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The V state of ethylene: valence bond theory takes
up the challenge

Wei Wu • Huaiyu Zhang • Benoı̂t Braı̈da •

Sason Shaik • Philippe C. Hiberty

Abstract The ground state and first singlet excited state

of ethylene, so-called N and V states, respectively, are

studied by means of modern valence bond methods. It is

found that extremely compact wave functions, made of

three VB structures for the N state and four structures for

the V state, provide an N ? V transition energy of 8.01 eV,

in good agreement with experiment (7.88 eV for the

N ? V transition energy estimated from experiments).

Further improvement to 7.96/7.93 eV is achieved at the

variational and diffusion Monte Carlo (MC) levels,

respectively, VMC/DMC, using a Jastrow factor coupled

with the same compact VB wave function. Furthermore,

the measure of the spatial extension of the V state wave

function, 19.14 a0
2, is in the range of accepted values

obtained by large-scale state-of-the-art molecular orbital-

based methods. The r response to the fluctuations of the p
electrons in the V state, known to be a crucial feature of the

V state, is taken into account using the breathing orbital

valence bond method, which allows the VB structures to

have different sets of orbitals. Further valence bond cal-

culations in a larger space of configurations, involving

explicit participation of the r response, with 9 VB struc-

tures for the N state and 14 for the V state, confirm the

results of the minimal structure set, yielding an

N ? V transition energy of 7.97 eV and a spatial extension

of 19.16 a0
2 for the V state. Both types of valence bond

calculations show that the V state of ethylene is not fully

ionic as usually assumed, but involving also a symmetry-

adapted combination of VB structures each with asym-

metric covalent p bonds. The latter VB structures have

cumulated weights of 18–26 % and stabilize the V state by

about 0.9 eV. It is further shown that these latter VB

structures, rather than the commonly considered zwitter-

ionic ones, are the ones responsible for the spatial exten-

sion of the V state, known to be ca. 50 % larger than the

V state.

Keywords Valence bond � Quantum Monte Carlo �
V state of ethylene � Breathing orbitals

1 Introduction

It often happens that valence bond (VB) theory provides

compact and accurate descriptions of difficult test cases

which, by contrast, necessitate long configuration
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UPMC Université Paris 06, C. 137, 4 Place Jussieu,

75252 Paris Cedex 05, France

e-mail: benoit.braida@upmc.fr

S. Shaik (&)

Institute of Chemistry and The Lise Meitner-Minerva Center

for Computational Quantum Chemistry, Hebrew University

of Jerusalem, 91904 Jerusalem, Israel

e-mail: sason.shaik@gmail.com

P. C. Hiberty (&)

Laboratoire de Chimie Physique, CNRS UMR8000, Bat. 349,
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expansions in the molecular orbital (MO) framework. As

well-known examples, spin-coupled (SC) theory [1, 2] and

generalized valence bond (GVB) theory [3, 4] are able to

provide the most possible compact wave functions taking

care of most of the static correlation energy in a molecule.

Moreover, other VB-type methods include also dynamic

correlation in a simple and lucid way [5–8]. Usually,

dynamic correlation is retrieved in the MO framework by

means of complete active space self-consistent-field

approach (CASSCF) followed by a perturbative treatment

(CASPT2), while VB methods may include dynamic cor-

relation without increasing the number of VB structures,

e.g., by using the breathing orbital effect [9–11].

The first singlet excited state of ethylene (so-called the

V state) is a notoriously difficult test case. Thus, even an

extensive CASPT2 calculations, involving an all-valence

(12,12) active space, were found to be unsuccessful [12],

and the correct description required more elaborate treat-

ments. In the present paper, we pose the question whether

VB theory can handle the challenge and still provide a

compact but accurate description with a lucid account of

electronic correlation? Taking up this challenge is our way

of honoring Prof. Dunning who has significantly contrib-

uted to the revival of VB theory, among his other numerous

achievements.

The V state of ethylene, according to the Merer-Mul-

liken notation [13], is a singlet excited state of B1u sym-

metry dominated by the pu ? pg MO configuration, which

can be qualitatively represented in VB terms as a resonance

between two zwitterionic structures, Scheme 1. The V state

exhibits a broad UV absorption band with a maximum at

7.66 eV [14]. For a long time now, the V state poses an

intriguing test case and exceptionally difficult to describe

for theoreticians despite the small molecular size. Up to the

late seventies, it was not even clear whether this state was

of valence or Rydberg nature [15–19]. At the Hartree–Fock

level, the V state exhibited characteristics of a Rydberg

state [15], owing to a very large spatial extent of the wave

function as measured by an hx2i expectation value of

42.1 a0
2 (x being the axis orthogonal to the molecular

plane), which is four times larger than the value of 11.9 a0
2

computed for the ground state (the N state) [20]. However,

Bender et al. [20] and Buenker and Peyerimhoff [21]

showed that wave functions computed with configuration

interaction (CI) are considerably more contracted than the

Hartree–Fock one, so that the diffuse character of the state

in the latter method is artificial. A few years later,

McMurchie and Davidson [22] presented the first definitive

theoretical evidence that the V state is essentially a valence

type. Thus, using a configuration selection scheme by

classes of excitations in order to ensure a correct descrip-

tion of all correlation effects, involving the p and p*

electrons, these authors obtained the values 17.8 a0
2 for hx2i

and 7.96 eV for the N ? V transition energy. Remarkably,

McMurchie and Davidson found that including excitations

of r ? r* type along with p ? p* ones are essential to

give the V state its correct spatial extension. This indicates

that inclusion of dynamic electron correlation in the p
space must by accompanied by a concomitant reoptim-

ization of the r orbitals [23, 24], a condition that is not met

at the Hartree–Fock or CASSCF levels. It follows that even

CASPT2 calculations, which are based on these latter

levels, overestimate the energy of the V state and place it

close to the Rydberg 3dpg configuration [25]. This energy

proximity creates a spurious valence-Rydberg mixing,

making the vertical N ? V transition energy (Te) artifi-

cially correct. As such, getting reasonable Te values is not

sufficient to validate a calculation, since improper orbital

optimization can lead to spurious Rydberg character. A

valid description of the V state must display both an

accurate N ? V transition energy and an adequate value of

spatial extent of the wave function, as measured by hx2i.
Indeed, later computations by Buenker et al. [18, 19]

obtained values of 19–20 a0
2 for hx2i and 8.05 eV for Te,

employing larger basis sets and MRSDCI configuration

selection.

