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The stereo matching is one of the most widely used algorithms in real-time image processing applications such as positioning systems for mobile robots, threedimensional building mapping and both recognition, detection and three-dimensional reconstruction of objects. In area-based algorithms, the similarity between one pixel of the left image and one pixel of the right image is measured using a correlation index computed on vicinities of these pixels called correlation windows. In order to preserve edges, small windows need to be used. On the other hand, for homogeneous areas, large windows are required. Due to only local information is used, matching between primitives is difficult. In this article, FPGA implementing of an efficient similarity-based adaptive window algorithm for dense disparity maps estimation in real-time is described. In order to evaluate the proposed algorithm behavior, the developed FPGA architecture was simulated via ModelSim-Altera 6.6c using different synthetic stereo pairs and different sizes for correlation window. In addition, the FPGA architecture was implemented in an FPGA Cyclone IIEP2C35F672C6 embedded in an Altera development board DE2. The disparity maps are computed at a rate of 76 frames per second for stereo pairs of 1280×1024 pixel resolution and a maximum expected disparity equal to 15. The developed FPGA architecture offers better results with respect to the most of real-time area-based stereo matching algorithms reported in the literature, allows increasing the processing speed up to 93,061,120 pixels per second and enables it to be implemented in the majority of the medium-gamma FPGA devices.

Introduction

The perception of the depht values of the points contained in a scene is one of the most important tasks of the computer vision systems and has been used in several applications such as positioning systems for mobile robots and both recognition, detection and three-dimensional reconstruction of objects [START_REF] Asadi | Delayed fusion for real-time vision-aided inertial navigation[END_REF][START_REF] Bartczak | Extraction of 3d freeform surfaces as visual landmarks for real-time tracking[END_REF][START_REF] Granados | On-chip semidense representation map for dense visual features driven by attention processes[END_REF].

Although numerous techniques exist to determine the depth of a scene, to extract the information referring to the depth from images obtained by a stereo configuration has become the most used technique. In this technique the correspondence between stereo pairs and the geometrical configuration of the stereo camera allows to obtain images of depth called disparity maps. In order to determine a disparity map it is necessary to measure the similarity of the points contained in the stereo pair. Techniques to determine these similarities are divided in two categories: area-based algorithms [START_REF] Aguilar-González | An fpga correlation-edge distance approach for disparity map[END_REF][START_REF] Jin | A fast and high quality stereo matching algorithm on fpga[END_REF][START_REF] Stefano | A fast areabased stereo matching algorithm[END_REF] and feature-based algorithms [START_REF] Feiyangcheng | Stereo matching by usingthe global edge constraint[END_REF][START_REF] Gong | Near real-time reliable stereo matching using programmable graphics hardware. Computer Vision and Pattern Recognition[END_REF][START_REF] Jung | Stereo reconstruction using high-order likelihoods[END_REF].

Area-based algorithm use the grayscale or color value of the surrounding pixels to the interest pixel for similarity stimation and produce dense disparity maps, i. e., they compute disparity for each pixel in stereo pair. These algorithms are more efficient in runtime, computer resource consumption and mathematical simplicity in comparison with features-based algorithms. On the other hand, feature-based algorithms are based on specific interest points and are more stable against changes of contrast, enviroment conditions and illumination due to they represent the geometric properties of the scene and the interest points are selected according to detectors of specific features. The main restriction of featurebased algorithms is that they do not allow to generate dense disparity maps, therefore, they often need to be applied with other techniques. In addition, a pre-processing stage for the extraction of features is necessary, which increases the computational resource consumption and runtime.

Due to FPGAs devices allow high speed handling of a large deal of information, several algorithms for the estimation of disparity maps have been implemented in these devices [START_REF] Isakova | Fpga design and implementation of a real-time stereo vision system[END_REF][START_REF] Jin | Fpga design and implementation of a real-time stereo vision system[END_REF]. Depending on the configuration of the cameras, the range of disparity levels varies; in the case of implemented algorithms in FPGA, this implies a significant increasement of the consumption of hardware resources, this has motivated diverse authors to study the possibility of reducing that disadvantage [START_REF] Kanade | A stereo machine for videorate dense depth mapping and its new applications[END_REF][START_REF] Murphy | Low-cost stereo vision on an fpga[END_REF] and search for new approaches to implement stereo vision algorithms in FPGA devices.

Related works

The system presented in [START_REF] Woodfill | Real time stereo vision on the parts reconfigurable computer[END_REF] consists in a 4×4 array of FPGAs connected in mesh type configuration, authors use a maximum total of near 35,000 LUT of 4 inputs, allowing to process 40 frames per second for images of 320×240 pixel resolution. In [START_REF] Darabiha | Reconfigurable hardware implementation of a phase-correlation stereo algorithm[END_REF], a structure based on four FPGAs Virtex 2000E of Xilinx is presented, obtaining dense disparity maps at a speed of 40 frames per second for images of 256×360 pixel resolution. In [START_REF] Diaz | Fpga based real-time opticalflow system[END_REF], the use of a single FPGA is proposed, the developed system processes images at 30 frames per second using images of 640×480 pixel resolution.

