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Abstract

The stereo matching is one of the most widely used algorithms in real-time image processing applications such as positioning sys-
tems for mobile robots, three-dimensional building mapping and both recognition, detection and three-dimensional reconstruction
of objects. In order to improve the runtime, stereo matching algorithms often have been implemented in dedicated hardware such
as FPGA or GPU devices. In this article an FPGA stereo matching unit based on fuzzy logic is described. The proposed method
consists of three stages: first, three similarity parameters inherent to each pixel contained in the input stereo pair are determined;
later, these parameters are submitted to a fuzzy inference system that determines a value of fuzzy-similarity; finally, the disparity
value is determined as the index for the maximum value of the fuzzy-similarity values (zero up to dmax). Dense disparity maps are
computed at a rate of 76 frames per second for input stereo pairs of 1280x1024 pixel resolution and a maximum expected disparity
equal to 15. The developed FPGA architecture provides reduction of the hardware resource demand; up to 67,384, minimum 9,788
for logic units, up to 35,475, minimum 11,766 for bits of memory. Increases the processing speed; up to 78,725,120, minimum
14,417,920 pixels per second and outperforms the accuracy level of most of real-time stereo matching algorithms reported in the
literature.

Keywords: Stereo matching, Fuzzy logic, FPGA

1. Introduction

Depht values of the points contained in an image is one of
the most used tasks of the computer vision systems and has
been used in several applications such as positioning systems
for mobile robots and both recognition, detection and three-
dimensional reconstruction of objects [1–7]. In stereo vision
technique the correspondence between stereo pairs and the ge-
ometrical configuration of the stereo camera allows to obtain
images of depth called disparity maps. In order to determine
a disparity map it is necessary to measure the similarity of the
points contained in the stereo pair. Techniques to determine
these similarities are divided in two categories: area-based al-
gorithms [8, 9] and feature-based algorithms [10, 11].

Area-based algorithm use the color value of the surrounding
pixels to the interest pixel and produce dense disparity maps, i.
e., these compute the disparity value for each pixel in the input
stereo pair. The main characteristic of area-based algorithms is
mathematical simplicity and low runtime. On the other hand,
feature-based algorithms are based on specific interest points
and are more stable against changes of contrast, enviroment
conditions and illumination due to these represent the geometric
properties of the input stereo pair. However, these algorithms
possess high runtime and high mathematical complexity.
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2. Related works

FPGA devices allow the implementation of dedicated com-
putational architectures that can accelerate algorithms. In pre-
vious work there has been several FPGA stereo matching archi-
tectures reported in the literature [12, 13]. However, in most of
these FPGA architectures the authors have been concentrated
in the accuracy level and not in the performance regarding to
hardware resource consumption, which is an important parame-
ter in mobile autonomous applications in which the use of small
FPGA devices and small power sources are required.

2.1. FPGA implementations

The system presented in [14] consists in a 4×4 array of FP-
GAs connected in mesh type configuration, authors use a max-
imum total of near 35,000 LUT of 4 inputs, allowing to process
40 frames per second for images of 320×240 pixel resolution.
In [15], a structure based on four FPGAs Virtex 2000E of Xil-
inx is presented, obtaining dense disparity maps at a speed of 40
frames per second for images of 256×360 pixel resolution. In
[16], the use of a single FPGA is proposed, the developed sys-
tem processes images at 30 frames per second using images of
640×480 pixel resolution. The architecture developed in [17],
uses a technique based on SAD to calculate the optical flow ef-
ficiently, the system generates dense disparity maps at speeds
superiors to 800 frames per second for images of 320×240 pix-
els using a correlation window of 7×7 and a maximum expected
disparity equal to 121.
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A modification of SAD is shown in [18], the authors of this
work synthesize diverse versions of SAD to determine the needs
and the performance of the hardaware resources, by decompos-
ing the correlation window of SAD in rows and columns using
buffers a saving of resource of around 50% is reached. Using
different forms of windows, the high consumptions of memory
decreases without any detriment of the quality. Disparity maps
are calculated at speed of 122 frames per second for images of
320×240 pixels and a maximum expected disparity equal to 64.