At this point, it is important to note that the calculated Te

value that best matches the experiment is not 7.66 eV, the

maximum of the absorption band. The Te value should be

higher, if vibrational corrections were taken into account.

On the basis of zero-point energy corrections, Davidson

proposed that the best estimate for Te should be 7.8 eV

[26]. More recently, Lasorne et al. [27] found a value of

7.92 eV for Te at a sophisticated MRCI level and then

performed quantum dynamics simulation that reproduced

the absorption spectrum with a maximum at 7.70 eV, only

0.04 eV above the experimental value. As such, the theo-

retical Te value that best matches experiment lies 0.22 eV

above the absorption maximum, giving rise to the value of

7.88 eV as the best theoretical estimate.

Since the difficulty of calculating the Te and hx2i values

arises from a lack of sufficient electron correlation at the

orbital optimization step, various strategies have been

devised to optimize the orbitals at a better level than

Hartree–Fock or CASSCF. Roos et al. [28] used a multi-

state CASPT2 scheme, allowing the zero-order states to

mix among themselves under the effect of dynamic cor-

relation, and got a Te value of 7.98 eV, with an hx2i value

1a 1b

Scheme 1 Traditional representation of the V ionic excited state of

ethylene



in the range 18–20 a0
2. Krebs and Buenker performed an

MRCI calculation in large basis set, including up to more

than one million configurations state functions (CSFs), and

estimated Te in the range 7.90–7.95 eV [29]. An even more

extensive MRCI calculation was performed by Müller et al.

[30], including up to 80 million CSFs, yielding a Te value

of 7.7 eV. Both these MRCI calculations provide hx2i
values in the range 16.5–20 a0

2. Still another strategy was

used by Schautz and Filippi [31]. They performed diffusion

Monte Carlo (DMC) calculations after optimization of the

orbitals in the presence of the Jastrow factor at the VMC

level. Their best Te value was 7.92 eV, with hx2i being

*20 a0
2. The quantum Monte Carlo (QMC) method was

also used by Anderson and Goddard, in an endeavor to use

a GVB determinantal part times a Jastrow factor as a DMC

form of trial wave function. For the sake of cost-efficiency,

the orbitals were taken from a previous bare GVB calcu-

lations and not reoptimized at the DMC level, as orbital

reoptimization is a time-consuming part in QMC calcula-

tions. This strategy proved very successful for a number of

excited states of ethylene and other molecules, but less so

for the V state of ethylene, leading to a Te value of 8.27 eV

[32].

Recently, Angeli analyzed in detail the requirements

for the correct description of the V state of ethylene and

more generally the ionic p ? p* excited states of

polyenes, using qualitative VB reasonings [12]. The

importance of the r–p mixing, also called rp correlation,

was explained in terms of a dynamic response of the r
framework to the field generated by the p electrons in

each ionic structure. In short, the r MOs follow the charge

fluctuation in the p system (represented as 1a $ 1b in

Scheme 1) by polarizing in a dynamic way so as to

dampen the net charge on each carbon atom. Impor-

tantly, Angeli also showed that taking into account the

latter effect induces a spatial contraction of the p atomic

orbitals (AOs), thus eliminating the spurious Rydberg

character due to incomplete electron correlation. The

strategy that was used to get an appropriate set of

orbitals for CI was to optimize the orbitals in a

self-consistent field manner using a restricted-active-

space-SCF (RASSCF) calculation containing all the

excitations describing the dynamic r polarization. Then,

these orbitals were used in a CAS-CI(2,2) or CAS-

CI(6,6), followed by a multistate perturbative treatment

to second order. The procedure proved successful, with

hx2i values in the range 15.8–18.7 a0
2 and Te values of

7.65–7.80 eV.

It is clear from the above that the reasons for the early

difficulties to describe the V state are now well understood

and that there exist well-defined strategies to obtain rea-

sonable values for the diffuseness of this state as well as

N ? V transition energy in the MO-CI framework [12, 22,

33–35]. Still, the corresponding wave functions, which are

constructed with large perturbative expansions, lack com-

pactness and lucid interpretability, whereas the compact

CASSCF(2,2) wave function is quite inaccurate. However,

it has always been our experience that some ab initio VB

methods, providing static and dynamic correlations [9–11,

36–38], are able to give quantitative results as well as

physical insight by means of very compact wave functions,

with a very small number of chemically lucid VB struc-

tures. Examples involve dissociation reactions of two-

electron bonds [9, 39] and three-electron bonds [40],

reaction barriers [41, 42], transition energies [43], and so

on [7]. Thus, in view of the difficulties encountered by

many researchers and the elaborate strategies that had to be

devised to describe the V state of ethylene with MO-CI

methods, we decided to address the problem by the use of

ab initio VB methods, with the aim of getting accurate

values of N ? V transition energies as well as diffuseness

hx2i values, from compact and insightful VB wave func-

tions. Furthermore, we want the strategy for choosing the

relevant VB structures to emerge from clear physical

principles, without the need of preliminary large-scale

calculations.

There are already some clues that this simple approach

should be successful: (1) the effect of paramount impor-

tance to the accurate description of the V state is the

dynamic response of the r orbitals to the fluctuations of the

p electrons. This effect is very simply described by means

of the breathing orbital valence bond (BOVB) method [9–

11]. Furthermore, this effect can be easily turned off,

allowing one to visualize and assess the effects of dynamic

rp correlation on the size of orbitals and on the

N ? V transition energy. (2) BOVB, as well as quantum

Monte Carlo valence bond methods (QMC-VB) [44–46],

includes all the necessary dynamic correlation for both the

N and V states, and (3) most of the MO-CI strategies that

get an accurate description of the V state are in fact based

on qualitative VB reasonings.

Based on these considerations, modern VB methods can

take up the challenge of reconciling compactness, accu-

racy, and physical insight in the calculation of the V state of

ethylene. The paper is organized as follows. First, the VB

methods are briefly described in a theoretical section. Then,

the VB structures are chosen, and finally, the results are

presented and discussed.

1.1 Theoretical methods

1.1.1 The VB wave function

A many-electron system wave function, W, is expressed in

VB theory as a linear combination of Heitler–London–

Slater–Pauling (HLSP) functions, UK in Eq. 1,



W ¼
X

K

CKUK ð1Þ

where UK corresponds to ‘‘classical’’ VB structures, and

CK is the corresponding structural coefficients. An

important feature of our VB calculations is that all the

active orbitals, i.e., those that have varying occupancies in

the VB structures, are strictly localized on a single atom,

like in the classical VB method. This ensures a clear

correspondence between the mathematical expressions of

the VB structures and their physical meaning, ionic or

covalent.

