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Abstract—An inertial-aided visual servo control approach for
fully-actuated Autonomous Underwater Vehicles (AUVs) with-
out relying on linear velocity measurements is proposed. The
homography obtained from corresponding images of a locally
planar scene is directly exploited as feedback information. A
cascade inner-outer loop control architecture is adopted that
facilitates both control implementation and gain tuning proce-
dures. Control robustness with respect to model uncertainties
and external disturbances is reinforced using both high gain
estimation and integrator techniques. Rigourous stability analysis
and insightful discussions are provided throughout the paper.
Finally, robustness and efficiency of the proposed approach are
illustrated by simulation on a realistic AUV model.

Keywords—AUV, visual servoing, homography-based control,
nonlinear control

I. INTRODUCTION

Safe and efficient navigation of robotic underwater vehicles
in cluttered areas (near man-made infrastructures or the close
to the ocean floor) remains a big challenge. Scientific issues
are mainly related to the fact that global acoustic positioning
systems become unusable or insufficiently precise in such
situations. Therefore, the AUV must rely on exteroceptive sen-
sors and advanced sensor-based control strategies. Although
sensing the surrounding environment can be done by various
types of sensors, cameras remain an attractive solution. By
using camera(s) as a sensor modality for relative position and
orientation, the control problem can be cast into Position-
Based Visual Servo (PBVS) or Image-Based Visual Servo
(IBVS) control problems [4]. Classical visual servo control
approaches have been proposed for robotic manipulators and
mobile ground vehicles (see [4]) and then for aerial drones [7],
[19]. In underwater robotics, vision sensors have been used to
perform tasks such as pipeline following [12], [20], station
keeping [15], or positioning [6]. Both stereo and monocular
visions have been exploited for the problems of stabilization
and positioning of AUVs. When it is possible to reconstruct the
vehicle’s pose (i.e. position and orientation), existing position-
based controllers can be directly applied [18]. The case of
monocular vision without the assumption of planarity of the
visual target and the prior knowledge of its geometry is more
challenging since the pose cannot be fully reconstructed from
visual data. However, similarly to the case of robotic manip-
ulators and aerial robots [4], [19], monocular vision can be

sufficient to achieve stabilization for AUVs in front of a planar
target using 2 1

2 D servoing [3], [15], [21], essentially based on
the idea of Malis et al. [16]. Recently, in [2] an advanced
kinematic IBVS control scheme was developed by exploiting
the so-called homography matrix. A noticeable feature of that
approach is that the step of homography decomposition [17]
often computationally expensive is not required as opposed
to other homography-based visual servo (HBVS) controllers
[16]. More recently, this kinematic HBVS control approach
has been extended in our prior work [9], [13] in order to
account for the full dynamics of fully-actuated AUVs and
to obtain an enlarged provable domain of convergence. The
present paper is the continuation of our prior work on the
same topic of dynamic HBVS control of fully-actuated AUVs,
but here without relying on linear velocity measurements.
A motivation behind this effort is linked to the high price
and high weight of Doppler Velocity Log (DVL) velocity
sensors commonly used for AUV navigation. Moreover, many
applications such as intervention and high-resolution imaging
for inspection require the vehicle to operate in close proximity
to man-made infrastructures (about 1m). However, at such a
close distance the maximum slope-threshold of a DVL can
be easily violated and DVL measurements then become very
imprecise, thereby resulting in an obvious need of advanced
vision-based control techniques independent of linear velocity
measurements.

The paper is organized as follows. Notation and system
modelling are given in Section II. Problem formulation of
HBVS control of fully-actuated AUVs is presented in Section
III. Section IV presents a novel inertial-aided HBVS control
approach for fully-actuated and compact AUVs. Section V
reports simulation results on a realistic AUV model showing
the performance and robustness of the proposed algorithm. A
short conclusion then follows.

II. SYSTEM MODELLING

A. Notation

• {e1, e2, e3} denotes the canonical basis of R3. I3 denotes
the identity matrix of R3×3. The notation u×, ∀u ∈ R3,
denotes the skew-symmetric matrix associated with the cross
product by u, i.e., u×v = u × v, ∀v ∈ R3. The opera-
tor vex(·) is defined such that vex(u×) = u, ∀u ∈ R3.
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Fig. 1. A compact AUV with a downward-looking camera for homography
estimation and notation