The architecture in [19] uses four FPGAs to conduct a rectifi-
cation in real-time, later, a verification of left-right consistency
was applied in order to improve the quality of the produced dis-
parity map. Speeds of 30 frames per second are reached for
images of 640×480 pixel resolution and a maximum expected
disparity equal to 128. In [9] an FPGA correlation-edge dis-
tance approach is proposed. Speeds of 76 frames per second are
reached for images of 1280×1024 pixel resolution and a maxi-
mum expected disparity equal to 15. By using a geometric fea-
ture, the euclidean distance between the selected point and the
nearest left edge, the developed FPGA architecture provides a
improvement over others conventional correlation-based stereo
matching algorithms.

2.2. Fuzzy logic approaches

In [20], similarity measure for stereo matching based on
fuzzy relations is proposed. The strength of relationship of
fuzzy data of two windows in the left image and the right image
is determined by applying fuzzy aggregation operators. How-
ever, these measures fail to establish correspondence of the oc-
cluded pixels. In order to outperform the performance in the
occluded pixels an modification of the weighted normalized
cross correlation (WNCC) algorithm based on fuzzy relations
of fuzzy data is used for the stereo matching process.

Authors of [21] present an modification of the Zitnick and
Kanade stereo matching algorithm [22]. The authors propose
the use of a balanced correlation window. In addition, the use
of a new fuzzy factor in the calculation of initial matching val-
ues which expresses the possibility of matching between two
pixels and a new iterative function for the refinement of the ini-
tial matching values are presented. Experimental results are
evaluated on synthetic and real images and a comparison of
the results regarding to other algorithms reported in the liter-
ature, using the ground truth data supplied by the University of
Tsukuba, is presented.

Finally, in [23] an FPGA module suitable for real-time dis-
parity map computation is presented. This enables a hardware-
based fuzzy inference system parallel-pipelined design, for the
overall module, implemented on a single FPGA device with a
operating frequency of 138 MHz. This provides disparity map
computation at a rate of nearly 440 frames per second, for a in-
put stereo pair with a disparity range of 80 pixels and 640×480
pixel resolution. The proposed method allows high speed pro-
cessing, enabling a suitable module for real-time stereo vision
applications.

3. The proposed method

Stereo matching algorithms suitable for real-time processing
have been studied by several authors, section 2.1. However,
most of these algorithms possess high mathematical complex-
ity; therefore, large FPGA devices are required in order imple-
ment them. On the other hand, although some approaches based
on fuzzy logic have been reported in the literature section 2.2,
the algorithms described in [20, 22] presented high mathemati-
cal complexity and do not allow to be implemented in dedicated
hardware for real-time processing such as FPGA devices. In
case of the FPGA architecture in [23] possesses high accuracy
and high speed processing. However, the developed module
maintains high hardware resource consumption.

The main objective in this research is to develop an FPGA
stereo matching unit suitable for real-time processing. The dis-
parity maps are computed at a rate of 76 frames per second for
input stereo pairs of 1280×1024 pixel resolution and a maxi-
mum expected disparity (dmax) equal to 15. In order to reach
high accuracy level the use of multiple similarity parameters
and a fuzzy approach is proposed. Furthermore, to obtain high
speed processing, the proposed method was implemented in an
FPGA device. On the other hand, in order to maintain low hard-
ware resources consumption it is proposed the use of new strate-
gies such as: a fuzzy inference system based on point-slope
equations and the use of storage vectors. Finally, to obtain an
appropriate configuration regarding to the environment setting
of the input stereo pair, the developed FPGA architecture allows
to set up the exposition of the cameras and allows scalability for
different levels of maximum disparity of simple and systematic
form. This allows that the resulting hardware can be applied to
a wide range of applications of real-time stereo vision.

