
Dense mapping for monocular-SLAM
Abiel Aguilar-González and Miguel Arias-Estrada

Reconfigurable computing laboratory, Computer science department
Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE)
Luis Enrique Erro # 1, Tonantzintla, Puebla, Mexico C.P. 72840

Email: {abiel,ariasmo}@inaoep.mx

Abstract—Simultaneous Localization and Mapping (SLAM) is
the problem of constructing a 3D map while simultaneously keep-
ing track of an agent location within the map. In recent years,
work has focused in systems that use a single camera as the only
sensing mechanism (monocular-SLAM). 3D reconstruction (map)
by monocular-SLAM systems is a point cloud where all points
preserve high accuracy and can deliver visual environmental in-
formation. However, the maximum number of points in the cloud
is limited by the tracked features, this is named “sparse cloud
problem”. In this work, we propose a new SLAM framework that
is robust enough for indoor/outdoor SLAM applications, and at
the same time increases the 3D map density. The point cloud
density is increased by applying a new feature-tracking/dense-
tracking algorithm in the SLAM formulation. In order to achieve
real-time processing, the algorithm is formulated to facilitate a
parallel FPGA implementation. Preliminary results show that it
is possible to obtain dense mapping (superior to previous work)
and accurate camera pose estimation (localization) under several
real-world conditions.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
problem of constructing a map with respect to an unknown
environment while simultaneously keeping track of an agent
location within the map. This is used in several applica-
tions such as, self-driving cars, unmanned aerial vehicles,
autonomous underwater vehicles, planetary rovers and domes-
tic robots [1–3]. In order to develop a SLAM solution, it
is necessary to have sensors that observe the environment
and if it is possible, sensors that provide information about
the trajectory. There are several sensors available for this
purpose (odometers, gyrometers, laser rangefinders, cameras,
sonars, etc.). In recent years, work has focused in systems
that use cameras as the only sensing mechanism (visual-
SLAM). This choice was motivated because nowadays, it
is possible to find inexpensive, small and light commercial
cameras and they provide visual environmental information
that can be exploited to create appearance-based descriptions
of the map components [4]. In most current state of the art,
the use of a single camera (monocular-SLAM) instead of
binocular/trinocular configurations is the most popular and an
active research field [5–7]. This is because a single camera
avoids addressing the multiple cameras synchronization, in-
terpretation of the different responses of each image sensor
to color and luminance, and mechanical alignment between
cameras.

A. Monocular-SLAM

The idea of using a single camera has become popular since
the emergence of the single camera SLAM or MonoSLAM [8].
This is due to wide availability of single cameras than a stereo
pair, through cell phones, personal digital assistants or personal
computers. The monocular approach offers a simple, flexible
and economic solution in terms of hardware demand and
processing time but present the partially observable problem.
The partially observable problem exists where the camera does
not provide sufficient information from a simple observation
to determine the depth of a point. i.e., a feature-tracking across
two or more different viewpoints has to be performed. Then, it
is possible to obtain tridimensional information from a single
camera only when there is an appropriate separation between
the viewpoints.

Several contributions in monocular-SLAM have been re-
ported in the literature [5–7], however, there are still many
problems such as, low performance under dynamic scenes or
sparse point clouds. Most monocular-SLAM systems fail due
to accumulated errors while the environment is being explored.
These cumulative errors produce inconsistent camera pose
estimation and incongruous maps. In general, there are three
main problems in the current state of the art: 1. It is assumed
that camera movement is smooth and that there will be
consistency in the appearance of feature points but in general,
this is not true. This assumption is related to the feature
extractor and feature-tracking algorithm used in the SLAM
formulation. This originates an inaccuracy in the camera pose
when it captures images with low texture or that are blurred
due to rapid movements of the sensor. 2. Most of researchers
assume that the explored environment is static and that they
only contain stationary and rigid elements; the majority of
environments contain people and objects in motion. If this
is not considered, the moving elements will originate false
matches and consequently generate unpredictable errors in all
the system. 3. The world is visually repetitive. There are
several similar textures, such as the architectural elements,
foliage and walls of brick or stone. This makes it difficult
to track features because there are several similar points that
introduce false matches. To solve this inconvenience, typically,
only the most dominant features are tracked. Unfortunately,
this generates the sparse cloud problem that limits the 3D en-
vironmental understanding and makes difficult the recognition
of objects or places.978-1-5090-2425-4/16/$31.00 c© 2016 IEEE