The architecture developed in [START_REF] Niitsuma | High-speed computation of the optical flow[END_REF], uses a technique based on SAD to calculate the optical flow efficiently, the system generates dense disparity maps at speeds superiors to 800 frames per second for images of 320×240 pixels using a correlation window of 7×7 and a maximum expected disparity equal to 121. A modification of SAD is shown in [START_REF] Lee | Real-time stereo vision on a reconfigurable system[END_REF], the authors of this work synthesize diverse versions of SAD to determine the needs and the performance of the hardaware resources, by decomposing the correlation window of SAD in rows and columns using buffers a saving of resource of around 50% is reached. Using different forms of windows, the high consumptions of memory decreases without any detriment of the quality. Disparity maps are calculated at speed of 122 frames per second for images of 320×240 pixels and a maximum expected disparity equal to 64.

The architecture in [START_REF] Masrani | A real-time large disparity range stereo-system using fpgas[END_REF] uses four FPGAs to conduct a rectification in real-time, later, a verification of left-right consistency was applied in order to improve the quality of the produced disparity map. Speeds of 30 frames per second are reached for images of 640×480 pixel resolution and a maximum expected disparity equal to 128. In [START_REF] Aguilar-González | An fpga correlation-edge distance approach for disparity map[END_REF] an FPGA correlation-edge distance approach is proposed. Speeds of 76 frames per second are reached for images of 1280×1024 pixel resolution and a maximum expected disparity equal to 15. By using a geometric feature, the euclidean distance between the selected point and the nearest left edge, the developed FPGA architecture provides a improvement over others conventional correlation-based stereo matching algorithms.

In [START_REF] Georgoulas | Fpga based disparity map computation with vergence control[END_REF] one module for real-time disparity maps computation implemented in an FPGA Stratix IV of Altera is proposed, disparity maps are computed at a rate of 320 frames per second for images of 640×480 pixels and a maximum expected disparity equal to 80. Finally, the module developed in [START_REF] Georgoulas | Real-time disparity map computation module[END_REF] enables to process 275 frames per second for images with a maximum expected disparity equal to 80 and 640×480 pixel resolution, the presented architecture provides a high speed of processing at expenses of the accuracy with great scalability in terms of disparity levels.

Adaptive window algorithms

Several adaptive algorithms have been proposed to improve results in both depth discontinuities and homogeneous areas. A technique of adaptive window in combination with SAD is used in [START_REF] Roh | Symmetrical dense disparity estimation: algorithms and fpgas implementation[END_REF], the algorithm processes images of up to 1024×1024 pixels and a maximum expected disparity equal to 32 at 47 frames per second. Authors of [START_REF] Kanade | A stereo matching algorithm with an adaptive window: Theory and experiment[END_REF] estimate the current depth by changes correlation window size and shape. These changes were performed iteratively according to the local variation of the gray scale values. However, the algorithm is computationally expensive and sensible to the initial depth estimates. Autors of [START_REF] Veksler | Stereo matching by compact windows via minimum ratio cycle[END_REF] have changed the window size and shape by optimization over a large class of compact windows via minimum ratio cycle. The algorithm presented in [START_REF] Lotti | Correlation algorithm with adaptive window for aerial image in stereo vision[END_REF] proposes using edges in the reference image to determine the size of a rectangular window. In [START_REF] Yang | A non-local cost aggregation method for stereo matching[END_REF], pixels are aggregated addaptively based on pixel similarity using a tree structure. In [START_REF] Min | Joint histogram-based cost aggregation for stereo matching[END_REF], obtain the aggregation process cost from a perspective of a histogram is proposed.

In order to simplify the adaptive algorithms, several algorithms have been proposed. Autors of [START_REF] Fusiello | Symmetric stereo with multiple windowing[END_REF] compute correlation coefficients on nine windows, and the one yielding the lowest value is retained. In [START_REF] Hirschmuller | Improvements in real-time correlationbased stereo vision[END_REF] the use of a central window surrounded by several support windows is proposed. The correlation coefficients of the best support windows, i.e., the lowest values, are added to the coefficient computed on the central window. The reduced number of windows used in these algorithms cannot cover the whole range of different sizes and shapes required in all the situations. The use of non-parametric measures has been proposed by autors of [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF], in the Census transform, each pixel and its surrounding is mapped into a vector of boolean variables, which denoting the ordering relation between the center pixel and a vicinity pixel. Boolean vectors are compared using the Hamming distance. Hamming distances are summed over a small local area and the shift that minimizes Hamming distance is retained as the disparity. Non-parametric measures reduces the sensitivity to outliers but not resolves the problem of the window size due to the window size must remain small. The main disadvantage regarding to the algorithms described in section 2.1 is that these can not be implemented in a dedicated hardware for real-time processing. However, in this research we are interested on stereo matching algorithms suitable for real-time image processing. The most adapted are correlation-based algorithms such as the sum of absolute differences (SAD), because they have a regular structure with fixed runtime. In addition, several systems that use correlationbased algorithms have been described in the literature.