The Euclidean norm in Rn and the transpose operator are,
respectively, denoted as | · | and (·)>. Let satδ(·) ∈ Rn,
with δ > 0, be the classical saturation function defined by
satδ(x),x min (1, δ/|x|) ,∀x ∈ Rn.
• Let G and B denote the AUV’s center of mass (CoM) and
center of buoyancy (CoB), m its mass and J0 its inertia matrix.
The distance between G and B is denoted as l.
• Let A = {O;−→e a1 ,−→e a2 ,−→e a3} and B = {B;−→e b1,−→e b2,−→e b3}
denote an inertial frame and a frame attached to the AUV. Let
C = {C;−→e c1,−→e c2,−→e c3} be a frame attached to the camera,
with its base vectors parallel to those of B. In this paper we
assume that B, G, C are aligned (Fig. 1). Let rC = lCe3 ∈
R3 and rG = le3 ∈ R3, with e3 = [0, 0, 1]>, denote the
vectors of coordinates expressed in the frame B of

−−→
BC and−−→

BG, respectively.
• The orientation of B relative to A is represented by the
rotation matrix R ∈ SO(3). Denote the position of the
origins of the frames B and C, expressed in A, as p and pC ,
respectively. We have p = pC −RrC .
• The angular velocity, expressed in B, of the frame B with
respect to (w.r.t.) A is denoted as Ω = [ω1, ω2, ω3]> ∈ R3.
The linear velocity of B and C, expressed in the frame B, are
V ∈ R3 and VC ∈ R3. We have V = VC −Ω× rC .
• Let vf and Vf denote the current velocity expressed in the
frames A and B, respectively. In this paper we assume that
vf is constant. Denote Vh , V −Vf as the CoB’s velocity
w.r.t. the current.

B. Recalls on system modeling

Define Wh , [V>h , Ω>]> ∈ R6. The total kinetic energy of
the body-fluid system ET is defined as the sum of the kinetic
energy of the vehicle EB and the one of the surrounding fluid
EF , i.e. ET = EB + EF with

EB =
1

2
W>hMBWh, with MB ,

[
mI3 −mrG×
mrG× J0

]
EF =

1

2
W>hMAWh, with MA ,

[
M11
A M12

A

M21
A M22

A

]
MA ∈ R6×6 is referred to as the added mass matrix, which
is approximately constant and symmetric [5]. Thus,

ET =
1

2
W>hMTWh, with MT =

[
M D>

D J

]
(1)

with M , mI3 + M11
A , J , J0 + M22

A , D , mrG× + M21
A .

The translational and rotational momentums are derived as{
Ph = ∂ET

∂Vh
= MVh + D>Ω

Πh = ∂ET
∂Ω = JΩ + DVh

(2)

The vehicle’s equations of motion are [14]
ṗ = RV (3a)

Ṙ = RΩ× (3b)

Ṗh = Ph ×Ω + Fc + Fgb + Fd (3c)

Π̇h = Πh×Ω + Ph×Vh + Γc + Γg + Γd (3d)
where Fc ∈ R3 and Γc ∈ R3 are the force and torque control
inputs, Fgb , (mg − Fb)R>e3 is the sum of the gravity and
buoyancy forces, Γg , mgle3×R>e3 is the gravity torque,
and the damping force and torque Fd and Γd are modeled as{

Fd(Vh) = −(DVl + |Vh|DVq)Vh

Γd(Ω) = −(DΩl + |Ω|DΩq)Ω
(4)

with positive damping matrices DVl, DVq , DΩl, DΩq .

C. Model for control design
For control design purposes, some simplifications are con-

sidered.
• Equations (3c)-(3d) indicate that the translational and

rotational dynamics are coupled, via the coupling matrix
D. Such coupling dynamics complicate the control design
process because for the control problem at hand linear
velocity measurements (V or Vh) are not available.
However, we limit our study to a class of compact-
shape AUVs so that the matrix M21

A is negligible w.r.t.
the diagonal elements of MA. Moreover, it is assumed
that the distance between the vehicle’s CoB and CoM
and the vehicle’s mass are relatively small so that the
term mrG× involved in the definition of D is also
small. Consequently, the derivative terms D>Ω̇ and DV̇h

involved, respectively, in the left-hand side of (3c) and
(3d) can be neglected and considered as disturbance
terms.

• Since Vh is not measured, the term (MVh) × Vh

involved in (3d) and often referred to as “Munk moment”
in the literature is neglected in the control model. This
simplification is acceptable for vehicles in compact form
(such as box-shaped or spherical AUVs) and for slow
motion (Vh remaining relatively small).