B. The sparse cloud problem

Traditional monocular-SLAM systems extract feature points
by applying any type of feature extractor [9]. There are several
feature extraction algorithms in the literature (Harris [10],
FAST [11], SUSAN [12], Shi-Tomasi [13], etc.); however,
in all cases the maximal number of features that can be
extracted varies between 0.5% and 4.0% of all points in the
image, depending on the selected algorithm and its particular
configuration. In practice, traditional monocular-SLAM sys-
tems work with configurations that allow extracting near 1%
of the points from an image [9]. This limits the real-world
applications performance since only 1% of the image points
is used to obtain the 3D information, thus, the visual en-
vironmental understanding, high-level descriptors application
and objects/structures recognition in the point cloud have low
stability under real-world scenarios. Even the most current and
popular monocular-SLAM systems, for example ORB-SLAM
[14] or LSD-SLAM [15] are limited to sparse point clouds.

C. Motivation and scope

The sparse point cloud problem limits the spatial resolution,
and therefore, the level of detail in the 3D map. Several SLAM
applications such as, automatic car piloting [16], rescue tasks
for high-risk environments [1] and planetary exploration [2]
have difficulties to use the map generated by the monocular-
SLAM systems as 3D reference. Typically, 3D reconstruction
algorithms carry out the 3D map estimation [17]. In recent
years, the increase of computing power and a better SLAM
algorithms understanding, allowed to increase the point
clouds density. In some works, several visual-feature types
are bundled in a SLAM framework that increases the cloud
density. Other trend that enables semi-dense reconstructions
consist in camera localization by optimizing directly over
image pixel intensities. Unfortunately, in all cases, the
proposed solutions only allow semi-dense point clouds and
the performance over untextured regions is low. Furthermore,
to reach real-time processing, only low-resolution images
are supported. In this work, we are interested in how to
increase the density of the monocular-SLAM systems based
on RGB cameras. Any RGB-based monocular-SLAM that
provides dense mapping would offer full 3D environmental
understanding and simplify the high-level descriptors
application and objects/structures recognition within the
map. In addition, RGB-based monocular-SLAM systems can
work correctly under indoor/outdoor environments. Finally,
a sparse cloud problem solution would enable the use of
monocular-SLAM under several outdoor applications such as,
augmented reality [3] or 3D reconstruction [18]. In the current
state of the art, the sparse cloud problem is addressed with
RGB-based monocular-SLAM approaches. Unfortunately,
these approaches are limited to indoor applications in which
the objects distributions allow relatively high performance for
the depth sensor.

II. RELATED WORK

The authors of the LSD-SLAM algorithm [15] proposed
skip the keypoint extraction and the feature tracking steps.
Instead, it is demonstrated that an area-matching methodology
carried out by a probabilistic model allows improving the qual-
ity of the generated map. It was introduced a direct monocular
approach that simplified the traditional SLAM formulation and
at the same time increases the 3D map density. Unfortunately,
the solution is limited to semi-dense clouds. In addition, to
reach real-time processing, only low-resolution input images
are supported. The DT-SLAM algorithm [19] addresses the
problem via deferred triangulation. The authors introduce a
real-time monocular-SLAM system that incrementally tracks
individual 2D features and estimates the camera pose by
using a 2D feature matching. In parallel, 3D features obtained
previously by the projective transformation are triangulated
and introduced in the current map. Although 3D features
increment the density of the map and provide more elements
for the current camera estimation, the increase of the map
density is low and the developed method only works under
indoor workspaces. Finally, the same authors of ORB-SLAM
[14] addressed the problem using a post-processing step that
introduces a probabilistic semi-dense processor. The proposed
algorithm was applied over an ORB-SLAM system. It allows
compact system design, high resolution in the camera localiza-
tion, semi-dense mapping and RGB-based point clouds. The
main limitations are the low performance under untextured
regions and only near 4% input image points are included in
the point cloud.

III. THE PROPOSED ALGORITHM

In Fig. 1 an overview of our algorithm is shown. The
algorithm is based on how to increase the 3D map density and
at the same time allow real-time processing. Considering that
increasing the map density is an exhaustive task that implies
high computational demand, we formulate our algorithms in
such a way it facilitates hardware acceleration.