In majority of area-based algorithms, a rectangular vicinity centered on a reference pixel in one of the images from a stereo pair is compared with similar vicinities for some pixels in the same raster line of the other image. Vicinities are called correlation windows and can be compared using a correlation-based measure such as SAD:

C l (x, y, s) = i=wx i=-wx j=wy j=-wy |I l (x + i, y + j)- I r (x + s + i, y + j)| ,
where I l (x + i, y + j) and I r (x + i + s, y + j) are the grey scale values of the pixels within the window in both images, called the left and right images respectively. (2 × w + 1) 2 is the correlation window size, s is the shift of the window in the right image and the maximal shift of the correlation window in the right image is s m . A correlation coefficient is determined for each pixel and the shift that minimizes the correlation coefficient is retained as the disparity. These algorithms yield a dense depth map, but they need a high runtime.

Disparity maps generated by applying the SAD algorithm on different synthetic stereo pairs are shown in Fig. 1. The main problem with this algorithm is to select the correlation window size. High window size values allow to determine the correct correlation values in areas with uniform texture. However, these window sizes imply a high computational demand and erroneous values at certain points due to the blurring edges and that small features are eliminated Fig. 1.(c),(f),(i). On the other hand, small window sizes imply low computational demand but the correlation coefficient measurement is sensitive to noise, hence, erroneous values at uniform texture regions are generated as seen in Fig. 1

.(b),(e),(h).

In order to avoid of the main disadvantages of the SAD algorithm (blurring edges and noise in homogeneous areas), the use of an adaptive correlation window based on a similarity criterion suitable for real-time image processing is proposed. Hence, in this article, an areabased stereo matching algorithm in which the size and shape of the correlation window are adjusted by each pixel in the reference image according to its content and his FPGA implementation are described. The proposed algorithm uses the grey scale values variations in the window as a technique to determine the similarity criterion. It is demonstrated that even with a simple similarity criterion, the proposed algorithm outperforms other adaptive window algorithms and enables to be implemented in a dedicated hardware for real-time processing such as FPGA devices. Furthermore, it is demonstrated that the developed FPGA architecture outperforms to the most of other real-time area-based stereo matching algorithms reported in the literature and allows to maintain a high processing speed.

The rest of this paper is organized as follows: section 4 presents the proposed algorithm and the technique to determine the similarity criterion used for the selection of pixels. In section 5, the FPGA architecture for the proposed algorithm is described. Experimental results for differents synthetic stereo pairs, a comparison with other adaptive window algorithms, a comparison regarding to several real-time stereo matching implementations reported in the literature and FPGA implementation results are detailed in section 6. Finally, section 7 concludes this article.

The proposed method

The main objective in this research is to develop one algorithm that uses a single window, which is processed only once using a recursive approach appropriate for dedicated hardware real-time proccesing implementation. In order to explain the proposed algorithm, the Tsukuba scene shown in the In the Similarity-Based Adaptive Window algorithm (SBAW), a fixed size window is centered on each pixel of the reference image, but only the selected pixels by similarity criterion are used to compute the correlation coefficient. Any correlation coefficient based on gray scale values can be modified using this technique. For example, the standard SAD expression turns into:

C l (x, y, s) = i=wx i=-wx j=wy j=-wy β(x, y, i, j) × ( 1 
)
|I l (x + i, y + j) -Ir(x + s + i, y + j)| ,
where the coefficient β(x, y, i, j) is equal to 1 when the pixels from the correlation window are projections of the selected point, otherwise is zero. i and j are used in the sum process. This corresponds to define a window with variable size and shape that can be adapted to the local reference image data. In order that pixels within the window correspond to the same object than the selected pixel P l (x, y), a pixel P l (x + i, y + j) is included or excluded from the window according to a similarity criterion. If the two pixels are similar, β(x, y, i, j) is set to 1, otherwise is zero.

Techniques to define the similarity criteria

Several techniques are able to be used to define the similarity criterion. However, a technique based on recursive approach is more suitable in terms of computational efficiency and facilitates his hardware implementation. In this section a technique based on the comparison of the grey scale values is described. It is demonstrated that even a simple technique allows the use of adaptive windows achieving to increase the disparity map accuracy.