Several definitions exist for the weights of the VB

structures [6]. The Coulson–Chirgwin formula [47], Eq. 2,

is the equivalent of a Mulliken population analysis in VB

theory:

WK ¼ C2
K þ

X

L 6¼K

CKCLSKL ð2Þ

Here, SKL is the overlap integral of two VB structures.

However, as this definition becomes meaningless when

the overlaps are large, alternative definitions have also

been proposed. Löwdin’s scheme for symmetric orthogo-

nalization [48] (Eq. 3)

WL€owdin
K ¼

X

IJ

S
1=2
KI CIS

1=2
KJ CJ ð3Þ

is an attractive option, which leads to orthogonalized

functions deviating as little as possible from the original

set.

Another appropriate definition, which also remedies the

overlap dependence problem, is the ‘‘inverse-overlap’’

Norbeck-Gallup formula [49] (Eq. 4), which is close to the

normalized squares of coefficients:

WInv
K ¼ NC2

K

S�1
KK

ð4Þ

where N is a normalization factor.

1.1.2 The VB levels

There are several computational approaches for VB theory

at the ab initio level [5, 7]. In the VB self-consistent field

(VBSCF) procedure [50], both the VB orbitals and struc-

tural coefficients are optimized simultaneously to minimize

the total energy. The breathing orbital valence bond

method (BOVB) [9–11] improves the VBSCF accuracy

without increasing the number of VB structures UK. This is

achieved by allowing each VB structure to have its own

specific set of orbitals during the optimization process,

such that the orbitals can be different from one VB struc-

ture to the other. In this manner, the orbitals can fluctuate

in size and shape so as to fit the instantaneous charges of

the atoms on which these orbitals are located. As such,

effectively, BOVB covers a much larger variational space

than CASSCF/VBSCF, without losing the compactness of

the wave function.

The orbitals in either VBSCF or BOVB are not

restricted to be orthogonal, and thus, it is not guaranteed

that orbitals that are localized on the same fragment will be

independent of each other. However, since we always

obtain a unique variationally optimized solution, wherein

both orbitals and structural coefficients are fully optimized,

the nonuniqueness of the orbitals, if happens, does not

matter.

The BOVB method has several levels of sophistication

[11]. Here, we chose the ‘‘SD-BOVB’’ level, whereby each

doubly occupied active orbital is split into a pair of singly

occupied orbitals accommodating a spin-pair, so as to

account for the radial correlation of the electrons involved

in the lone pair. Moreover, as indicated by the letter D

(delocalized), the orbitals that do not belong to the active

space are allowed to delocalize. The VBSCF and BOVB

calculations have been performed using three different

basis sets: (1) the standard 6-31G* basis set, (2) the cor-

relation-consistent triple-zeta cc-pVTZ of Dunning et al.

[51], and (3) a mixed basis set of triple-zeta ? diffuse

quality on the carbons, made of the aug-cc-pVTZ basis set

[52] for carbons and of the cc-pVDZ basis set [51] for

hydrogens. This latter basis set is referred to as aug-VTZ in

this work.

1.1.3 The VB-QMC levels

Very recently, a mixed valence bond/quantum Monte Carlo

(VB-QMC) method has been proposed which managed to

provide high accuracy while keeping the full interpretative

capabilities of classical valence bond methods [44–46].

The VB-QMC wave function we utilize here consists of a

VBSCF determinant part multiplied by a Jastrow function

that is included to account for electronic correlation. The

Jastrow function is the same as in previous studies [44–46]

and includes explicit two-body electron–electron, electron–

nucleus, and also three-body electron–electron–nucleus

terms. In this study, the energies of the N and V states are

computed by optimizing simultaneously Jastrow parame-

ters, VB structural coefficients, and, in some specified

cases, also orbitals. The variational Monte Carlo (VMC)

optimization algorithm is used on the multi-structure wave

function and separate atoms, respectively, by minimizing

the total energy and a small percentage of variance (1 %)

using the linear optimization method [46]. These VB-VMC

wave functions are then projected onto the ground state

using the diffusion Monte Carlo (DMC) algorithm under

the fixed-node approximation, a procedure that recovers

most of the remaining correlation effects that are missing at

the VB-VMC level, while at the same time compensating



basis set deficiencies, and usually provides very accurate

energy differences [44, 53]. This latter method is referred

to here as VB-DMC. For all VB-QMC calculations, a

systematically convergent triple-zeta polarized basis set of

Burkatzki et al. [54] for carbon, supplemented with the

s and p diffuse functions taken from the standard aug-cc-

pVTZ basis set, and the double-zeta basis set of Burkatzki

et al. for the hydrogen atom, was used together with their

corresponding pseudo-potentials. The so-constructed basis

set will be referred to here as ps-aug-VTZ.

All calculations were performed using the experimental

equilibrium geometry of ethylene: RCH = 1.086 Å,

RCC = 1.339 Å, \HCH = 117.6�. The VBSCF and BOVB

calculations were carried out with the Xiamen Valence

Bond (XMVB) program [55–57]. All the QMC calculations

were carried out using the CHAMP program [58].

1.2 The VB structures set

Restricting ourselves to an MO space of two orbitals and

two electrons, so-called (2,2) space, the description of the

N state of ethylene becomes straightforward: structure 2, in

which the p bond is fully covalent (Scheme 2), comple-

mented with two ionic structures 3a and 3b that we define

with split p atomic orbitals (AOs) for full generality. For

the V state, the simplest way to get an elementary VB

description is to expand the pp* MO configuration into VB

structures. Doing this in minimal basis set would yield the

familiar picture 1a $ 1b shown above in Scheme 1.

However, the expansion in extended basis sets yields

additional terms, because the p and p* MOs are made from

different AOs, p0a and p0b in p* being generally more diffuse

than pa and pb in p:

p / ðpa þ pbÞ ð5aÞ

p� / p0a�p0b
� �

; p0a 6¼ pa; p0b 6¼ pb ð5bÞ

where the labels a and b refer to the left and right carbon

atoms, respectively.