A general block diagram of the proposed method is shown
in the Figure 1, the data obtained through a stereo camera is
processed to the cadence of video and it is simultaneously com-
puted three similarity parameters inherent to each pixel. 1 -
correlation obtained via the Sum of absolute differences (SAD)
algorithm [24–27]. 2 - similarity of the distance in pixels to the
closer left edge. 3 - similarity of the distance in pixels the closer
right edge. Later, these three parameters are submited to a fuzzy
inference system which assigns fuzzy-similarity values for the
zero up to dmax disparity levels. Finally, the value of disparity is
assigned as the index that maximizes the fuzzy-similarity value.

Figure 1: Block Diagram of the proposed method.
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3.1. Correlation computation

In majority of area-based algorithms, a rectangular vicinity
centered on a reference pixel in one of the images from a stereo
pair is compared with similar vicinities for some pixels in the
same raster line of the other image. Vicinities are called corre-
lation windows and can be compared using a correlation-based
measure such as SAD, equation 1; where 2w + 1 is the size
of the correlation window centered in the pixel located in the
(x, y) position. Il, Ir are the grayscale values of the pixels in the
images left and right respectively and z takes values from 0 up
to dmax.

Crl(x, y, z) =

u=w,v=w∑
u=−w,v=−w

|Il(x + u, y + u) − Ir(x + u + z, y + u)| (1)

3.2. Similarity of the edge distances

The euclidean distance between each pixel with coordenates
Il(x, y1) or Ir(x, y1) and the closer left edge (d1), considering
images of X × Y resolution and a maximum level of expected
disparity equal to dmax is computed via equations 2 - 3; where
β represents the value of threshold to determine an edge. δ is
defined as l or r for the left or right images, respectively. z
ranges from 0 up to dmax. y1 ranges from 1 up to Y − dmax and
g1 is defined by equation 4.

d1(x, y1, z) =

{
l = 0, k1(x, y1, z) < β
l = l + 1, k1(x, y1, z) > β (2)

k1(x, y1, z) = |Iδ(x, y1 + z) − Iδ(x, y1 − g1 + z)| (3)

g1 =

{
1, y > 1
0, otherwise (4)

In Figure 2 the left image of the Venus scene is shown. On
the other hand, Figure 3 shown the distance to the closer left
edge for all the pixels that integrate the scene. The darker values
represent small distances whilst the brighter values represent
great distances.

Figure 2: Venus scene, left image.

Figure 3: Venus scene, distance to the closer left edge.

The euclidean distance between each pixel with coordenates
Il(x, y1) or Ir(x, y1) and the closer right edge (d2), considering
images of X × Y resolution and a maximum level of expected
disparity equal to dmax is computed via equations 5 - 6; where
β represents the value of threshold to determine an edge. δ is
defined as l or r for the left or right images, respectively. z
ranges from 0 up to dmax. y1 ranges from 1 up to Y − dmax
and g1 is defined by equation 7. In Figure 4 the distance to the
closer right edge for all the pixels that integrate the Venus scene
is shown.

d2(x, y1, z) =

{
l = 0, k2(x, y1, z) < β
l = l + 1, k2(x, y1, z) > β (5)

k2(x, y1, z) = |Iδ(x, y1 + z) − Iδ(x, y1 + g2 + z)| (6)

g2 =

{
1, y < X
0, otherwise (7)

Figure 4: Venus scene, distance to the closer right edge.

In order to determine the similarity between the distances
to the edges dl, dr of the left and right images, Il and Ir, it is
proposed the use of the equation 8; where k is defined as {l, r}
and z ranged from 0 up to dmax.

Dk(x, y, z) = |Il(dk(x, y, 0)) − Ir(dk(x, y, z))| (8)
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3.3. Fuzzy Inference System

The three similarity parameters, correlation (Crl) and the
edge distances similarities (Dl,Dr), ineherent to each (x, y)
pixel for each z level of disparity, are submited to a fuzzy in-
ference system that determines a fuzzy-similarity value. In the
proposed fuzzy inference system, input membership functions
for Crl, D1 and D2 are used. These functions determine the de-
gree of truth to the fuzzy sets good , medium and bad, that
represent the degree of similarity between the pixels of the left
and right images, being good a high value of similarity, bad a
low value of similarity and medium an intermediate value be-
tween high and low similarity.