Criterion based on comparison of the grey scale values

We can assume that two pixels are not similar and they have different disparity, when there is a significant difference between their grey scale values [START_REF] Zhang | Stereo matching with segmentation-based cooperation[END_REF]. Then, we set β(x, y, i, j) to 1 only when the grey scale value p(x + i, y + j) is close to the grey scale value of the selected pixel p(x, y), i. e., if:

|p(x + i, y + j) -p(x, y)| ≤ T (x, y) , (2) 
where T (x, y) is the maximum acceptable difference between the grey scale values. In practice, it is sufficient to assign the value of T ∀ p(x, y) as a constant value defined by the user. However, the problem is to determine an appropriate value for all points contained in the input stereo pair. By analyzing simulations performed in Matlab R2013a, it was determined that small values of T are most appropriate for points contained in regions near the edges while higher values of T are more suitable for regions which belong to the same object. On the other hand, it was determined that by assigning a constant value to T erroneous stimations occur in regions where due to the color of selected pixel, some pixels of to the same object are eliminated from the correlation window. Therefore, assigning to T a constant value does not ensure that an appropriate value for each point of the input stereo pair is used, furthermore, wrong stimations will be obtained at some points.

In order to compute T the use of the sum of absolute differences between the selected pixel and vicinity pixels is proposed. This value of T is adapted appropriately to most points contained in the stereo pair. i.e., in homogeneous areas in which it is supposed that all the points correspond to the same object, T is small and allows to avoid noise points and punctual features of the object. This enables to increase the accuracy of the correlation measure. On the other hand, when multiple objects are projected, the T value increases, however, this value allows to differentiate between the object that includes the selected point and others. Through multiple tests performed in Matlab it was determined that the minimum pixels required for an T accurate estimation are the pixels around the selected pixel, I l (x, y) (cf. Fig. 4, equation 4).

Finally, it was determined that in areas where the variation of the correlation window is high, mainly the points close to the corners of objects, T value is high and the disparity estimation accuracy decreases. Even with this limitation a high accuracy could be reached (cf. Fig. 4). In this case j = 1 and T could be defined as T = K, equation 4.

However, using a simple adequation it is possible to increase the accuracy level. Considering that when the selected point is a corner, T value is high and points of diferent objects would be include in the correlation window. Therefore, when T value is high, this value could be replaced with a smaller value that allows to differentiate between the object that includes the selected point and the others. Based on the assumption that into a large correlation window, multiple objects are projected, i.e., multiple corners are included. If the correlation window size increases, the number of projected objects and corners proportionally increases. We propose compute the T value adding a restriction parameter applicable on the corner points, equation 3. This parameter is computed as shown in equation 5 and enables to reduce the errors at corners and increase the general accuracy near to 2%. Fig. 5 shows some correlation windows for the Tsukuba scene using Equation 3. Although several techniques can be used to define the similarity criterion. We can affirm that even using a simple technique like the proposed in this article, any rectangular correlation window can be adapted to the local variations in the stereo pair. In standard algorithms, the disparity d l (x, y) is defined as the shift s giving the maximum (or minimum) value of the correlation values, equation 1. In order to detect occlusions, the left-right consistency is used. For each pixel, if the disparity d l (x, y) computed using the left image as a reference is equal to the disparity d r (x + S m , y) computed using the right image as the reference, equation 6, the solution is considered as correct. Otherwise the pixels are marked as occluded and the disparity can be computed with subpixel accuracy or be assigned as the minimum value between d l (x, y) and d r (x + S m , y). In this case the minimum value between d l (x, y) and d r (x + S m , y) will be used. 

Computational complexity

In order to explain the computational complexity of the proposed algorithm, first, the SAD computational complexity is analyzed. In this case the computational complexity is defined as following: O SAD (M S D/d ); where M is the size of the input image. S is the size of the correlation window. D is the maximum expected disparity and d is the increment regarding to the disparity values. Like SAD, the proposed algorithm possesses a computational complexity defined in the same terms, Table 2

. i.e. O SAD = O SBAW = O(M S D/d ).
Based on the high efficient of to the SAD algorithm and considering that his computational complexity is equal to the complexity of the proposed algorithm. It is possible to afirm the high efficient of the proposed method. In addition, when SAD applying left-right consistency was implemented, the SAD runtime was similar to the proposed method runtime for the same setup, Table 1. As can be seen, the increment on the runtime, in all the cases near to 30%, is the time required for the T value computation. 

The buffer module

In order to store necessary data for the disparity computation, the use of buffer modules is proposed. These modules allows to store the gray scale values corresponding to the pixels contained in n horizontal lines from an image and enables to read all stored lines in parallel. An overview of the FPGA architecture of the buffer module is shown in 3, the behavior of the state machine for the output w/r [n+1:0] is shown, the number of states is set as n + 1. n RAMs are in read mode while one RAM is in write mode for all the states at any time.