Fig. 1: The proposed algorithm



A. Feature extraction

Several types of local features can be extracted (edges,
blobs, corners, etc.) and several types of feature extraction
algorithms can be used. In the case of monocular-SLAM, there
is a tendency of using corners as the unique local feature
considered in the SLAM formulation [9]. A corner can be
defined as a point, whose immediate neighborhood contains
two or more dominant edges of different directions. Several
detectors, for example SUSAN [12], Harris [10] or Shi-Tomasi
[13] have been used in SLAM formulations, however, they
are computationally intensive and the processing time is high.
In recent years, the Features from Accelerated Segment Test
(FAST) [11], has become the most used corner detection
algorithm because it enables low processing time and low
computational demand and it is what we will use in this work.
The original FAST-N algorithm compares the intensity of a
corner candidate c with each point from a 16-point circle that
surrounds c, as shown in Fig. 2. Then, a feature is detected
at c if the grayscale intensities of at least G contiguous pixels
are all above or all below the intensity of c by some threshold,
t. For more details see [11].

Fig. 2: Relations of the center pixel c and its surrounding pixels in
the FAST algorithm. Image taken from [11]

B. Feature tracking

In the case of monocular-SLAM formulations, two types
of feature-tracking algorithms can be used: feature-tracking
algorithms based on two viewpoints and feature tracking
algorithms based on frame-by-frame tracking. For algorithms
based on two viewpoints, they allow feature matching along
large trajectories with a relatively low processing time [20, 21].
However, the image degradation between viewpoints intro-
duces data inconsistencies that introduce erroneous matches.
On the other hand, algorithms based on frame by frame track-
ing deliver high accuracy without data inconsistencies, but
processing time is high and hardware acceleration is complex
[22, 23]. In this work, we are interested to increase the 3D map
density in monocular-SLAM systems based on RGB cameras.
Dense mapping requires large number of feature points that are
being tracked. Considering that, all feature tracking algorithms
in the literature present important limitations since they have
wrong matches for algorithms based on two viewpoints and
low speed processing for algorithms based on frame-by-frame
tracking, in this work, we propose a new feature- tracking

algorithm that searches for a region centered in any feature g
in frame i that is similar or equal than a similar size region
in frame i+ 1, located within a search region in frame i+ 1.
Similar to KL [22] algorithm, we propose search regions. But,
instead of rectangular patches, we propose circular patches
that minimize the inconsistent pixels introduced by rotational
motion, this is illustrated in Fig. 2.

Fig. 3: Circular patches vs. rectangular patches. When a rectangular patch in an image
A (top-left) is compared with a same size rectangular patch in an image B (top-right),
rotation motion introduce inconsistent values (these are represented as white pixels within
the rectangular patch). If a circular patches instead of rectangular is used (bottom-left),
any inconsistent data are avoided. This can be observed in bottom-right in which pixels
within the circle are the same those pixels within circle shown in the bottom-left of the
image.

We define the radius size (r) as shown in Eq. 1, where
r is an integer number that represent the radius size and σ
is computed as shown in Eq. 2, where X is the horizontal
resolution for the input images measured in pixels while Y is
the vertical resolution.

r = min{k ∈ Z | ρ ≤ k} (1)

σ =
X + Y

4 ·
√
X + Y

(2)

Then, we construct a rectangular patch defined as G =
02·r+1,2·r+1. In this case, rectangular patches provide straight-
forward implementation in FPGA, since rectangular patches
can be mapped into RAM buffers with relatively low memory
management complexity. After the rectangular patch is com-
puted, we construct a circular region within the patch, this
is computed as shown in Eq. 3, where G is a rectangular
patch and ik,θ, jk,θ are computed as shown in Eq. 4, 5
respectively. r is the radius computed by Eq. 1 and α is
a barrier value defined by the user. Note that Eq. 4, 5 is
a modified vectored circumference equation that constructs
circular perimeters defined by integer values. Combining Eq. 4
and 5 with Eq. 3 a circular with region radius r can be
constructed.

G = 1 ∀ Gak,θ,bk,θ (3)

ik,θ =

r∑
k=0

α∑
θ=0

min{ϑ ∈ Z|(k + cos(2π · θ/α)) ≤ ϑ} (4)



jk,θ =

r∑
k=0

α∑
θ=0

min{ϑ ∈ Z|(k + sin(2π · θ/α)) ≤ ϑ} (5)

Finally, we can assume that a feature point q in frame i have
a displacement in frame i+1 less or equal than r. Therefore,
we can construct one circular patch over a feature point q with
coordinates (x,y) in frame i. Then, we can construct n circular
patches in frame i+1, in this case, the n region centers are all
points within the search region (circle with radius r centered in
coordinates (x, y)) in frame i, see Fig. 4. Finally, by applying
any type of correlation function, we can assume that n region
center that minimizes or maximizes the correlation function is
the tracked position of the feature point q in frame i+ 1.