Due to the linearity of the input data it is proposed to use
triangular type functions with binary based slopes. Functions
of this type allow to simplify the products and quotients to an
shift operation over registers. This will be useful when im-
plementing the proposed method in FPGA devices, this allow
to reduce the hardware resources demand and maintaining low
mathematical complexity. The input membership functions of
for the good, medium and bad sets were defined as shown in
equations 9 - 11; where α, β and γ are equal to 0, 128 and 255
respectively. h corresponds to the similarity parameters values.

µgood(x, y) =


0, γ ≤ h
h−γ
α−γ
· (255), α < h < γ

255, h ≤ α
(9)

µmedium(x, y) =


h−α
β−α
· (255), α < h < β

h−γ
β−γ
· (255), β ≤ h < γ

0, otherwise
(10)

µbad(x, y) =


0, h ≤ α
h−α
γ−α
· (255), α < h < γ

255, γ ≤ h
(11)

In the proposed method the output with the larger numerical
value regarding to the diferent z disparity levels. In order to as-
sign output values three fuzzy output sets are proposed good,
medium and bad. Where good represents the major numer-
ical output values, descending to the values pertaining to the
medium set and finally the values from the bad set that repre-
sents the minimum numerical values that can define the output.
The degrees of truth to these sets are determined via the func-
tions ψgood, ψmedium and ψbad, equations 12 - 14; where α, β, γ,
ρ and σ are equal to 0, 128, 255, 96 and 160 respectively.

ψgood(x, y) =


0, γ ≤ h
h−γ
α−γ
· (255), α < h < γ

255, h ≤ α
(12)

ψmedium(x, y) =


h−ρ
β−ρ
· (255), ρ < h < β

h−σ
β−σ
· (255), β ≤ h < σ

0, otherwise
(13)

ψbad(x, y) =


0, h ≤ α
h−α
γ−α
· (255), α < h < γ

255, γ ≤ h
(14)

To relating the input sets to the output sets, the use of rules
IF-THEN type and the AND operator of Zadet is proposed
[28]. The design rules are shown in the Table 1. In order to
use a fuzzy inference process with low hardware resource con-
sumption, it is proposed the following fuzzy inference mecha-
nism. First, the precedent of each rule is computed replacing
the numerical values of the Crl, D1 and D2 inputs in equa-
tions 9-11; where εn(x, y) is the precedent of the nth rule and
µ1(x, y), µ2(x, y) are both fuzzy sets included in each rule (Ta-
ble 1). On the other hand, the consequent to each rule is de-
termined as shown in equation 16; where ϑn(x, y) is the conse-
quent of the nth rule. inp is the input value for the correspond-
ing similarity parameter and fs is an point-slope type equation
that describes a linear segment of the output membership func-
tions, equations 12-14. In the column fr of the Table 1 the
assignation of functions fs for each rule is shown.

εn(x, y) = min (µ1(x, y), µ2(x, y)) (15)

ϑn(x, y) = fs(εn(x, y)) (16)

f1(εn(x, y)) = εn(x, y) (17)

f2(εn(x, y)) = −εn(x, y) + 255 (18)

f3(εn(x, y)) =

{
(εn(x, y) − 768)/8, inp < 128
(−εn(x, y) + 1280)/8, otherwise (19)

Table 1: Bank of rules of the proposed fuzzy inference system

Rule number Crl D1 D2 Output fs

1 good good none good fs = f1
2 good medium none good fs = f1
3 good bad none medium fs = f3
4 medium good none medium fs = f3
5 medium medium none bad fs = f2
6 medium bad none medium fs = f3
7 bad good none medium fs = f3
8 bad medium none medium fs = f3
9 bad bad none bad fs = f2
10 good none good good fs = f1
11 good none medium medium fs = f3
12 good none bad medium fs = f3
13 medium none good bad fs = f2
14 medium none medium medium fs = f3
15 medium none bad medium fs = f3
16 bad none good medium fs = f3
17 bad none medium bad fs = f2
18 bad none bad bad fs = f2