On the other hand, in Table 4 the behavior of the state machine for output address [9:0] is shown. The RAM module consists of a synchronous singleport ram unit, its general settings was set as: type = synchronous, width = 8, depth = 2048, operation type = single port, all the others parameters are defined as default. These parameters allow to store the gray scale values for each pixel contained in horizontal lines from images of up to 2048 horizontal resolution with 8 bits of color depth. The use of an RAM modules array enables to read the gray scale values of the pixels contained in n horizontal lines from an image, see Table 5 Table 5: Behavior of the array of RAM modules w/r [n+1:0] Read lines by RAM1,2,3,4,n

1000• • • -,-,-,- 0100• • • 1,-,-,- 0010• • • 1,-,-,- 0001• • • 1,2,3,- • • •0001 1,2,3,n 1000• • • n+1,2,3,n 0100• • • n+1,n+2,3,n 0010• • • n+1,n+2,n+3,n 0001• • • n+1,n+2,n+3,n+4 • • •0001 n+5,n+2,n+3,n+4
The n lines generator module reads the outputs from the RAM modules and determines which RAMs modules are in read mode at any time. In order to assign lines in the outputs of the n lines generator module in ascending form, i.e., pixel 1 [7:0] = input image line number l, pixel 2 [7:0] = input image line number l+1, pixel n [7:0] = input image line number l+n-1, the outputs from the RAM modules in read mode are assigned to the outputs of the n lines generator module as seen in Table 6, the first column corresponds to the output w/r [n+1:0] of the RAM driver module, the second column corresponds to the numbers of the RAM modules assigned to the outputs of the n lines generator module. 

1000• • • 2,3,4,5,• • •,n 0100• • • 3,4,5,• • •,n,1 0010• • • 4,5,• • •,n,1,2 0001• • • 5,n,• • •,1,2,3 • • •0001 1,2,3,4,• • •,n-1

The storage vector module

To compute the disparity value via the SBAW algorithm, it is necessary to have stored the gray scale values of all the pixels from the correlation window. However, the buffer module only provides the gray scale values of one of the vertical lines of the correlation window at each time. In order to store the rest of the values efficiently, use of n register-based storage vectors is proposed. All storage vectors possess a similar behavior with respect to a shift register unit, however, these allow to read multiple data in one clock cycle. In general, when a line begins, the gray scale value of the pixel with coordinate ( 1) is stored in index [7:0] of one storage vector, in the following clock cycle, this value is moved to index [15:8] and the gray scale value of the pixel with coordinate ( 2) is stored in index [7:0]. A similar process is repeated for all the pixels that integrate the line. In Fig. 8, behavior of storage vector module with settings as follows: number of lines to process = n, v = 8 × n -1 is shown. In Fig. 9 the architecture of the storage vector module is shown. For the computation of the disparity map via the SBAW algorithm, a pixel-parallel and window parallel architecture was designed; the necessary data are obtained from the storage vector modules, using the appropriate indexes is possible to process video streams at real-time, giving as result disparity maps of (X -w) × (Y -w) pixel resolution, where X, Y corresponds to the values of resolution of the input video stream and (2 × w + 1) 2 is the size of the correlation window used.

The architecture of the SBAW module is presented in Fig. 9, its general behavior is described as following: first, the absolute differences modules compute the absolute difference between pixels from left and right images of the correlation window. This process is executed in each of the d max + 1 absolute differences modules, implemented in parallel, which are configured for expected disparity levels from 0 until d max , where each module process only one disparity level and computes the absolute differences only for pixels which are projections of selected pixel, i. e., all pixels belong to the same object, equations 3 -5. Then, the output of each of the absolute differences modules are sent to its corresponding adder module, in this step adder blocks compute the sum of the absolute differences for all pixels retained in the correlation window. Finally, the minimum module assigns the corresponding index for all correlation values, then, determines the minimum correlation value and set the disparity value as the index of the minimum correlation value. In the developed FPGA architecture, two SBAW modules were implemented in parallel form where the first module uses the left image as reference and the second module uses the right image.

The minimun module

In order to reach an appropriate propagation of the processed data, the use of the minimum module is proposed. It consists of an index generator module and k min modules implemented in sequential form. Firstly, the index generator module assigns the corresponding indexes to all the correlation values from the previous stage, then, the min 1 module, receives all the correlation values and their indexes. Afterwards, this module determines the minimum values for correlation values, which are sorted by pairs with unrepeated correlation values for any pair; the minimum correlation values and their indexes obtained here are placed in the vectors (value [x:0], where x = 16 × (d max + 1) -1, and index [x:0], where x = 8×(d max +1)-1), respectively. This process is repeated in sequential form until only one correlation value and its index are placed in the output vectors.

The equalizer module

In order that disparity values are appropriate for displaying in LCD screens or another output devices, the use of the equalizer module is proposed. This module convert the final disparity value to gray scale values through disparity [7:0]×256/d max . To reduce the hardware resource consumption, this process was performed with a CASE structure, which considers all expected disparity levels and turns the final disparity value into integer constant value corresponding to the previously described operation. The FPGA architecture presented in section 5 was implemented with a top-down approach. All the modules were programmed using Verilog, Quartus II Web Edition version 10.1SP1 was used for the synthesis process. In order to verify functionality of all the modules individually, post-synthesis simulation in ModelSim-Altera 6.6c were executed.