Fig. 4: The proposed feature-tracking algorithm formulation. For each feature point,
n overlapped patches are constructed in frame i + 1, n patches centers are all points
within the circular patch created in frame i. n region center that minimizes or maximizes
a correlation function is the tracked position of the feature point q in frame i+ 1.

The sum of squared differences (SAD) has low mathemat-
ical complexity and enables simple FPGA or GPU imple-
mentation. Therefore, we propose a SAD correlation function
adapted to our circular patches. In this scenario, we propose
Eq. 6 and 7; where xi+1(h), yi+1(h) are the spatial locations
for all the g features in frame i + 1. SAD measures the
similarity between patches by applying the sum of squared
differences, as shown in Eq. 8, where r is the search region
size, computed via Eq. 1, considering X,Y as the horizontal,
vertical resolution of the input images. Ii and Ii+1 represent
the 2D spatial coordinates of pixels for two different frames
from an image sequence, and β, σ are the spatial location for
all the patches in frame i+ 1, they ranges between r up to r
with increments of 1.

xi+1(h) =

g∑
h=1

minβSAD(β, σ) (6)

yi+1(h) =

g∑
h=1

minσSAD(β, σ) (7)

SAD(β, σ) =

u=r∑
u=−r

v=r∑
v=−r

G(u+ r + 1, v + r + 1) · (8)

|(Ii(x+ u, y + v)− Ii+1(x+ u, y + v))|

C. Simultaneous localization and mapping

Given two corresponding point sets: q = {(x1, y1), (x2, y2)
· · · (xn, yn)}, g = {(x1, y1), (x2, y2) · · · (xn, yn)}, the fun-
damental matrix F can be computed by applying camera
geometry analysis. Then, the essential matrix E can be es-
timated as E = K ′FK, where K is the calibration matrix
for the camara used in the SLAM formulation. By applied
singular value decomposition (SV D) over E and solving for
a close solution, the camera matrix P can be estimated. For
more details about camera matrix estimation see [24]. Using
the P matrix and the corresponding point sets, the Least
Squares algorithm [25] estimates the translation t and rotation
R that minimizes the sum of the squared re-projection error.
Then, using again q, g and considering the P matrix, any
linear triangulation method can estimate the 3D position of
all tracked points. Finally, any optimization technique such
as, bundle adjustment or LevenbergMarquardt modifications
can be used to simultaneously refine the camera pose (t, R)
and the 3D positions. In this work, we use bundle adjustment
as optimization technique since this has proved successful in
the past and is the most common optimization technique used
in current monocular-SLAM systems.

D. Dense tracking

In order to reach dense tracking, we propose a modification
of our feature tracking algorithm (Section III-B). In general,
considering A as a input image sequence, we consider g as
all points from an image within the sequence, defined as
xi(g) = x, yi(g) = y; where x, y are the 2D spatial position
for all points/pixels in the image. Then, we can track all points
similar to the Section III-B formulation. But, in this case, we
propose eliminating any point correspondence if there are two
or more different indexes (β, σ) that minimize the correlation
function (Eq. 8). This is because we assumed that if there are
two or more different indexes that minimize the correlation
function, the tracked point is within an untextured region. i.e.,
any point/pixel within the search region in the frame i + 1
minimizes the cost function, thus, estimate the position in
frame i+1 is impossible if only color comparisons are applied
in the correlation function.

E. Triangulation

Given two corresponding point sets:
q = {(x1, y1), (x2, y2) · · · (xn, yn)},, g =
{(x1, y1), (x2, y2) · · · (xn, yn)}, and considering
(P1, P2) as the camera matrix estimated via the
Essential matrix and camera matrix centered at the
origin, respectively, we can compute the following
variables: A1 = q(x1) · P1(3, i) − P1(1, i), A2 =
q(y1)·P1(3, i)−P1(1, i), A3 = q(x1)·P2(3, i)−P2(1, i), A3 =
q(y1)·P2(3, i)−P2(1, i), A[A1 A2 A3 A4]. Finally, let [U S V ]
denote the singular value decomposition (SV D) over A, the
3D positions for all the tracked points (the mapping solution
of the SLAM process) can be denoted as V (i, 4). For more
details about linear triangulation see [24].