• All unmeasured terms involving the current velocity Vf

are regrouped and considered as disturbance terms.
Under these justifications, control design will be carried out
on the basis of the following simplified control model

ṗ = RV (5a)

Ṙ = RΩ× (5b)

MV̇ = (MV)×Ω + Fc + Fgb + Fd(V) + ∆F (5c)

JΩ̇ = (JΩ)×Ω + Γc + Γg + ∆Γ (5d)
with the “disturbance” terms

∆F =−(MVf )×Ω−MΩ×Vf + (D>Ω)×Ω−D>Ω̇
+Fd(Vh)− Fd(V)

∆Γ =(DVh)×Ω + Ph×Vh −DV̇h + Γd



Since the control objective is fixed-point stabilization, the
terms ∆F and ∆Γ would eventually converge to constant
values. Therefore, these terms will be considered as constant
and compensated via integral actions.

III. PROBLEM FORMULATION

A. Problem formulation

Based on a reference image, taken at some desired pose
using a downward-looking monocular camera, and the current
images, the control design objective consists in stabilizing the
camera’s pose to the reference one. Let us choose the inertial
frame A attached to the camera’s desired pose (see Fig. 1).
Assume that we dispose of the estimation of the homography
matrix H, which contains geometric information about the
rotation and translation between the current camera frame C
and the reference camera frame A [2]

H = R> − 1

d?
R>pCn?> (6)

with d? the distance between the camera optical center and the
target plane (i.e. depth), and n? ∈ S2 the unit vector normal
to the target plane expressed in A (see Fig. 1). The dynamics
of H satisfy

Ḣ = −Ω×H− 1

d?
VCn?> (7)

In addition to the estimation of H, it is assumed that an
Inertial Measurement Unit (IMU) is available to provide
measurements of the angular velocity Ω together with an
approximate of the gravity direction R>e3.

The control objective can be stated as the stabilization
of H about the identity matrix I3, or equivalently the sta-
bilization of (R,pC) about (I3,0) using H, Ω and R>e3

as measurements. The difficulties of dynamic HBVS control
design are related to the fact that both d? and n? involved
in the expression (6) of H are unknown and that H only
contains a coupled information of rotation and translation.
More importantly, the linear velocity is not measured.
B. Discussions on existing HBVS control approaches

We first discuss about the state-of-the-art kinematic HBVS
control proposed in [2]. The authors in [2] define the visual
errors ep, eΘ ∈ R3 as

ep , (I3 −H)m?, eΘ , vex(H> −H) (8)
with some arbitrary unit vector m? ∈ S2 satisfying the
following assumption n?>m? > 0. Note that in practice such
an assumption is not restrictive. Indeed, since the visual target
is observed by the camera at the reference pose, the angle
between the target plane’s normal vector and the opposite
direction of the camera axis must be in the domain [0, π/2).
Considering the fact that the camera points downwards as in
the present paper, one has n?>(−e3) > 0. This suggests the
choice of m? = −e3 without any knowledge about n?.
Lemma 1 (See [2] for the proof) Under assumption
n?>m? > 0, the kinematic control law:

VC = −kpep , Ω = −kΘeΘ (9)
with kp, kΘ > 0, ensures the local exponential stability of
the equilibrium (R,pC) = (I3,0), i.e. H = I3. The function
e , [e>p , e

>
Θ]> is isomorphic to H, i.e. e = 0 iif H = I3.

For mechanical systems, control inputs for control design
should be forces and torques, instead of the angular and linear
velocities. However, the passage from kinematic control to
dynamic control requires both linear velocity and angular
velocity measurements (see [9] for more extensive discussions)
and is, thus, inapplicable to the problem considered in this pa-
per due to the unavailability of linear velocity measurements.

In our prior work [9] concerning dynamic HBVS control,
although significant efforts have been made to extend the
domain of stability to (almost) global asymptotical stability,
the proposed control approach still necessitates linear velocity
measurements. Therefore, a novel dynamic HBVS control
approach without relying on linear velocity measurements will
be developed in the sequel.

IV. CONTROL DESIGN
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Fig. 2. Control architecture of the proposed HBVS

The following cascade inner-outer loop control architecture
(illustrated by Fig. 2) is adopted:
• The inner-loop control, governing the rotation dynamics

(5b) and (5d), defines the torque control vector Γc so
as to ensure the asymptotic stabilization of (Ω,R>e3)
about (Ωr, e3), where the reference angular velocity Ωr

is defined by
Ωr , kge3 ×R>e3 + ω3re3 (10)

with kg > 0 positive gain and ω3r ∈ R the reference
yaw angular velocity to be specified by the outer-loop
control. Note that ω̇3r must be computable so that Ω̇r is
also computable by the torque controller.