Using these orbital expressions and expanding pp* give

rise to four VB structures instead of two, as shown in Eq. 6

below, dropping normalization constants:

p�p� � �pp�j j ¼ ðpa þ pbÞð�p0a � �p0bÞ � ð�pa þ �pbÞðp0a � p0bÞ
�� ��

¼ pa �p0a
�� ��� �pap0a

�� ��� �
� pb �p0b
�� ��� �pbp0b

�� ��� �

� pa �p0b
�� ��� �pap0b

�� ��� �
þ pb �p0a
�� ��� �pbp0a

�� ��� �

ð6Þ

where the terms in parentheses represent structures 3a, 3b,

4a, and 4b, respectively, in Scheme 2. In 3a and 3b, one

recognizes the zwitterionic structures analogous to 1a and

1b, with the difference that the electrons pairs are split into

different AOs, thus including some radial correlation. On the

other hand, 4a and 4b are asymmetric covalent types, which

have not been considered before. Their negative combina-

tion (4a–4b) has the right symmetry (B1u) to contribute to the

V state and has the same constrained coefficient as (3a–3b) in

pp* (Eq. 6). The importance or lack thereof of 4a and 4b as

contributors to the V state will be determined by the quan-

titative VB calculations below, in which the coefficients of

all VB structures will be fully relaxed and optimized.

To calculate the N ? V transition energy, it is necessary

to calculate both the N and V states at a consistent level of

accuracy. This will be done by describing the N state with

the three structures 2, 3a, and 3b (these two latter ones will

combine with a positive sign), while the V state will involve

the negative combinations (3a–3b) and (4a–4b). This set of

five structures will be denoted as VBSCF-5 or BOVB-5,

according to the level of VB theory. In all structures 2–4 of

the (2,2) space, the r frame, made of the r–CC and CH

bonds, is described as a set of doubly occupied MOs. It

should be noted that even this small (2,2) space is sufficient

to account for the r response to the fluctuation of p elec-

trons, provided the underlying r MOs are allowed to be

different for different VB structures, as in the BOVB

method. This effect is illustrated (in part) in Scheme 2

where the r–CC bonding MOs are drawn as polarized in

opposite directions in 3a and 3b.

3a 3b

4a 4b

2

Scheme 2 Set of VB structures

for the N and V states in the

(2, 2) space. The r–CC bond is

represented as a doubly

occupied bonding MO, which is

polarized in opposite directions

in 3a and 3b at the BOVB level



A more detailed way to allow for the r response to

fluctuations of the p electrons is to describe both the p space

and the r–CC bond in a VB fashion. This can be achieved

by extending the VB space for the N and V states to the 15

VB structures displayed in Scheme 3. Here, the r–CC bond

is not any more described as a doubly occupied MO, but as a

combination of covalent and ionic structures. Hence, the rp
correlation will be visualized as the difference in weights

between structures 8a, 8b versus 9a, 9b. The VB structure set

in Scheme 3 will be denoted as VBSCF-15 or BOVB-15.

2 Results

2.1 VB calculations in the (2, 2) space

Although it is well known that basis sets involving diffuse

basis functions are required for the description of states

involving a dominant ionic component, it is interesting to

start with smaller basis sets and then proceed to the largest.

Table 1 displays the results of calculations in the

6-31G* double-zeta basis set. For the N state, all compu-

tational levels provide an hx2i value in agreement with the

accepted value, 11–12 a0
2 [20]. However, the calculated

hx2i values for the V state appear to be much too small,

around 12 a0
2, showing that the 6–31G* basis set is not

appropriate to allow the V state to be 50 % more diffuse

than the N state, as it should. It is therefore not surprising

that all N ? V transition energies are largely overesti-

mated in this basis set, even at the BOVB level (by 1.23 eV

in BOVB-5).

As can be seen in Table 2, the hx2i values of the V state

are practically not improved in the larger cc-pVTZ basis

set, which is of triple-zeta quality but still devoid of diffuse

basis functions; however, the transition energies are

improved and deserve some comments. The

7a

7b

10a

10b

5 6a

8a 9a

8b 9b

11a 12a

11b 12b

6b

Scheme 3 Set of VB structures

for the N and V states in the

(4, 4) space



N ? V transition energy is lower at the VBSCF-5 level

than at the CASSCF one, although the latter configuration

space contains all VB structures 2–5 and more. This is

because the coefficients of the VB structures in the

CASSCF space are somewhat constrained, whereas they

are fully optimized in VBSCF. Besides, the slight non-

equivalence of CASSCF and VBSCF calculations even

when both span the same variational space [6] has also

been pointed out.1

The importance of structures 4a and 4b can be appre-

ciated by performing a VB study in a smaller space,

restricted to 2, 3a, and 3b. The results at the VBSCF and

BOVB levels (referred to as VBSCF-3 and BOVB-3,

respectively) show that removing 4a and 4b from the VB

space causes a considerable increase in the transition

energy relative to the reference VBSCF-5 and BOVB-5

levels, in both 6-31G* and cc-pVTZ basis sets, indicating

that structures 4a and 4b stabilize the V state by some 0.7-

0.9 eV. Lastly, the effect of dynamic correlation in the p
system on the transition energy, as measured by the

BOVB-VBSCF difference, is seen to be quite large, ca.

0.9 eV in cc-pVTZ basis set and 1.1 eV in 6-31G*. These

differences indicate that allowing the r response to fluc-

tuations of the p electrons is of importance, as will be

analyzed in more details below. The best transition energy

in these two basis sets amounts to 8.47 eV, at the BOVB-5/

cc-pVTZ level. This last result, which is off by ca. 0.6 eV

relative to experiment, as well as the hx2i diffuseness value

which is found too small for the V state, indicates that basis

sets devoid of diffuse basis functions are inappropriate for

the problem at hand, as already discovered long ago by

Roos et al. [59, 60]. In accord, the rest of the study will be

performed in a triple-zeta basis set augmented with diffuse

basis functions on the carbon atoms, and a double-zeta

basis set on the hydrogen atoms, so-called aug-VTZ (see

Theoretical methods).

Table 3 displays results calculated in the aug-VTZ basis

set, which in principle combines all the requirements in

terms of flexibility and diffuseness to reliably describe an

ionic state, which does not have a Rydberg character.

Inspection of Table 3 reveals that the hx2i values of the

ground state are practically unchanged relative to smaller

basis sets and remain close to the generally accepted value

of 12 a0
2 at all levels. On the other hand, the V state is

affected by the augmented basis set. Thus, V is found much

too diffuse at the CASSCF level, as previously found by all

researchers, with an hx2i value of 25 a0
2. Quite expectedly,

about the same exaggerated spatial extension is found at

the VBSCF-5 level, which lacks dynamic correlation like

CASSCF, with the consequences that have been amply

discussed in the past literature (vide supra). Thus, the fair

agreement between experimental vertical energy and the Te

values that are found at these two levels, 8.25 and 8.26 eV,

is artifactual and due to spurious mixing with a higher lying

Rydberg configuration.