Simulation results

In order to evaluate the behavior of proposed algorithm, the developed FPGA architecture was simulated in Model Sim-Altera 6.6c using different synthetic stereo pairs and different sizes for correlation windows. The selected tests stereo pairs were the Tsukuba, Venus, Teddy and Cones scenes. The window sizes used were: {3, 5,

41}. In Fig. 12 the behavior of the error obtained in the disparity maps generated for different window sizes for the selected synthetic stereo pairs are shown, this demonstrates the effec-tiveness of the developed FPGA architecture. Disparity maps have been compared using the method proposed in [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF], in which the percentage of pixels with a disparity error greater than one is computed. Three percentages are computed, one for all non-occluded pixels (nonocc), one for all pixels (all) and one for occluded pixels near depth discontinuities (disc). Performance for occluded pixels are not considered because no one algorithm compute occluded pixels explicitly.

On the other hand, Fig. 13 presents the error percentage of all pixels (all) for all evaluated synthetic stereo pairs obtained via SBAW algorithm compared with using the SAD algorithm. For the SBAW algorithm, if a small correlation window is used, error is more important than error for the SAD algorithm because some pixels of the window are not used and effective area of the used window is reduced. However, error in untextured areas is significantly reduced when a large correlation window is used. Error at discontinuities grows with the correlation window but it is smaller than the error for the SAD algorithm. So, we can affirm that performance of the SBAW algorithm is better when a large correlation window is used. In Table 7 quantitative results of the number of erroneous pixels obtained by the proposed algorithm for the Tsukuba, Venus, Teddy and Cones scenes, using a 41×41 correlation window compared with other real-time stereo matching algorithms, reported in the literature, are presented. In order to process and collect the data presented in Table 7, the developed architecture was scaled and synthesized to operate with the appropriate maximum expected disparity values. For all cases, Quartus II Web Edition version 10.1SP1 was used for the synthesis process and simulations in ModelSim-Altera 6.6c were executed. By analyzing Table 7, it is observed that the results of the algorithm present a improvement regarding to the most of real-time-stereo matching algorithms reported in literature. In addition, similar to the majority of these algorithms, the proposed algorithm presents a high performance with small values of maximum disparity (Tsukuba, Venus scenes); whilst, a medium performance with high values of maximum disparity (Teddy, Cones scenes) is observed. The generated disparity maps for the Tsukuba, Venus, Teddy and Cones scenes considering 2 × w + 1 = 41 are shown in Fig. 14. Furthermore, comparisons with respect to other adaptive window algorithms, such as the SMW algorithm [START_REF] Fusiello | Symmetric stereo with multiple windowing[END_REF], the Census algorithm [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF] and the Hirschmüller (HIR) algorithm [START_REF] Hirschmuller | Improvements in real-time correlationbased stereo vision[END_REF], were performed. In order to perform comparisons, the synthetic image shown in Fig. 15 In the areas corresponding to a single object, all the algorithms estimate the disparity precisely, because the correlation window is large, however, the averaging effect generates errors at depth discontinuities, which is clearly visible in the disparity maps of the SMW and HIR algorithms (Fig. 16(a) and(b)). The HIR algorithm reduces errors at discontinuities, but there are still false matchings due to the central window, which is always used. Square windows used in the SMW algorithm are well adapted for this image. However, there are false matchings at the corners of the central square object. The performance of the Census algorithm is worse because of the repetitive pattern in the image. With the SBAW algorithm (Fig. 16(d)), the estimated disparity map is very similiar to the ground truth, even near of both depth discontinuities and at the corners of the central square object. Table 10 shows the numerical values obtained by perform this comparison. All values shown in this table were obtained by Matlab implementations for the HIR, SMW and Census algorithms. The erroneous pixels were measured by applying the equation 7; where I 1 is the ground truth map. I 2 is the generated disparity map by a particular algorithm. x is the horizontal resolution of the input image. y is the vertical resolution of the input image and N is set as x × y. In all the cases a similar setup was applied and similar behavior for different test escenes was observed. In Table 10 only two percentages are computed, one for all the pixels and one for the pixels near discontinuities, because objects are well textured. The quantitative comparison demonstrate that the error percentages increase with window size for SMW and HIR algorithms, but decrease with window size for the SBAW algorithm. In the SMW algorithm, the window is adapted according to the local texture as confirmed by the low error percentages, but a large window is not well adapted at the corners and the error percentages rise up with the size window. Percentage errors in the Census algorithm are high due to the repetitive patterns in the image, but their performance in discontinuities is better than the HIR algorithm. Applying SBAW algorithm using a small window, errors are caused by a lack of information in the correlation window. On the other hand, with large windows, the errors near to depth discontinuities are avoided with the SBAW algorithm. This behavior is confirmed by low error percentages of the SBAW algorithm for pixels near to depth discontinuities. For the SBAW algorithm, the best performance is obtained with a large window. This is a difference and an advantage with respect to the others algorithms where the window size must remain small. Tables 8-9 present a comparison of the use of hardware resource regarding to all the synthesized and simulated configurations of the developed FPGA architecture. By analyzing Fig. 12, the acceptable behavior for the SBAW algorithm can be determined by using a 21×21 correlation window, in this case the hardware consumption for the developed FPGA architecture is appropriate for the majority of the medium gamma of FPGA devices such as the Stratix III family of Altera or Spartan III family of Xilinx, however, for higher window sizes only high gamma FPGA devices such as the Stratix V family of Altera support the hardware resource consumption. It is the user decision to select the configuration of the SBAW algorithm more appropriate to his particular requirements.