• The outer-loop control defines the force control vector Fc
together with the reference yaw angular velocity ω3r (for
the inner-loop control) so as to fulfill the main objective
of stabilizing H about I3 (or, equivalently, stabilizing
(ep, eΘ) about zero), provided that the inner-loop control
ensures the almost global asymptotic stability (almost-
GAS) and local exponential stability (LES) of the equi-
librium (Ω,R>e3) = (Ωr, e3).

The inner-loop control design is less involved and is post-
poned after the outer-loop control design.

A. Outer-loop control design

1) Force control design: Similarly to our prior work [9]
we first proceed the control design for the stabilization of the
visual error ep defined by (8) about zero, but here without
linear velocity measurements.

From (7), (8), it can be verified that the dynamics of ep are

ėp = −Ω× (ep −m?) + a?VC (11)



with a? , (n?>m?)
d? positive but unknown number. In the

present work we consider the case of a downward-looking
camera so that the condition n?>m? > 0 is satisfied when
choosing m? = −e3. As a result of the inner-loop control
(to be designed thereafter) that ensures the almost-GAS and
LES of (Ω,R>e3) = (Ωr, e3), Ω converges to ω3re3 and,
subsequently, Ω ×m? converges to zero and VC converges
to V. Therefore, (11) can be rewritten as

ėp = −Ω× ep + a?V + ε(t) (12)
with the “disturbance” term ε(t) , Ω ×m? + a?(VC −V)
converging exponentially to zero.

From here, the outer-loop control design will be first carried
out for the case of absence of sea currents (i.e. vf ≡ 0) so that
the disturbance term ∆F involved in (5c) can be considered
null, i.e. ∆F ≡ 0. Then, we will show later on how to cope
with sea currents by adding an integral correction action.

Proposition 1 Consider the dynamics of ep given by (12),
with the disturbance term ε(t) remaining bounded for all time
and converging exponentially to zero. Consider the transla-
tional dynamics (5c) with ∆F ≡ 0. Introduce the augmented
system

˙̂ep = −Ω× êp −K1êp + K1ep, êp(0) ∈ R3 (13)

with K1 ∈ R3×3 positive matrix. Apply the control force

Fc=m̄M−1
(
satη1(k2ẽp)− satη2(k3ep)

)
− Fgb (14)

with positive numbers m̄, k2, k3, η1, η2, and ẽp , êp −
ep, and sat(·)(·) the classical saturation function. Assume
that Ω remains bounded for all time. Then, the equilibrium
(ep, êp,V) = (0,0,0) is globally asymptotically stable
(GAS). Moreover, Fc remains bounded by

|Fc(t)| ≤ m̄λ−1
M (η1 + η2) + |mg − Fb| (15)

with λM the smallest eigenvalue of M.
Proof: Since the perturbation term ε(t) involved in (12)

converges exponentially to zero as a result of the inner-loop
control, according to the singular perturbation theory [11] one
only needs to prove the asymptotic stability of the unperturbed
system (i.e. setting ε(t) ≡ 0 in (12)). Consider the following
Lyapunov function candidate

L =

∫ |ẽp|
0

satη1(k2s)ds+

∫ |ep|
0

satη2(k3s)ds+
a?

2m̄
|MV|2 (16)

One verifies that the time-derivative of L along any solution
to the controlled unperturbed system is
L̇ =− satη1(k2ẽp)

>K1ẽp

− a?satη1(k2ẽp)
>V + a?satη2(k3ep)

>V

+ a?m̄−1
(
MV)>(Fc + Fgb + Fd(V)

)
=− satη1(k2ẽp)

>K1ẽp +
a?

m̄
(MV)>Fd(V) ≤ 0

(17)

where the last inequality is obtained using the fact that Fd
is a dissipative force so that (MV)>Fd(V) ≤ 0. From (17)
one deduces that êp converges to ep and that V converges
to zero. The convergence of V̇ to zero then follows. In view
of (5c) with ∆f ≡ 0 and Fc given by (14), one ensures
that ep converges to zero. The stability of the equilibrium

(ep, êp,V) = (0,0,0) is a direct consequence of (16) and
(17). Finally, the bound of the force control vector Fc given
by (15) is straightforwardly deduced from (14).