As shown in the Methods section, dynamic correlation is

introduced by going from VBSCF to BOVB levels. As a

first step, indicated as BOVB-5(p-only) level, the r orbitals

remain common to all structures and only the p orbitals are

allowed to breathe for each of the structures 3a, 3b, 4a, 4b.

It can be seen from Table 3 that there is practically no

improvement at this level relative to VBSCF-5: The spatial

extension diminishes only slightly, from 24.92 to 24.22 a0
2,

and the N ? V transition energy is nearly unchanged. In a

second step, we allow all orbitals to be different for dif-

ferent structures, at the BOVB-5 level. Here, the r response

to the fluctuation of p electrons in the V state is turned on,

and the change relative to CASSCF and VBSCF-5 is now

clearly significant. The spatial extension of the wave

function goes down to 19.14 a0
2, quite in the range of

accepted hx2i values from high-level calculations. This

result nicely illustrates the internal contraction of the wave

function under the influence of dynamic correlation and also

shows that essentially all the dynamic correlation that is

attached to the description of the p system in the V state is

made of the r response to the fluctuation of p electrons.

Another way of visualizing the contraction of the wave

function is by comparing the different sizes of the p AOs

[12], calculated at the CASSCF(2,2) level (devoid of

Table 1 The vertical excitation energy in (2, 2) active space, cal-

culated by HF, CASSCF, and different VB methods with the 6-31G*

basis set

N state V state Te

(eV)
E (a.u.) hx2i

(a0
2)

E (a.u.) hx2i
(a0

2)

Hartree–

Fock

-78.030983 11.53

(2, 2) Active space

CASSCF -78.059873 11.34 -77.678207 12.08 10.39

VBSCF-3a -78.059878 11.34 -77.657866 12.19 10.94

VBSCF-5b -78.059878 11.34 -77.683298 12.08 10.25

BOVB-3a -78.079418 11.29 -77.718647 11.83 9.82

BOVB-5b -78.079418 11.29 -77.744694 11.80 9.11

a Involves structures 2, 3a and 3b for the N state, and 3a, 3b for the

V state, as structure 2 cannot contribute to the V state for symmetry

reasons
b Involves structures 2, 3a and 3b for the N state, and 3a, 3b, 4a, 4b
for the V state. Structures 4a and 4b are not included in the N state as

their symmetric combination would be redundant with the structure 2

1 Slight differences between VBSCF and CASSCF calculations

spanning the same variational space are due to the fact that the AOs

that compose the MOs in CASSCF may be different in size and shape

from one MO to the other, whereas the set of AOs is unique in

VBSCF.



dynamic correlation), shown in Fig. 1a, versus the dynam-

ically correlated BOVB-5 level, Fig. 1b. First, it can be seen

that the pa and p0a AOs that are, respectively, part of the p
and p* MOs arising from the CASSCF calculations are very

different in size, p0a being much more diffuse than pa

(Fig. 1a). Second, it clearly appears by comparing Fig. 1a, b

that going from CASSCF to BOVB-5 induces a strong

contraction of the p0a AOs. As an effect of rp dynamic

correlation, the latter AOs have somewhat different shapes

in 3a, 3b versus 4a, 4b, but they have about the same spatial

extension, quite smaller than at the CASSCF level.

Another nice feature of the BOVB-5 level is an excel-

lent value of the N ? V transition energy, 8.01 eV, only

0.13 eV above the recommended value. This good Te value

together with a correct spatial extension of the wave

function shows that compact VB functions with only three

configurations for the N state and four ones for the V state

are able to capture all the physics of the N ? V excitation

in ethylene, whereas many more configurations are

required in the MO framework to reproduce the same

effects.

It is interesting at this point to estimate the effect of rp
dynamic correlation or polarization on the Te value. One

could be tempted to simply take it as the VBSCF-5 versus

BOVB-5 energy difference, i.e., 0.24 eV (entries 4 vs. 7 in

Table 3). However, one must recall that the relatively low

Te value at the VBSCF-5 (or CASSCF) level is artifactual

and due to spurious valence-Rydberg mixing. It is therefore

Table 3 The vertical excitation energy in (2, 2) active space, cal-

culated by HF, CASSCF, and different VB methods with the aug-

VTZ basis set

N state V state Te

(eV)
E (a.u.) hx2i

(a0
2)

E (a.u.) hx2i
(a0

2)

Hartree–Fock -78.059607 12.01

(2, 2) Active

space

CASSCF -78.087096 12.05 -77.783590 25.08 8.26

VBSCF-3a -78.087129 11.68 -77.733637 14.07 9.69

VBSCF-5b -78.087129 11.68 -77.783951 24.92 8.25

BOVB-5

(p-only)b
-78.089552 11.73 -77.786128 24.22 8.26

BOVB-3a -78.111200 11.64 -77.782916 13.04 8.93

BOVB-5b -78.111200 11.64 -77.816658 19.14 8.01

a Involves structures 2, 3a and 3b for the N state, and 3a, 3b for the

V state, as structure 2 cannot contribute to the V state for symmetry

reasons
b Involves structures 2, 3a and 3b for the N state, and 3a, 3b, 4a, 4b
for the V state. Structures 4a and 4b are not included in the N state as

their symmetric combination would be redundant with the structure 2

Fig. 1 The p AOs of the V state of ethylene, as calculated at the

CASSCF(2,2) level (a upper figure), and at the dynamically correlated

BOVB-5 level (b lower figure), showing the contraction of p AOs

under the effect of the dynamic r response to the fluctuation of p
electrons. All calculations in aug-VTZ basis set. The isodensity value

is 0.045 a.u. in both (a) and (b)

Table 2 Vertical excitation energies in (2, 2) active space, calculated by HF, CASSCF, and different VB methods with the cc-pVTZ basis set

N state V state Te (eV)

E (a.u.) hx2i (a0
2) E (a.u.) hx2i (a0

2)

Hartree–Fock -78.063239 11.84

(2, 2) Active space

CASSCF -78.090945 11.58 -77.741633 13.27 9.51

VBSCF-3a -78.091235 11.59 -77.713055 12.97 10.29

VBSCF-5b -78.091235 11.59 -77.746673 13.32 9.38

BOVB-3a -78.113076 11.71 -77.766555 12.28 9.43

BOVB-5b -78.113076 11.71 -77.801926 12.72 8.47

a Involves structures 2, 3a, and 3b for the N state, and 3a, 3b for the V state, as structure 2 cannot contribute to the V state for symmetry reasons
b Involves structures 2, 3a, and 3b for the N state, and 3a, 3b, 4a, 4b for the V state. Structures 4a and 4b are not included in the N state as their

symmetric combination would be redundant with structure 2



more instructive to consider this energy difference in a

basis set like cc-pVTZ, where the valence-Rydberg mixing

does not take place, for lack of diffuse basis functions.