Finally, the result of the fuzzy inference is determined using
the Mean-Max method, equation 20; where ϑm1(x, y), ϑm2(x, y)
are the consequence of the two rules with higher implication in
the fuzzy inference process while the corresponding disparity
value is determined via the equation 21.

fuzzy inference(x, y, z) = (ϑm1(x, y) + ϑm2(x, y))/2 (20)

disparity(x, y) = arg maxz fuzzy inference(x, y, z) (21)
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3.4. Output mapping

In order to turn the disparity values defined by values from
0 up to (dmax) to RGB values with 10 bits of depth, it is pro-
posed to applying the equation 22; where dmax is the maximum
expected disparity value ∀ η ε {1, 2, 3}.

disparitymapped(x, y, η) = disparity(x, y) ∗ 1023/dmax (22)

3.5. Computational complexity

In order to explain the computational complexity of the pro-
posed algorithm, first, the SAD computational complexity is
analyzed. In this case the computational complexity is defined
as following: OSAD(M S D/d′); where M is the size of the in-
put stereo pair. S is the size of the correlation window. D is the
maximum expected disparity and d′ is the increment regarding
to the disparity values. Like SAD, the proposed algorithm pos-
sesses a computational complexity defined in the same terms,
Table 3. i.e. OSAD = Opropoed = O(M S D/d′). Based on the
high efficient of to the SAD algorithm and considering that his
computational complexity is equal to the complexity of the pro-
posed algorithm. It is possible to affirm the high efficient of the
proposed method.

On the other hand, although the proposed method possesses
mathematical complexity similar to SAD, due to edges extrac-
tion, similarity computation stage and the fuzzy inference pro-
cess, the runtime is increased. In Table 2 the runtime of the
SAD algorithm considering different synthetic stereo pairs and
different values for the maximum expected disparity compared
with the proposed method runtime considering similar settings
is presented. As can be seen, in all the cases an increment of
the runtime is observed, near to 10 times. However, most of
the new runtime corresponds to the fuzzy inference process. In
MatLab this is an iterative process that computes in sequential
form the degree of truth for all the input fuzzy sets. Then evalu-
ates in sequential form all the fuzzy rules and assigns the corre-
sponding antecedent and consequent values. Finally the fuzzy
similarity value is computed. However, this process could be
parallelized when the proposed method is implemented in ded-
icated hardware such as FPGA devices that enables to reach
real-time processing. Furthermore, considering the proposed
fuzzy inference method any FPGA architecture must maintain
low hardware resources consumption.

Table 2: Runtime for the proposed method

Scene/Algorithm Window size (2w + 1)
3 5 7 9 11 13

Tsukuba/SAD 7.48 9.32 11.5 14.2 16.9 21.2
Venus/SAD 10.2 13.1 17.0 22.5 28.6 36.1
Teddy/SAD 16.7 23.5 33.5 48.0 63.9 83.0
Cones/SAD 16.7 23.5 33.5 48.0 63.9 83.0

Tsukuba/proposed 79.5 99.3 123 154 193 241
Venus/proposed 108 135 168 210 262 327
Teddy/proposed 177 221 276 345 431 561
Cones/proposed 177 221 276 345 431 561

*All the runtimes are measured in seconds and were obtained
via MatLab implementations

Finally, in Table 3 the detailed pseudocode for the proposed
method is shown. As can be seen this consist into several recur-
sive and sequential operations, such as edge extraction stage,
edge similarity computation, fuzzy inference process and so on,
characteristics that allow parallel-pipelined design suitable for
FPGA devices.