Remark 1 In first order approximations, the force control Fc
given by (14) can be approximated by

Fc = k2m̄M−1êp − (k2 + k3)m̄M−1ep − Fgb (18)

The proof of GAS of the equilibrium (ep, êp,V) = (0,0,0),
when Fc is given by (18), proceeds identically to the proof
of Proposition 1. The linear approximation (18) of Fc is
useful for gain tuning using, for instance, pole placement
technique, while the nonlinear expression (14) of Fc that
involves saturation functions allows us to define explicitly the
bound of the force control input Fc as given by (15). The
latter property is of particular importance in practice since it
is often desirable to take explicitly actuation limitations into
account. For instance, (15) implies that the desired bound of
|Fc| can be set to any value µ (> |mg − Fb|) if

η1 + η2 ≤ m̄−1λM(µ− |mg − Fb|)
It is noticeable that Proposition 1 only applies to the case

where sea currents are negligible so that the perturbation term
∆F involved in (5c) can be considered as a null vector.
As for the case of significant currents, it is necessary to
enhance the control robustness by incorporating an integral
correction action. However, in our case the system considered
in Proposition 1 (i.e. (13)+(12)+(5c)) is already a third-order
time-varying system. Thus, adding an integrator would lead
to a fourth-order time-varying system. Too high order system,
together with the presence of an unknown multiplicative
factor a? in (12) and the unavailability of linear velocity
measurements, excludes the possibility of establishing global
(or semi-global) stability results similar to Proposition 1.
However, it is still possible to state local exponential sta-
bility. For simplicity, let us consider the case where M can
be roughly approximated by a positive diagonal matrix, i.e.
M ≈ diag(m1,1,m2,2,m3,3).

Proposition 2 Consider the dynamics of ep given by (12)
and consider the translational dynamics (5c) with constant
disturbance ∆F and diagonal M = diag(m1,1,m2,2,m3,3).
Introduce the following integrator

ż = −Ω× z + ep, z(0) ∈ R3 (19)

and the following augmented system
˙̂ep = −Ω× êp −K1êp + K1ēp, êp(0) ∈ R3 (20)

with ēp , ep + kIz, kI a positive integral gain, and K1 ∈
R3×3 positive diagonal matrix. Apply the control force

Fc=m̄M−1
(
satη1(k2˜̄ep)− satη2(k3ēp)

)
− Fgb (21)

with positive numbers m̄, k2, k3, η1, η2, and ˜̄ep , êp − ēp.
Choose η2 high enough such that

η2 > m̄−1|M∆F | (22)

and choose kI satisfying

kI <
k2λK1

k2 + k3
(23)



with λK1
the smallest diagonal component of K1. Assume

that the outer-loop control ω3r together with the inner-
loop control Γc ensures that Ω can be considered as a
first order term in first order approximations. Then, the
equilibrium (êp, ep,V, z) = (kIz

?,0,0, z?), with z? ,
(m̄k3kI)

−1M∆F , of the controlled system is locally expo-
nentially stable (LES).

Proof: One verifies that the linearized system of Eqs.
(12), (5c), (20) augmented with integrator (19) around the
equilibrium (êp, ep,V, z) = (kIz

?,0,0, z?) is Ẋ = AX with
X ∈ R12 and A ∈ R12×12 given by

A ,


−K1 K1 0 kIK1

0 0 a?M−1 0
k2m̄M−1 −(k2+k3)m̄M−1 0 −kI(k2+k3)m̄M−1

0 I3 0 0


X , [ê>p e>p (MV)

>
z>]>

One verifies from (5c) and (21) that at equilibrium configura-
tion z? , (m̄k3kI)

−1M∆F . Also from these equations, when
˜̄ep = 0, if |k2ēp| ≥ η2, one deduces that η2 = m̄−1|M∆F |.
Therefore condition (22) is required so that the integral action
can compensate for the disturbance ∆F .

The 12th-order characteristic polynomial of the linearized
system is Q(λ) = Q1(λ)Q2(λ)Q3(λ), with

Qi(λ) = λ4 + k1iλ
3 + (k2 + k3)a?

m̄

m2
i,i

λ2

+[k1ik3 + (k2 + k3)kI ]a
? m̄

m2
i,i

λ+ k1ik3kIa
? m̄

m2
i,i

with kI satisfying (23), direct application of Routh-Hurwitz
criterion ensures the stability of the linearized system.

2) Control design of the reference yaw angular velocity
ω3r: The previous part of outer-loop control design ensures
the convergence of ep to zero. From here, the design of ω3r

can proceed identically to our prior work [9] and is, thus,
recalled here for the sake of completeness.

Proposition 3 (see [9] for proof) Assume that the inner-loop
torque control Γc ensures the almost-GAS and LES of the
equilibrium (Ω,R>e3) = (Ωr, e3), with Ωr defined by (10)
combined with ω3r (involved in (10)) solution to the following
system

ω̇3r = −kΘ2ω3r − kΘ1sat∆Θ(h1,2), ω3r(0) ∈ R (24)
with positive numbers kΘ1, kΘ2,∆Θ and h1,2 the element at
the first row and second column of H. Apply that the outer-
loop force control Fc given either by Proposition 1 (when
∆F ≡ 0) or Proposition 2 (when ∆F is constant and non
null). Then, the equilibrium H = I3 is LES. Moreover, this
equilibrium is almost-GAS in the case where Fc is given by
Proposition 1 and ∆F ≡ 0.