Thus, comparing entry 4 versus entry 6 in Table 2 yields

the value 0.91 eV, which can be considered as an energetic

measure of the importance of r response to the fluctuation

of p electrons, more precisely the greater importance of

this r response in the V state relative to the N state.

Another outcome of the above VB calculations is the

novel finding that structures 4a and 4b, which are essen-

tially asymmetric covalent structures, are essential ingre-

dients of the V state of ethylene. In terms of energy, their

importance can be estimated as the difference between the

2-structure and 4-structure wave functions, and can be seen

to be quite large at both the VBSCF and BOVB levels. At

the BOVB level, the BOVB-3 versus BOVB-5 energy

differences amount to 0.71, 0.96, and 0.92 eV in 6-31G*,

cc-pVTZ, and aug-VTZ basis sets, respectively. This sig-

nificant stabilization can be interpreted as due to two

effects: (1) a simple resonance energy, arising from the

mixing of 4a, 4b with 3a, 3b, and (2) the tempering of the

charge separation in the p system in 3a and 3b when 4a and

4b are added. It is also remarkable that without structures

4a and 4b, i.e., at the VBSCF-3 and BOVB-3 levels, the

spatial extension of the wave function comes out too small,

even in aug-VTZ basis set, with an hx2i value of only 13.04

a0
2 in the V state at the BOVB-3 level. Thus, it appears that

the zwitterionic structures 3a and 3b have no physical

reason to be very diffuse because the corresponding VB

structures are overall neutral with positive charges in the

vicinity of the negative ones. On the other hand, 4a and 4b

must have diffuse orbitals, so as to clearly differentiate the

two p AOs involved in the covalent bond; otherwise, the

negative combination 4a–4b would just vanish (see the

above VB expansion). Thus, the reason for the known fact

that the V state is 50 % more diffuse than the N state does

not lie in the zwitterionic structures, but in the asymmet-

rical covalent ones, 4a and 4b.

In view of the essential role played by 4a and 4b in the

electronic structure of the V state, one may anticipate sig-

nificant weights for these structures. However, the calcu-

lation of their weights can only be approximate owing to

their large overlaps with 3a and 3b (Table 4). These large

overlaps originate in the fact that all these structures

involve diffuse AOs. For this reason, the usual Coulson–

Chirgwin definition of weights [47], which is quite sensi-

tive to overlap [61], is better replaced by the two alterna-

tive definitions of the weights, Löwdin’s scheme [48] and

the ‘‘inverse-overlap’’ formula of Norbeck and Gallup [49].

These two definitions have been applied to calculate the

weights of 3a, 3b, 4a, and 4b, which are displayed in

Table 5 together with their coefficients in the BOVB-5

wave function of the V state. The Löwdin and inverse-

overlap weights are quantitatively different from each

other, as always happens when the VB structures have

strong mutual overlaps, and therefore, they can only pro-

vide orders of magnitude. Still, the calculated weights

show that the major structures are 3a and 3b, whereas 4a

and 4b are less important but far from being negligible.

2.2 VB calculations in the (4, 4) space

Extending the space of VB structures so as to include the

C–C r bond into the VB treatment leads to the 15 struc-

tures displayed in Scheme 3. Calculations in this full space

(5–12b) are referred to as VBSCF-15 and BOVB-15.

However, being redundant with 5–6b, structures 10a–12b

are removed from the calculation of the N state, while for

obvious symmetry, reasons 5 is removed for the calculation

of the V state. Thus, the calculation of the N and V states

involves 9 structures and 14 structures, respectively.

Since both the p system and the r C–C bond are now

involved in the VB treatment, one may expect the r
response to fluctuation of the electrons to be present

already at the VBSCF level, at least to some extent. This r
response will be made apparent by comparing the weights

of structures 8a versus 9a, or 8b versus 9b. If the two p
electrons are on the same AO, say the left one as in 7a–9a

(Scheme 3), the r C–C bond will compensate this charge

separation by polarizing itself in the opposite way, through

the ionic structures 8a and 9a. Therefore, one expects the

weight of 8a, in which both carbon atoms are globally

neutral, to be significantly larger that that of 9a, in which

the carbons have formal charges of -2 and ?2, respec-

tively. Inspection of Table 6 shows that this is indeed the

case, as the weights of 8a and 9a are calculated to be 0.129

Table 4 The overlap matrix of V state from BOVB-5 calculations

with the aug-VTZ basis set in (2, 2) active space

3a 3b 4a 4b

3a 1.000000

3b 0.316388 1.000000

4a 0.845642 0.429452 1.000000

4b 0.429452 0.845641 0.474833 1.000000

Table 5 The weights and coefficients of VB structures of the V state

from BOVB-5 calculations with the aug-VTZ basis set in (2, 2) active

space

Löwdin weights Inverse weights Coefficients

3a 0.4081 0.3047 1.1882

3b 0.4081 0.3047 -1.1882

4a 0.0919 0.1953 -0.9733

4b 0.0919 0.1953 0.9733



and 0.066 at the VBSCF-15 level, according to Löwdin’s

definition of the weights. Moreover, the difference in

weights is even more significant with the inverse-overlap

weight definition. Of course, similar differences in weights

are found between structures 8b and 9b.

It should be noted that the r response to p fluctuation, as

it appears from the weights displayed in Table 6, is

incomplete at the VBSCF-15 level since it is restricted to

the r C–C bond and does not involve the C–H bonds. Still,

one expects some improvement of the description of the

V state with respect to the VBSCF calculations in the (2, 2)

space. Table 7 reports the absolute energies of the N and

V states as calculated in the (4, 4) space, together with their

spatial extensions and the N ? V transition energies Te.