σ = 2 1 N i=x,j=y i=1,j=1 (I 1 (i, j) -I 2 (i, j)) 2 (7) 
Finally, Table 11 presents comparisons of processing speed regarding to other real-time stereo matching algorithms reported in the literature. Due to the mathematical simplicity of the proposed algorithm, the developed architecture does not require complex arithmetical operations such as calculation of quotients and radicals (which require a high runtime), hence, it maintains a high processing speed. When comparison of processing speed is conducted, Table 11, it is observed an increase with respect to other algorithms implemented in FPGA devices of up to 93,061,120 pixels per second. 

Implementation results

The developed FPGA architecture was implemented in a FPGA Cyclone II EP2C35F672C6 embedded in the development board DE2 of Altera and the selected configuration for the SBAW algorithm was d max = 15, 2 × w + 1 = 15. In order to acquire input stereo pairs, a TRDB DC2 board connected in the first port of expansion of the DE2 board is used. TRDB DC2 board provides stereo pairs of 1280×1024 pixel resolution in RGB scale. In order to determine the gray scale value of the input stereo pairs, the value of the green channel was used as a gray scale value. With the purpose of reaching appropriate values to the environmental characteristics of the input scene, the implementation enables to configure the exposition of the cameras. For assigning the exposure value of the cameras, 4 push buttons of the DE2 board are used. The function of each of these push buttons is detailed in the Table 12.

Table 12: Control of the board TRDB DC2

Output disparity maps was displayed in a terasIC 4,3" LCD screen of 800×480 pixel resolution connected to the second expansion port of the DE2 board. The processing speed of the FPGA implementation is equal to 76 fps (99,614,720 pixels/s) for the input stereo pairs of 1280×1024 pixel resolution. The resource consumption of the implemented architecture is shown in Table 13. 

Conclusions

In this article, an area-based algorithm suitable for realtime stereo matching using an adaptive window technique based on a grayscale similarity criterion was presented. Only selected pixels are used in the window according to their similarity to the central pixel. Furthermore, a technique to determine similarity criterion has been described and it was demonstrated that even using a simple similarity criterion, the SBAW algorithm outperforms other adaptive window algorithms reported in the literature. The best performance of the SBAW algorithm was obtained with a large window appropriated for homogeneous areas. However, since the effective size and shape of the window were adaptive, blurring effects at discontinuities are avoided.

In order to improve its processing speed, the proposed algorithm was implemented in a FPGA device. The developed FPGA architecture outperforms other real-time stereo matching algorithms in the literature, allowing high accuracy level and enables both increasing the processing speed and to be implemented in the majority of the medium gamma FPGA devices.

Furthermore, an important characteristic of the presented architecture is the scalability permissible; all the modules and submodules which integrate the developed FPGA architecture, easily allow to be adapted for processing of larger correlation windows than the simulated and implemented correlation windows. On the other hand, the FPGA architecture enables to configure different levels of maximum expected disparity (d max ), consequently, it is possible to configure the module for the computation of disparity maps with appropriate values to the environmental characteristics of the input video streams. This allows that the developed architecture can be applied to a wide range of applications of real-time stereo vision such as positioning systems for mobile robots and recognition, detection and tri-dimensional reconstruction of objects.
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 7 This module consists of three different sub-modules, The RAM driver module manages an array of n + 1 single-port ram units (RAM) assigning to each one the corresponding address, address [9:0], and the corresponding write-read value, w/r [n+1:0]. The w/r [n+1:0] output consist of one logic vector of n + 1 bits of size, the write-read value of each of the RAMs is determined by each one of the bits of the w/r [n+1:0] output. The outputs of the buffer modules are determined via state machines, which are controlled by horizontal resolution of the input stereo pairs, x resolution [11:0], and the correlation window size n [5:0]. In Table
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 13 Fig. 13: Comparison between the SBAW algorithm and the SAD algorithm for all the erroneous pixels (all)

  (a) is used. Two textured objects are present in the synthetic scene, which appear as a square and as the background in the image. Fig.15(b)shows the ground truth map, where well defined edges correspond to depth discontinuities.
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Table 1 :