IV. RESULTS AND DISCUSSION

In this section preliminary results for our SLAM formu-
lation are presented. For that, first we present experimental
results for our feature-tracking algorithm. We compare the
performance for several feature-tracking algorithms previously
used in SLAM formulations. Second, we show experimental
results for our dense-tracking algorithm.

A. The feature tracking algorithm

In Fig. 5, feature tracking performance by applying our
algorithm is shown. In these tests, we tracked features obtained
via the FAST algorithm [11] with the following frame of a
video sequence.

Fig. 5: Feature-tracking algorithm applied over two consecutive
frames form an outdoor video sequence

In order to measure the performance of our feature tracking
algorithm, we implemented several feature-tracking algorithms
suitable for SLAM formulations via Matlab scripts. Then, we
track feature points extracted via the FAST algorithm across
16 consecutive frames from eight different video sequences,
respectively. In TABLE I, accuracy comparisons are shown,
we present the mean accuracy for all the compared algorithms.
In the case of the SURF/ORB [20, 21] algorithms, they allow
feature matching along large trajectories with a relatively
low processing time, but, the image degradation between
viewpoints introduces data inconsistences that introduce er-
roneous matches. In order to achieve accuracy required by
SLAM applications, statistically robust methods like Random
Sample Consensus (RANSAC) have to be implemented to
filter erroneous matches. Our algorithm allows high accuracy,
superior to SURF/ORB, suitable for SLAM applications and
without any filter or post-processing step. The only limitation
of our algorithm compared with SURF/ORB is that a frame by
frame feature-tracking approach is an exhaustive task. Then,
the processing time have to be higher than two viewpoint
approaches. This can be observed in TABLE II, were our
algorithm and the KLT algorithm [22], both frame by frame
feature tracking algorithms, have higher processing time than
SURF/ORB. Nevertheless, our algorithm has an important
advantage because its mathematical formulation allows sim-
ple FPGA implementation, suitable for real-time processing.
Considering that previous work do not allow simple hardware
implementation or do not provide accuracy suitable for SLAM
applications, our feature matching approach can provide a
convenient framework for SLAM formulations since it enables
high accuracy and allows simple FPGA implementation for
real-time processing.

TABLE I: Accuracy of feature-tracking algorithms used in SLAM
formulations (errors are measured in pixels, all sequences were
obtained from [26]).

Dataset SURF ORB KLT proposed

fr1/room 79.38 76.24 0.21 1.97
fr2/desk 81.12 73.63 0.45 1.76
fr1/plant 77.74 75.24 0.39 1.83
fr1/teddy 83.53 76.73 0.47 1.94
fr2/coke 80.78 75.28 0.32 1.73

fr2/dishes 78.25 74.19 0.01 1.67
fr3/cabinet 79.87 74.02 0.42 1.71
fr3/teddy 79.10 75.21 0.46 1.83

mean errors = 79.97 75.08 0.34 1.63

TABLE II: Processing speed of feature-tracking algorithms used in
SLAM formulations (times are measured in secons, all sequences
were obtained from [26]).

Dataset SURF ORB KLT proposed

fr1/room 1.92 0.41 16.34 8.1
fr2/desk 2.11 0.47 16.74 8.9
fr1/plant 2.13 0.43 16.24 8.3
fr1/teddy 1.97 0.37 16.74 4.7
fr2/coke 2.04 0.53 16.41 8.8

fr2/dishes 1.82 0.33 16.75 4.7
fr3/cabinet 2.15 0.35 16.13 4.6
fr3/teddy 2.19 0.59 16.29 12.1

mean time = 2.04 0.43 16.41 7.52

B. Dense tracking

In Fig. 5, dense tracking performance by applying our
algorithm is shown. In this case, the lines (correspondences
between points) overlap in most the image. This is because
instead of feature tracking in which only corners are tracked,
in dense tracking, all points in the images have to be tracked,
therefore, there have to be one line that connected any point
in the first image with its corresponding point in the second
image.