While the CASSCF results are still poor at this level, it can

be seen that the VBSCF-15 results are indeed improved

relative to the VBSCF-5 results in the (2,2) space

(Table 3), as the hx2i value goes down from 24.92 to

22.95 a0
2, while the transition energy also goes down, from

8.26 to 8.15 eV. However, in spite of these improvements,

the results are not fully satisfying at this level, and once

again, one must use the BOVB level in the same space to

retrieve the missing dynamic rp correlation. To facilitate

convergence, only partial BOVB is performed, in which

the VB structures are partitioned into groups: (5–6b), (7a–

9a), (7b–9b), (10a–12a), and (10b–12b). A common set of

orbitals is used within each group, but orbitals of one group

are allowed to be different from those of other groups. The

results are now excellent, with a spatial extension of

19.16 a0
2 for the V state, and a transition energy of 7.97 eV,

only 0.09 eV higher than the reference value of 7.88 eV.

Interestingly, these latter results are virtually unchanged

relative to the BOVB-5 results in the (2,2) space, showing

that all the necessary electron correlation is already taken

into account in the smaller VB space.

Since VB structures displaying asymmetrical p covalent

bonds proved essential for the description of the V state in

the (2,2) space, one may wonder if structures of the same

type (10a–12b) have a comparable importance in the (4, 4)

space. Clearly, the answer is yes: In terms of weights,

structures 10a–12b sum up to 0.190 with the Löwdin

definition, and to 0.357 with the inverse-overlap one

(Table 5, BOVB-15). This can be compared with the

cumulated weights 0.184 and 0.391, respectively, with the

same definitions, in the (2,2) space (Table 5). In terms of

stabilization energies, the stabilization brought by struc-

tures 10a–12b can be estimated by comparing the calcu-

lations of the V state in the 15-structure space (entries 2 and

5 in Table 7), to those using a restricted 9-structure space,

Table 6 The weights and coefficients of VB structures for the V state of ethylene, calculated with the aug-VTZ basis set in (4, 4) active space

VBSCF-15 BOVB-15

Löwdin weights Inverse weights Coefficients Löwdin weights Inverse weights Coefficients

6a 0.0003 0.0086 0.0437 0.0000 0.0130 -0.0573

6b 0.0003 0.0086 -0.0437 0.0000 0.0130 -0.0573

7a 0.1786 0.1707 0.9472 0.1984 0.2391 0.8064

8a 0.1281 0.1028 0.4935 0.1149 0.0556 0.2672

9a 0.0656 0.0013 0.0551 0.0915 0.0141 0.1378

7b 0.1788 0.1710 -0.9483 0.1984 0.2391 -0.8064

8b 0.1277 0.1018 -0.4911 0.1149 0.0556 -0.2672

9b 0.0660 0.0014 -0.0567 0.0915 0.0142 -0.1378

10a 0.0624 0.1387 -0.8696 0.0471 0.1376 -0.6180

11a 0.0259 0.0009 -0.0470 0.0248 0.0110 -0.1172

12a 0.0388 0.0768 -0.4400 0.0233 0.0297 -0.1919

10b 0.0624 0.1389 0.8705 0.0471 0.1376 0.6180

11b 0.0260 0.0009 0.0484 0.0248 0.0110 0.1172

12b 0.0390 0.0776 0.4423 0.0233 0.0297 0.1919

Table 7 The vertical excitation energy in (4, 4) active space, as

calculated by VB methods with the aug-VTZ basis set

N state V state Te

(eV)
E (a.u.) hx2i

(a0
2)

E (a.u.) hx2i
(a0

2)

VBSCF-9a -78.110778 11.68 -77.769936 13.44 9.27

VBSCF-15b -78.110778 11.68 -77.811182 22.95 8.15

CASSCF(4, 4) -78.112095 11.60 -77.800412 22.21 8.48

BOVB-9a -78.121389 11.76 -77.796188 13.07 8.85

BOVB-15b -78.121389 11.76 -77.828470 19.16 7.97

a Involves structures 5–9b for the N state, and 6a–9b for the V state
b Involves structures 5–9b for the N state, and 6a–12b for the V state



involving only structures 5–9b (entries 1 and 4). The sta-

bilization amounts to 1.12 and 0.88 eV, respectively, at the

VBSCF and BOVB level. Moreover, as was also found in

the (2,2) space, the spatial extension of the V state comes

out too small (ca. 13 a0
2) if structures 10a–12b are omitted.

Thus, from all point of views, it appears that the newly

proposed VB structures displaying asymmetrical p cova-

lent bonds are essential ingredients of the V state of eth-

ylene, albeit they were never considered before, to our

knowledge.

2.3 VB-QMC calculations

Since QMC methods are known to be extremely accurate in

principle, provided one uses sufficiently good trial func-

tions, it is interesting to check whether the extra correlation

provided by these methods would change or confirm our

above results. To this aim, we have used the QMC methods

by inputting the above VBSCF and BOVB wave functions

as trial wave functions, in so-called VB-QMC methods

[44]. Two levels of VB-QMC calculations have been used.

At the VMC level, previously optimized VBSCF or BOVB

wave functions are supplemented with a Jastrow factor

including explicit interparticle correlation (see theoretical

section), and wave function parameters are reoptimized.

Then, the more accurate DMC level consists of projecting

the VMC wave function onto the ground state using the

fixed-node DMC algorithm.

Table 8 displays the results obtained at these two levels,

where VB-VMC (resp. BO-DMC) corresponds to a wave

function that has a VBSCF (resp. BOVB) type of deter-

minantal part. It can be seen that when a simple VBSCF

wave function is used as a trial function (VB-VMC, entry

1), the N ? V transition energy is disappointingly large,

8.59 eV, showing that the Jastrow factor is not able to

retrieve the rp dynamic polarization that accompanies the

fluctuation of the p electrons. On the other hand, using now

the BOVB-5 wave function as a trial function, one gets a

much better Te value of 8.04 eV when only the Jastrow

parameters and coefficients of the CSFs are optimized

(entry 2), and an even better value, 7.96 eV, if a further

optimization of the inactive orbitals is performed (entry 3).

By contrast, removing structures 4a and 4b from the set of

VB structures in the trial function, as in the BO-VMC-3

calculation, leads to a much too high N ? V transition

energy, 8.98 eV. This result further confirms that structures

4a and 4b are essential components of the V state of eth-

ylene, even when a high level of electron correlation is

brought by the Jastrow factor.