Table 3: Pseudo code for the proposed stereo matching algorithm

Parameter definition:

H: The size of an image I (H = Xresolution × Yresolution)

W: The size of a correlation window (W = (2 × w + 1)2)

S : The maximum expected disparity (S = S m)

s′: Increase of disparity (s′ = 1)

Algorithm:

Complexity: O(H W S/s′)

For all pixels p(x, y) which satisfy x >= w, y >= w and x <= Xresolution − w −
S , y <= Yresolution − w

For z = 1 with increments equal to s′ up to S

1: Compute the Crl(x, y, z) value, equation 1

End

End

For all pixels p(x, y) which satisfy x >= w, y >= w and x <= Xresolution − w −
S , y <= Yresolution − w

For z = 1 with increments equal to s′ up to S

2: Compute the dl(x, y, z) value, equation 2, δ=l

3: Compute the dl(x, y, z) value, equation 2, δ=r

4: Compute the Dk(x, y, z) value, equation 8, k = l

End

End

For all pixels p(x, y) which satisfy x >= w, y >= w and x <= Xresolution − w −
S , y <= Yresolution − w

For z = 1 with increments equal to s′ up to S

5: Compute the dr(x, y, z) value, equation 5, δ=l

6: Compute the dr(x, y, z) value, equation 5, δ=r

7: Compute the Dk(x, y, z) value, equation 8, k = r

End

End

For all pixels p(x, y) which satisfy x >= w, y >= w and x <= Xresolution − w −
S , y <= Yresolution − w

For z = 1 with increments equal to s′ up to S

For n = 1 with increments equal to 1 up to 18

8: Compute the εn(x, y) value, equation 15

9: Compute the ϑn(x, y) value, equation 16

End

10: Compute the fuzzy inference(x, y, z) value, equation 20

End

11: Compute the disparity(x, y) value, equation 21

End

For all pixels p(x, y) which satisfy x >= w, y >= w and x <= Xresolution − w −
S , y <= Yresolution − w

12: Compute the disparitymapped(x, y, η) value, equation 22

End
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Figure 5: General diagram of the developed FPGA architecture

4. FPGA architecture

In Fig. 5, an overview of the developed FPGA architecture
is shown. This architecture has three inputs. clk pixel as
the pixel rate of the input stereo pairs. key [3:0] as as con-
trol signals for the left and right cameras and P [29:0] as in-
put/output bus for the cameras. On the other hand, the devel-
oped architecture has one output, disparity [10:0], corre-
sponding to disparity value for the selected pixel. The devel-
oped FPGA architecture was set to process input stereo pairs
of 1200 × 1024 pixel resolution, and considering a maximum
expected disparity equal to 15. Its general behavior can be de-
scribed as following: first, the image acquisition modules cap-
ture stereo video streams. Then, the storage vector modules
store gray scale values of pixels contained in 5 horizontal lines
for both left and right images of input stereo pair. Later, the
disparity value are computed via disparity computation mod-
ule. Finally, the mapping convert the final disparity value to
grayscale values of 10 bits of depth. In the following subsec-
tions the architecture of all the individual modules is shown in
detail.

4.1. The image acquisition module

In order to acquire input stereo pairs, CCD sensors connected
in a TRDB DC2 board is used. This board provides stereo pairs
of 1280×1024 pixel resolution in RGB scale. In most of the
FPGA stereo matching implementations reported in the litera-
ture, grayscale values with 8 bits of depth are used. However,
the TRDB DC2 board provided images in RBG format with
10 bits of depth. Although the developed architecture could be
configured to process 10 bits of depth, this increases the hard-
ware resource consumption. In order to perform appropriate
comparisons regarding to other methods, only the most signif-
icant 8 bits of the data provided by the TRDB DC2 board are
used. On the other hand, in order to determine the grayscale
value for the input images, the value of the green channel is
used as grayscale value.

In Figure 6 the detailed architecture of the im-
age acquisition module is shown. The settings module send
instructions regarding to the exposition and operation mode to
the TRDB DC2 board, P [29:0]. The value of the exposition
is defined via the Q [7:0] input while the operation mode is
defied by the G [3:0], Table 4. The frame capture module
consider the user settings S [15:0] and captures frames of
1280×1024 pixel resolution, obtaining at the D [7:0] output a
binary chain with the RGB value form one pixel of the captured
frame while the x [7:0], y [7:0] outputs consist on the
indexes of each pixel. Finally, raw to grayscale enables to
obtain grayscale values with 8 bits of depth, P [7:0] output.