Fig. 6: Dense-tracking algorithm applied over two consecutive frames
form an outdoor video sequence

C. monocular-SLAM

In order to validate the performance, we tested via Mat-
lab several indoor/outdoor video sequences. Although there
are several datasets, in most cases several environmental
restrictions such as, controlled illumination, uniform camera
movements and less image degradation between frames are
considered. Environmental restrictions limit the real-world
applications performance since these restrictions often are not
present. In this work, all video sequences were captured in the
interior/exterior of our campus. Then, it is demonstrated that
the proposed solution is capable to work in satisfactory form
under several real-world conditions.



In Fig. 7 an overview of some tested scenes are shown
while in Fig. 8 and 9, we present the results for our
monocular-SLAM algorithm compared with a traditional
monocular-SLAM approach. For that, we formulate a tradi-
tional monocular-SLAM approach using the FAST algorithm
[11] in the feature extraction step, the BRIEF visual descrip-
tor [27] in the visual descriptor step, a traditional all vs.
all matching algorithm, the normalized eight-point algorithm
for the camera pose estimation [25], the linear triangulation
algorithm for the 3D estimation and bundle adjustment to
simultaneously refine camera pose and 3D points. As can be
seen, in all cases the point cloud density can be increased by
applying our monocular-SLAM algorithm. Furthermore, we
demonstrated that the proposed algorithm works successfully
under different environmental conditions, different places and
different camera movements. Therefore, the proposed solution
addressed in satisfactory form the sparse cloud problem.

(a) INAOE, library (b) INAOE, building

(c) INAOE, laboratory (d) INAOE, room

Fig. 7: General view of several real-world scenes tested in our
monocular-SLAM algorithm.

In TABLE III we present numerical comparisons between
the traditional and proposed monocular-SLAM approach. In
all cases high accuracy in the camera pose estimation can be
achieved. In all cases, the proposed dense tracking algorithm
allows increasing the point cloud density. Considering that
previous work that addressed the sparse cloud problem using
a single RGB camera, such as DT-SLAM [19], LSD-SLAM
[15] and ORB-SLAM [14], only include near to 2, 7 and
4 percent of the points from a scene, respectively. Then,
our algorithm that can include a mean of 14 percent of
the points form a scene, improves the current state of the
art, providing dense mapping and accurate camera pose
estimation under several real-world indoor/outdoor scenarios.
Finally, all exhaustive algorithms such as, feature extraction,
feature tracking and dense tracking allow straightforward
implementation in FPGA. In the case of the feature/dense
tracking algorithms, all pixels/patches can be compared in
parallel. This could allow real-time processing that increases
the scope of our monocular-SLAM algorithm.

TABLE III: Numerical comparisons between the traditional and
proposed monocular-SLAM approach

Sequence camera
pose error 3D map density camera

pose error 3D map density

library 0.0087% 161 points 0.0087% 280014 points
building 0.0123% 217 points 0.0123% 330291 points

laboratory 0.0127% 289 points 0.0127% 376284 points
room 0.0083% 119 points 0.0083% 193247 points

traditional proposed

V. CONCLUSIONS

In this article, we introduced a new feature-tracking/dense-
tracking algorithm, suitable for increasing the density of the
monocular-SLAM systems based in RGB cameras, and that
allow simple hardware implementation for real-time process-
ing. Our SLAM formulation delivers accurate camera pose
and dense mapping, superior to previous work. We have
demonstrated that our SLAM formulation can be successfully
applied under several real-world scenarios. Finally, based on
the mathematical formulation of all our algorithms, we can
affirm that a simple and compact FPGA implementation can
be implemented; this will enable real-time processing with low
cost and compact system design.

(a) INAOE, library, traditional

(b) INAOE, library, proposed

Fig. 8: 3D mapping performance for the proposed monocular-SLAM
formulation compared with the traditional formulation.



(a) INAOE, building, traditional (b) INAOE, building, proposed

(c) INAOE, laboratory, traditional (d) INAOE, laboratory, proposed

(e) INAOE, room, traditional (f) INAOE, room, proposed

Fig. 9: 3D mapping performance for the proposed monocular-SLAM formulation compared with the traditional formulation.



REFERENCES

[1] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo,
R. Triebel, W. Burgard, C. Baker, Z. Omohundro,
S. Thayer, and W. Whittaker, “A system for volumetric
robotic mapping of abandoned mines,” in Robotics and
Automation, 2003. Proceedings. ICRA’03. IEEE Interna-
tional Conference on, vol. 3. IEEE, 2003, pp. 4270–
4275.