B. Inner-loop control design

The more involved part concerning the outer-loop control
design has been presented. It remains to design an effective
inner-loop torque control that ensures the stability of the
equilibrium (Ω,R>e3) = (Ωr, e3), with Ωr defined by (10)
combined with (24).

In view of the rotation dynamics (i.e. (5b) and (5d)), it is
not too difficult to carry out the above-mentioned objective
since the sub-system under consideration is fully-actuated and

the measurements of both Ω and R>e3 are at our disposal.
However, the most troublesome term ∆Γ involved in (5d)
should be carefully addressed, especially when the vehicle
is subjected to strong sea currents that excite the “Munk
moment” effects. Since the angular velocity can be measured
at high frequency and with good precision, we propose to
estimate ∆Γ using a high-gain observer similarly to the idea
proposed in [10], [8, Proposition 8].

Lemma 2 Consider the following observer of ∆Γ, assuming
that Γc , Ω, and R>e3 are measured{

J
˙̂
Ω = (JΩ)×Ω̂ + Γc+Γg + ∆̂Γ + k0J(Ω− Ω̂)
˙̂

∆Γ = a2
0k

2
0J(Ω− Ω̂)

(25)

with Ω̂ and ∆̂Γ the estimates of Ω and ∆Γ, respectively,
a0, k0 some positive gains. Assume that ∆̇Γ is uniformly
ultimately bounded (u.u.b.). Then for any a0 ∈ (1−

√
2/2, 1+√

2/2),
1) The errors Ω̂−Ω and ∆̂Γ−∆Γ are u.u.b. by a positive

constant ε(k0) that tends to zero when k0 tends to +∞.
Moreover, these terms converge exponentially to zero for
any k0 > 0 if ∆Γ is constant.

2) ˙̂
∆Γ is u.u.b. by a constant independent of k0.

The proof proceeds identically to the proof of [8, Proposi-
tion 8]. Now, we can use the estimate ∆̂Γ as a feedforward
term for the inner-loop torque control design.

Define the angular velocity error variable Ω̃ , Ω − Ωr.
From (5d), one obtains the following error equation

J ˙̃Ω = (JΩ)×Ω̃ + Γc + Γg + Γ + ∆̂Γ + ∆̄Γ (26)
with Γ , (JΩ)×Ωr − JΩ̇r and ∆̄Γ , ∆Γ − ∆̂Γ.

Proposition 4 Consider error equation given by (26). Intro-
duce the following integrator

żΩ = Ω̃, zΩ(0) ∈ R3 (27)
Apply the control torque

Γc =− satη3(KΩΩ̃)−KiΩzΩ − Γ− ∆̂Γ (28)

with KiΩ,KΩ ∈ R3×3 positive diagonal gain matrices, η3 a
positive number, Ωr defined by (10) combined with (24), and
with ∆̂Γ given by Lemma 2. Assume that ∆Γ is constant.
Then, the following properties hold.

1) The error state (Ω̃, zΩ,Re3) converges either to
(0,0, e3) or (0,0,−e3) for all initial conditions.

2) The equilibrium (Ω̃, zΩ,Re3) = (0,0, e3) is almost-GAS
and LES. The equilibrium (Ω̃, zΩ,Re3) = (0,0,−e3) is
unstable.
Proof: As a consequence of Lemma 2, ∆̂Γ converges

exponentially to ∆Γ or, equivalently, ∆̄Γ converges exponen-
tially to zero. Therefore, in view of the singular perturbation
theory [11] it suffices to prove the asymptotic stability of the
unperturbed system (i.e. setting ∆̄Γ ≡ 0 in (26)). Consider
the Lyapunov function candidate

L =
1

2
Ω̃>JΩ̃ +mgl(1− e>3 R>e3) +

1

2
z>ΩKiΩzΩ (29)

Using error equation (26), the torque control expression (28),
the definition (10) of Ωr, one verifies that the derivative of L
satisfies



L̇ = Ω̃>
(
− satη3(KΩΩ̃)−KiΩzΩ

)
−mglΩ>r e3 ×R>e3 + z>ΩKiΩΩ̃

= −Ω̃>satη3(KΩΩ̃)−mglkg|e3 ×R>e3|2 ≤ 0

(30)

