rendón-Mancha,

J. M. 2015. Visual simultaneous localization and mapping:

a survey. Artificial Intelligence Review, 43(1), 55-81.

[11] Kong, W., Zhou, D., Zhang, D., & Zhang, J. 2014. Vision-

based autonomous landing system for unmanned aerial

vehicle: A survey. In Multisensor Fusion and Information

Integration for Intelligent Systems (MFI), 2014

International Conference on (pp. 1-8). IEEE.

[12] Lee, C. S., Nagappa, S., Palomeras, N., Clark, D. E., &

Salvi, J. (2014). Slam with sc-phd filters: An underwater

vehicle application. Robotics & Automation Magazine,

IEEE, 21(2), 38-45.

[13] Bourrasset, C., Maggianiy, L., Sérot, J., Berry, F., &

Pagano, P. 2013. Distributed FPGA-based smart camera

architecture for computer vision applications. In

Distributed Smart Cameras (ICDSC), 2013 Seventh

International Conference on (pp. 1-2). IEEE.

[14] Birem, M., & Berry, F. (2014). Dreamcam: A modular

fpga-based smart camera architecture. Journal of Systems

Architecture, 60(6), 519-527.

[15] Engel, J., Schöps, T., & Cremers, D. 2014. LSD-SLAM:

Large-scale direct monocular SLAM. In Computer Vision–

ECCV 2014 (pp. 834-849). Springer International

Publishing.

[16] Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. 2015.

ORB-SLAM: a versatile and accurate monocular SLAM

system. Robotics, IEEE Transactions on, 31(5), 1147-

1163.Birem, M., & Berry, F. (2014). Dreamcam: A

https://www.altera.com/products/design-software/embedded-software-developers/opencl/
https://www.altera.com/products/design-software/embedded-software-developers/opencl/

modular fpga-based smart camera architecture. Journal of

Systems Architecture, 60(6), 519-527.

[17] Herrera, C., Kim, K., Kannala, J., Pulli, K., & Heikkila, J.

2014. DT-SLAM: Deferred Triangulation for Robust

SLAM. In 3D Vision (3DV), 2014 2nd International

Conference on (Vol. 1, pp. 609-616). IEEE.

[18] Spampinato, G., Lidholm, J., Ahlberg, C., Ekstrand, F.,

Ekstrom, M., & Asplund, L. 2013. An embedded stereo

vision module for industrial vehicles automation. In

Industrial Technology (ICIT), 2013 IEEE International

Conference on (pp. 52-57). IEEE.

[19] Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S.,

Furgale, P. T., & Siegwart, R. 2014. A synchronized visual-

inertial sensor system with FPGA pre-processing for

accurate real-time SLAM. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on (pp. 431-

437). IEEE.

[20] Mattoccia, S., & Macri, P. 2014. A Real Time 3D Sensor

for Smart Cameras. In Proceedings of the International

Conference on Distributed Smart Cameras (p. 29). ACM.

[21] Bonato, V., Fernandes, M. M., & Marques, E. 2006. A

smart camera with gesture recognition and SLAM

capabilities for mobile robots. International journal of

electronics, 93(6), 385-401.

[22] Aguilar-González, A., Arias-Estrada, M., Pérez-Patricio,

M., & Camas-Anzueto, J. L. 2015. An FPGA 2D-

convolution unit based on the CAPH language. Journal of

Real-Time Image Processing, 1-15.

[23] Bobda, C., & Velipasalar, S. 2014. Distributed Embedded

Smart Cameras. Springer.

[24] Hartley, R., & Zisserman, A. 2003. Multiple view geometry

in computer vision. Cambridge university press.

[25] Pérez-Patricio, M., & Aguilar-González, A. 2015. FPGA

implementation of an efficient similarity-based adaptive

window algorithm for real-time stereo matching. Journal of

Real-Time Image Processing, 1-17.

[26] Di Stefano, L., Marchionni, M., & Mattoccia, S. 2004. A

fast area-based stereo matching algorithm. Image and

vision computing, 22(12), 983-1005.

[27] Harris, C., & Stephens, M. 1988. A combined corner and

edge detector. In Alvey vision conference (Vol. 15, p. 50).

[28] Tommasini, T., Fusiello, A., Trucco, E., & Roberto, V.

1998, June. Making good features track better. In Computer

Vision and Pattern Recognition, 1998. Proceedings. 1998

IEEE Computer Society Conference on (pp. 178-183).

IEEE.

[29] Rosten, E., & Drummond, T. 2005. Fusing points and lines

for high performance tracking. In Computer Vision, 2005.

ICCV 2005. Tenth IEEE International Conference on (Vol.

2, pp. 1508-1515). IEEE.

[30] Lucas, B. D., & Kanade, T. (1981, August). An iterative

image registration technique with an application to stereo

vision. In IJCAI (Vol. 81, pp. 674-679).

[31] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. 2011.

ORB: an efficient alternative to SIFT or SURF. In

Computer Vision (ICCV), 2011 IEEE International

Conference on (pp. 2564-2571). IEEE.

[32] Lowe, D. G. 1999. Object recognition from local scale-

invariant features. In Computer vision, 1999. The

proceedings of the seventh IEEE international conference

on (Vol. 2, pp. 1150-1157). Ieee.

[33] CadenceGroup: 2016. http://ip.cadence.com. Accessed:

2016- 15- 05.