Fixed-node DMC calculations further improve the BO-

VMC-5 results. Using a BOVB-5 trial wave function

where only Jastrow and CSFs parameters were reoptim-

ized at the VMC level leads to a DMC transition energy

of 7.96 eV, quite close to the experimental value, in

excellent agreement with experiment (7.88 eV), showing

that the nodal structure of the standard BOVB level is

physically correct. This has to be compared with the best

DMC value of 8.27 eV (190.8 kcal/mol) obtained by

Anderson et al. [32], using a GVB-type trial function.

Finally, using the BOVB-5 trial wave function where the

r orbitals were also reoptimized at the VMC level further

improves the transition energy to 7.93 eV, identical within

the error bars to the DMC value obtained by Schautz and

Filippi [31].

Table 8 Energies of the N and V states and weights of structures 4a and 4b, as calculated at the VMC and DMC levels using VBSCF or BOVB

wave functions as trial functions, with the ps-aug-VTZ basis set

QMC method N state V state Te (eV)

Optimized parametera E (a.u.) E (a.u.) Weigths of 4a,4bb

VB-VMC-5c,d j ? c -13.7132(5) -13.3977(5) 0.138(1) 8.59(2)

BO-VMC-5c,e j ? c -13.7053(5) -13.4098(5) 0.092(1) 8.04(2)

BO-VMC-5c,e j ? c ? i -13.7221(5) -13.4294(5) 0.074(1) 7.96(2)

BO-VMC-3c,e,f j ? c -13.7053(5) -13.3751(5) – 8.98(2)

BO-DMC-5c,e j ? c -13.7382(2) -13.4455(2) 0.087(1) 7.96(1)

BO-DMC-5c,e j ? c ? i -13.7439(2) -13.4525(2) 0.074(\1) % 7.93(1)

Statistical errors are shown in parenthesis
a Parameters optimized at the VMC level: j for Jastrow parameters, c for CSFs coefficients, i for inactive (r) orbitals
b Weights of each of the structures, Löwdin definition, Eq. 3
c Involves structures 2, 3a, and 3b for the N state, and 3a, 3b, 4a, 4b for the V state
d A VBSCF wave function is used as a trial function
e A BOVB wave function is used as a trial function
f Involves structures 2, 3a, and 3b for the N state, and only 3a, 3b for the V state



3 Conclusions

The V state of ethylene poses a long-standing challenge for

theoretical methods, despite the small size of the molecule.

The difficulties encountered with standard MO-CI methods

are due to (1) the strong charge fluctuation within the p
system, which requires a dynamic response of the r frame

already at the orbital optimization step, and (2) a low-lying

Rydberg state which may spuriously contaminate the

V state. Thus, any meaningful wave function for the V state

must satisfy the dual condition of providing an accurate

energy relative to the ground state, and a reasonable spatial

extension, neither too large nor too small, i.e., being about

50 % larger than that of the ground state but not more.

The strategies of overcoming these difficulties in the

MO framework are all based on simple VB reasoning.

These methods are generally successful, but lead to long

configuration expansions that are treated by multi-refer-

ence variational or perturbative methods. This obviously

suggests the use of direct VB treatments, which are per-

formed with two different methods, VBSCF that is limited

to static electron correlation (like GVB and SC methods),

and BOVB that further involves dynamic correlation while

keeping the number of VB structures unchanged. At the

VBSCF level, the results share the same shortcomings as

CASSCF calculations and provide too large N ? V transi-

tion energies and V state wave functions that are too diffuse

to qualify as valence state. On the other hand, the BOVB

level provides excellent results in terms of both transition

energies and spatial extension of the wave functions. The

number of configurations amounts to only 14 structures in

the (4, 4) VB space, and 4 VB structures in the (2, 2) space.

Both VB structure sets lead to practically identical results,

showing that 4 VB structures with the BOVB method are

already capable of taking care of the r response to the

fluctuations of the p electrons, by means of the breathing

orbital effect. Moreover, the contraction of the p AOs

under the influence of dynamic electron correlation can be

clearly visualized by turning this latter type of correlation

on and off, by switching from BOVB to VBSCF.

The BOVB wave functions of the (2, 2) space have also

been used as guess functions for diffusion Monte Carlo

calculations, yielding results in close agreement with the

calculations of Schautz and Filippi [31], even without

needing to re-optimize the guess orbitals at the VMC step.

This further confirms the adequacy of BOVB wave func-

tions as guesses for DMC calculations, as noted already in

previous studies [44, 62].

Another outcome of the present study is the evidence for

the importance of VB structures displaying an asymmetric p
covalent bond as an essential component of the V state of

ethylene. Such VB structures, which have never been con-

sidered before in qualitative descriptions of the V state, arise

naturally from an expansion of the pp* MO configuration

into VB structures. These asymmetric p-bonds contribute

18–26 % of the total VB wave function. Moreover, they

have quite a significant stabilizing effect, of the order of ca.

0.90 eV, which can be understood as their role in tempering

the fluctuations of the p electrons, together with a classical

resonance effect due to their mixing with the zwitterionic

structures. Lastly, the two asymmetric covalent VB struc-

tures are the ones responsible for the spatial extension of the

V state being 50 % larger than that of the N state. It must

therefore be concluded that the V state of ethylene is not

100 % ionic as usually assumed, but involves a minor

though non-negligible covalent component. Incidentally,

the disregard of these structures in current qualitative rea-

soning is due to the usage of a minimal basis set in the

decomposition of the pp* configuration, in which the

asymmetrical covalent structures vanish. Nevertheless, the

importance of these structures does not imply that carbon

has suddenly five valence orbitals in the V state. The effect

of 4a and 4b is essentially perturbational, and it dresses the

zwitterionic structures with left–right correlation, which

tempers the antiresonant interaction (of the 3a–3b combi-

nation in the minimal VB set) and the high electron–elec-

tron repulsion of the doubly occupied 2p orbitals. It is

tempting to assign the diffuse orbitals in 4a and 4b as

carbon 3p AOs, however, we were not able to verify this

character since the orbitals lack the requisite radical node to

qualify as 3p.

All in all, the above study shows that performing direct

VB calculations in a reasonable basis set may lead to an

accurate description of the V state by means of extremely

compact wave functions provided the VB treatment

involves a built-in dynamic electron correlation. The rea-

son for the success is that VB can achieve this in a direct

way, whereas MO-CI methods must do this in a roundabout

and sometimes complicated way, owing to orthogonality

constraints. By contrast, the choice of VB structures that

need be involved in the computations does not require

complicated reasoning, but naturally arises from chemical

considerations. The additional and sometimes unexpected

insight that arises from such calculations is an intrinsic

feature of modern ab initio VB methods.
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