Since L̇ is negative semi-definite, Ω̃ and zΩ are bounded w.r.t.
initial conditions. Since Ωr and its derivative are bounded
thanks to the expressions (10) and (24), one deduces from (26)
that ˙̃Ω is also bounded. Then it is straightforward to verify
that L̈ is also bounded, implying the uniform continuity of
L̇. Then, application of Barbalat’s lemma ensures that L̇ and,
thus, Ω̃ and e3×R>e3 converge to zero. Next, using Barbalat-
like arguments it can be shown that ˙̃Ω also converges to zero,
implying the convergence of zΩ to zero. The convergence of
e3 × R>e3 to zero implies that Re3 converges to either e3

or −e3. So far we have proved that (Ω̃, zΩ,Re3) converges
either to (0,0, e3) or (0,0,−e3).

It remains to show that the “desired” equilibrium
(Ω̃, zΩ,Re3) = (0,0, e3) is LES and the “undesired” equi-
librium (Ω̃, zΩ,Re3) = (0,0,−e3) is unstable. Note that the
almost-GAS of the “desired” equilibrium then directly follows.
In the first-order approximations, one has R ≈ I + Θ× with
Θ = [φ, θ, ψ]> and, subsequently, e3×R>e3 ≈ [−φ,−θ, 0]>.
Denoting [ω̃1, ω̃2, ω̃3]> , Ω̃ and using the approximation
Θ̇ ≈ Ω, one obtains the following linearized system of (26)
and (27)
φ̇ ≈ ω̃1 − kgφ
θ̇ ≈ ω̃2 − kgθ
˙̃Ω ≈ −J−1KΩΩ̃−J−1KiΩzΩ+mglJ−1[−φ,−θ, 0]>

żΩ= Ω̃

(31)

Consider the following Lyapunov function candidate

LΩ =
1

2
Ω̃>JΩ̃ +

1

2
z>ΩKiΩzΩ +

1

2
mgl

(
φ2 + θ2

)
(32)

One verifies that

L̇Ω = −Ω̃>KΩΩ̃− kgmgl(φ2 + θ2) ≤ 0 (33)

From here, LaSalle’s principle ensures that Ω̃, φ and θ and,
thus, ˙̃Ω converge to zero, which implies the convergence of
zΩ to zero. The convergence of φ and θ to zero is equivalent
to the convergence of R>e3 to e3. Since the equilibrium
(Ω̃, zΩ,R

>e3) = (0,0, e3) of the linearized system (31) is
asymptotically stable, it is also exponentially stable.

Now, the Chetaev’s theorem is used to prove the instability
of the equilibrium (Ω̃, zΩ,R

>e3) = (0,0,−e3). Define y =
e3 + R>e3. Consider the positive function S1(y) , y>e3 =
1 + e>3 R>e3, satisfying S1(0) = 0. Define Ur , {y|S1(y) >
0, |y| < r} for some number 0 < r < 1. Note that Ur is non-
empty. By neglecting all high-order terms, one verifies that

Ṡ1 ≈ e>3 RΩr×e3 = kg|e3×R>e3|2 = kg|e3×y|2

For all y ∈ Ur, the fact that y>e3 > 0 is equivalent to
|e3×y|2 > 0, which implies that Ṡ1 > 0. Since all conditions
of Chetaev’s theorem are now united [11], the origin of the
linearized system about the undesired equilibrium (so that
y = 0) is unstable.

Specification Numerical value
m [kg] 7.6
Fb [N ] 1.01mg
l [m] 0.025

rC [m] [0 0 0.15]

J0 [kg.m2]

 0.0842 0.004 0.005
0.004 0.2643 0.007
0.005 0.007 0.3116


M22

A [kg.m2]

 0.1 0.005 0.006
0.005 0.25 0.008
0.006 0.008 0.3


M11

A [kg]

 1.39 0.10 0.12
0.10 4.26 0.13
0.12 0.13 4.02


M21

A = M12
A

 0.002 0.02 0.01
0.02 0.003 0.018
0.01 0.018 0.003


DV l [kg.s−1] diag(5.85, 9.21, 11.03)
DV q [kg.m−1] diag(36.57, 57.58, 68.97)

DΩl [kg.m2.s−1] diag(0.01126, 0.01855, 0.01701)
DΩq [N.m] diag(0.0053, 0.0130, 0.0118)

M̂ = mI3 + M̂11
A [kg] diag(8.712, 12.712, 10.816)

Ĵ = J0 + M̂22
A [kg.m2] diag(0.1642, 0.5643, 0.5116)