[2] C. F. Olson, L. H. Matthies, J. R. Wright, R. Li, and
K. Di, “Visual terrain mapping for mars exploration,”
Computer Vision and Image Understanding, vol. 105,
no. 1, pp. 73–85, 2007.

[3] D. Chekhlov, A. P. Gee, A. Calway, and W. Mayol-
Cuevas, “Ninja on a plane: Automatic discovery of
physical planes for augmented reality using visual slam,”
in Proceedings of the 2007 6th IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality.
IEEE Computer Society, 2007, pp. 1–4.

[4] J. M. Carranza, “Efficient monocular slam by using a
structure-driven mapping,” Ph.D. dissertation, Citeseer,
2012.

[5] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust
monocular slam in dynamic environments,” in Mixed and
Augmented Reality (ISMAR), 2013 IEEE International
Symposium on. IEEE, 2013, pp. 209–218.

[6] S. A. Holmes and D. W. Murray, “Monocular slam
with conditionally independent split mapping,” Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, vol. 35, no. 6, pp. 1451–1463, 2013.

[7] A. Concha and J. Civera, “Using superpixels in monoc-
ular slam,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp.
365–372.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“Monoslam: Real-time single camera slam,” Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, vol. 29, no. 6, pp. 1052–1067, 2007.

[9] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-
Mancha, “Visual simultaneous localization and mapping:
a survey,” Artificial Intelligence Review, vol. 43, no. 1,
pp. 55–81, 2015.

[10] C. Harris and M. Stephens, “A combined corner and edge
detector.” in Alvey vision conference, vol. 15. Citeseer,
1988, p. 50.

[11] E. Rosten and T. Drummond, “Fusing points and lines for
high performance tracking,” in Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on,
vol. 2. IEEE, 2005, pp. 1508–1515.

[12] S. M. Smith and J. M. Brady, “Susana new approach
to low level image processing,” International journal of
computer vision, vol. 23, no. 1, pp. 45–78, 1997.

[13] J. Shi and C. Tomasi, “Good features to track,” in Com-
puter Vision and Pattern Recognition, 1994. Proceedings
CVPR’94., 1994 IEEE Computer Society Conference on.
IEEE, 1994, pp. 593–600.

[14] R. Mur-Artal, J. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” Robotics,
IEEE Transactions on, vol. 31, no. 5, pp. 1147–1163,
2015.

[15] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-
scale direct monocular slam,” in Computer Vision–ECCV
2014. Springer, 2014, pp. 834–849.

[16] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,
A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann et al., “Stanley: The robot that won the
darpa grand challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661–692, 2006.

[17] B. He, L. Ying, S. Zhang, X. Feng, T. Yan, R. Nian, and
Y. Shen, “Autonomous navigation based on unscented-
fastslam using particle swarm optimization for au-
tonomous underwater vehicles,” Measurement, vol. 71,
pp. 89–101, 2015.

[18] M. Johnson-Roberson, O. Pizarro, S. B. Williams,
and I. Mahon, “Generation and visualization of large-
scale three-dimensional reconstructions from underwater
robotic surveys,” Journal of Field Robotics, vol. 27, no. 1,
pp. 21–51, 2010.

[19] C. Herrera, K. Kim, J. Kannala, K. Pulli, J. Heikkila
et al., “Dt-slam: Deferred triangulation for robust slam,”
in 3D Vision (3DV), 2014 2nd International Conference
on, vol. 1. IEEE, 2014, pp. 609–616.

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“Orb: an efficient alternative to sift or surf,” in Computer
Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2564–2571.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded
up robust features,” in Computer vision–ECCV 2006.
Springer, 2006, pp. 404–417.

[22] B. D. Lucas, T. Kanade et al., “An iterative image reg-
istration technique with an application to stereo vision.”
in IJCAI, vol. 81, 1981, pp. 674–679.

[23] C. Tomasi and T. Kanade, Detection and tracking of point
features. School of Computer Science, Carnegie Mellon
Univ. Pittsburgh, 1991.

[24] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision. Cambridge university press, 2003.

[25] W. Conley, “Computer optimization techniques,” Tech.
Rep., 1980.

[26] C. V. Group. (2016) Rgb-d slam
dataset and benchmark. [Online].
Available: https://vision.in.tum.de/data/datasets/rgbd-
dataset/download

[27] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief:
Binary robust independent elementary features,” Com-
puter Vision–ECCV 2010, pp. 778–792, 2010.