 1 Runtime for the proposed method

	Scene/Algorithm		Window size (2 * w + 1)	
		9	25	49	81	121	169
	Tsukuba/SBAW	22.4	27.7	35.1	42.7	50.4	57.1
	Venus/SBAW	31.3	38.9	50.6	66.1	83.4	114
	Teddy/SBAW	46.3	66.4	98.7	138	191	252
	Cones/SBAW	46.3	66.4	98.7	138	191	252
	Tsukuba/SAD	15.3	17.6	20.9	25.3	30.8	40.6
	Venus/SAD	22.7	27.1	33.6	41.4	58.5	79.6
	Teddy/SAD	39.5	55.2	79.0	117	155	162
	Cones/SAD	39.5	55.2	79.0	117	155	162

*All the runtimes are measured in seconds and were obtained via MatLab

Table 2 :

 2 Pseudo code for the Similarity-Based Adaptive Window algorithm (SBAW)

Table 3 :

 3 Behavior of the state machine for the w/r [n+1:0] output of the buffer module

	State	Behavior
	1	If address < x resolution [11:0] and state = 1 then w/r [n+1:0] = • • •00001 else state = 2
	2	If address < x resolution [11:0] and state = 2 then w/r [n+1:0] = • • •00010 else state = 3
	. . .	. . .

n+1 If address < x resolution [11:0] and state = n+1 then w/r [n+1:0] = 1000• • • else state = 1

Table 6 :

 6 Output assignment for the n lines generator module

	w/r [n+1:0]	Assignment pixel l [7:0] for l=1,2,...,n

Table 7 :

 7 Comparison between quantitative results of real-time-stereo matching algorithms

	Algorithm Tsukuba	Venus	Teddy	Cones
	[25]	11%	8%	-	-
	[14]	8.7%	8.6%	-	-
	[11]	12.0%	8.0%	-	-
	[12]	15.2%	14.1%	-	-
	[9]	12.8%	10.8%	10.7%	-
	[2]	8.8%	6.9%	30.2	43.4
	[3]	3.8%	2.12%	11.85	8.45
	[33]	7.5%	4.1%	17.6%	18.4%
	[35]	10.4%	12.1%	29.1	25.3
	[18]	11.5%	5.27%	21.5	17.5
	[10]	7.8	11%	21	16.8
	SBAW	7.6%	3.2%	13.6%	16.4%

Table 10 :

 10 Errors for the synthetic pair (in %)

			Non-occluded		Near discontinuities
	Algorithm		Window size			Window size	
		15X15 21X21 27X27 15X15 21X21 27X27
	HIR [15]	2.24	3.51	5.01	27.32	33.05	35.63
	SMW [1]	0.53	0.86	1.4	8.9	12.38	16.49
	Census [39]	3.21	3.16	3.62	26.97	29.97	33.46
	SBAW	0.34	0.34	0.33	4.94	4.53	4.37

Table 8 :

 8 Logic elements (combinational functions and logic registers) consumption for different configurations of the developed FPGA architecture

	dmax a a 2w + 1	3	9	15	21	27	33	41
	15	7,375	47,286	119,991	143,988	165,586	182,144	191,252
	31	14,699	94,099	238,782	286,536	329,516	362,466	380,591
	63	29,104	186,316	470,400	561,610	645,851	710,434	726,757

Table 9 :

 9 Memory bits consumption for different configurations of the developed FPGA architecture

	dmax a a 2w + 1	3	9	15	21	27	33	41
	5	65,636	163,840	262,144	344,064	442,368	573,440	671,744
	31	65,636	163,840	262,144	344,064	442,368	573,440	671,744
	63	65,636	163,840	262,144	344,064	442,368	573,440	671,744

Table 11 :

 11 Processing speed for differents real-time stereo matching algorithms

	Algorithm	Resolution	Frames/s	Pixeles/s
	[11]	1280×1024	65	85,196,800
	[33]	640×480	68	20,889,600
	[3]	256×256	100	6,553,600
	[35]	1280×1024	50	65,536,000
	[10]	384×288	1250	138,240,000
	[18]	640×480	230	70,656,000
	[26]	320×240	574	44,083,200
	[9]	1024×1024	102	106,954,752
	SBAW*	450×375	592	99,900,000
	SBAW*	434×383	601	99,899,422
	SBAW*	384×288	904	99,975,168

*Operating frequency = 50 MHz

Table 13 :

 13 Hardware resource consumption for the FPGA implementation

	Resource	Demand
	Total logic elements	27,061/33,216 (81%)
	Total combinational functions	21,639/33,216 (65%)
	Dedicated logic registers	15,180/33,216 (46%)
	Total pins	161/475 (34%)
	Total Memory Bits	407,472/483,840 (84%)
	Embedded multiplier elements	0/70 (0%)
	Total PLLs	2/4 (50%)