D̂ = mle3×[kg.m] 0.19e3×

TABLE I
SPECIFICATIONS OF THE AUV

Controller Gains and other parameters
Proposition 2 K1 = diag(3s, 3s, 3s)

k2 =
8

3

s2

a?
, k3 =

1

3

s2

a?
, s =

√
2

kI = 0.7, η1 = 1.8, η2 = 2.3

Proposition 3 kg = 1, kΘ1 =
√

2, kΘ2 = 1/2, ∆Θ = 1
Proposition 4 KΩ = diag(3, 3, 3), KiΩ = 0.7KΩ

a0 = 0.5, k0 = 20, η3 = 8

TABLE II
CONTROL GAINS AND PARAMETERS

V. SIMULATION RESULTS

The proposed control approach has been tested in simulation
using a realistic model of a fully-actuated AUV with compact
shape similarly to the BlueROV acquired by our team [1]. The
AUV’s physical parameters are given in Table I. The robust-
ness of the proposed controller w.r.t. to model uncertainties are
tested by using the “erroneous” estimated parameters Ĵ, M̂, D̂
given in Table I instead of the corresponding true values.

The homography H is directly computed using (6)
with d? = 1(m) and n? = R{ π18 ,

π
6 ,0}(−e3) =

[−0.4924, 0.1736,−0.8529]>. The initial conditions are cho-
sen as follows: pC(0) = [−2,−1.5,−1]>(m), R(0) =
R{ π18 ,−

π
18 ,π}, V(0) = Ω(0) = 0. The initial yaw error is very

large, i.e. ψ = π, in order to verify the large stability domain
of the proposed controller. For all presented simulations, the
outer-loop controller defined in Propositions 2 and 3 and the
inner-loop controller defined in Proposition 4 are simulated.
Control parameters and gains, obtained from the classical pole
placement technique, are summarized in Table II.

A. Simulation 1 – Performance in absence of current vf = 0

The first simulation is dedicated to show the performance
of the controller when sea current is absent. The integrators
are disable by setting kI = 0 and KiΩ = 0. Simulation results
are reported in Figs. 3 - 6. The time evolutions of the vehicle’s



position and orientation are reported in Fig. 3. One observes
that the position and orientation errors converge smoothly to
zero despite large initial yaw error. Fig. 4 shows the fast
convergence of the visual error estimate êp to ep. Then, both
of them converge to zero together after about 10 seconds. The
time evolutions of the control force and torque are shown in
Fig. 5. All components of control force and torque converge to
zero except the third component of the control force that allows
to compensate for Fgb. The convergence of angular velocity
Ω to the reference Ωr in Fig. 6 shows the effectiveness of the
inner-loop control.
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Fig. 3. AUV’s position and attitude (Euler angles) vs. time (Simulation 1)
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Fig. 4. ep and êp vs. time (Simulation 1)
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Fig. 5. Control force Fc (smaller scale on the right side for visibility of Fc3)
and moment Γc vs. time (Simulation 1)
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Fig. 6. Ω and Ωr vs. time (Simulation 1)

B. Simulation 2 – Performance with current vf =
[ 1
2
√

2
, 1

2
√

2
, 0]>(m/s)

In this simulation, a constant current velocity vf =
[ 1
2
√

2
, 1

2
√

2
, 0]>(m/s) is introduced. The drag force Fd(V)

and “Munk moment” are no longer negligible like in the
previous simulation. However, thanks to the estimate ∆̂Γ and
the integral actions in both inner-loop and outer-loop controls,
the controller manages to compensate for the drag force and
Munk moment as well as other model errors. The AUV’s
position and orientation converge to zero with quite good
behaviour and small overshoot (see Fig. 7). The effect of the
sea current can be seen on the estimate terms êp, ∆̂Γ and the
integral term z. Since the current is on horizontal plane with
including surge and sway components, one observes in Figs.
8–10 that êp1, êp2, z1, z2 and ∆̂Γ3 converge to non-null values.
The control force and torque vectors converge to the values
dictated by the compensation of the current and Fgb as shown
in Fig. 9. The inner-loop control with asymptotic convergence
of angular velocity Ω to the reference Ωr is shown in Fig.
11. Also from this figure, one observes the convergence of
ωr1 and ωr2 to zero, implying the convergence of R>e3 to
e3.

VI. CONCLUSIONS

We have proposed an inertial-aided homography-based vi-
sual servo control approach for the stabilization of compact
fully-actuated AUVs without relying on linear velocity mea-
surements. The advanced features of our approach lie in the
fact that both linear velocity measurements and homography
decomposition are not required. A testing campaign with a real
AUV is now envisioned to validate the proposed approach in
challenging sea environment.
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