Table 4: Operation specifications for the TRDB DC2 board

Name Description

G 0 Reset the frame capture
G 1 Assign the exposure value
G 2 Pause the frame capture
G 3 Continuous frame capture

Figure 6: FPGA architecture for the stereo pair acquisition module.

4.2. The storage vector module

In order to store necessary data for the disparity computation,
the use of the storage vector module is proposed. This module
consists into five logic vectors. The size of four vector is equal
to horizontal resolution×bits per pixel−1 while one
vector size is defined as dmax × bits per pixel − 1.
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Although the proposed module possesses similar behavior
with respect to a shift register unit, this allows to read multiple
data in one clock cycle. In general, when a image line begins,
the gray scale value of the pixel with coordinate (1) is stored in
index [7:0] of one storage vector, in the following clock cycle,
this value is moved to index [15:8] and the gray scale value of
the pixel with coordinate (2) is stored in index [7:0]. A similar
process is repeated for all the pixels that integrate the line. In
Figure 7, behavior of storage vector module with settings as
follows: number of lines to process = 5, horizontal resolution
= 1200.

Figure 7: Behavior of the storage vector module

4.3. The disparity computation module

In Figure 8 the detailed architecture of the im-
age acquisition module is shown. An pixel-parallel
window-parallel architecture was designed. Using the ap-
propriate indexes for the storage vector is possible to process
the image to the video cadence, giving as result a disparity
map of (X − w)*(Y − w) pixels of resolution, where X, Y are
the values of resolution of the input frames and 2w + 1 is the
dimension of the correlation window used. In the following
subsections, details regarding to the operation of the module
disparity computation is shown.

4.3.1. The similarity parameter module

The similarity parameter module calculates the similar-
ity parameters necessary to estimate the disparity value for one
particular pixel, Crl(x, y, z), Dl, Dr. This module consists into
three sub-modules implemented in parallel form. Furthermore,
a 5×5 correlation window and maximum expected disparity
equal to 15 are used. In order to compute the first parameter
(Crl(x, y, z)); the first sub-modules performs the absolute dif-
ference between all pixels in the correlation window in parallel
form. Then, all absolute difference values are summed.

The second sub-module computes the second similarity pa-
rameter Dl. First, this sub-module applies the equations 3 and
4 and computes the k1 value. The Figure 9 shows the position
of the pixels used in this stage; by maintaining this position it
is possible to compute the dl value at the video cadence. In
addition, this figure shows a scenario in which the storage pro-
cess for the five lines of the first correlation window have been
completed; as can be seen the third vector correspond to the
central line of the correlation. Due to shift behavior it is pos-
sible to compute the k1 value at video cadence. After the kl

value is computed , it is determines the d1 value by assigning to
β (equation 2) a constant value equal to 32. Finally, the sim-
ilarity value between the edges of the left and right images is
computed via equation 8.

Figure 9: Behavior of the storage vector module

Finally, the third sub-module computes the third similarity
parameter, Dr. This sub-module possesses a similar behavior
to the Dl computation sub-module. First, it is applied the equa-
tions 6 and 7 and it is computed the kr value. After the kr

value is computed , it is determines the dr value by assigning to
β (equation 5) a constant value equal to 32. Finally, the sim-
ilarity value between the edges of the left and right images is
computed via equation 8. However, the storage vector mod-
ule, Figure 7 only allows to determine the left edge distance
values. In order to compute the right edge distance values it is
proposed the use of the right direction vector module.

4.3.2. The right direction vector module

This module consist into three stages. First, it is determined
when all the pixels from one line of the input frame are stored
in the number 1 vector of the storage vector module, Figure 7.
i.e., it is determined when the storage process for all the pixels
of the line 1 or 2 or 3 and so on is completed. Then, in the
second stage the values contained in the number 1 vector of the
storage vector module are copied and placed in the kr vector,
Figure 11-(a). The kr vector possesses a similar behavior to the
vectors of the storage vector module, however, the order in
the data of the kr are inverted. Using the kr vector it is possible
to obtain the Dr value. Finally, in the third stage the dr values
are placed in the dr vector. The behavior of this vector is shown
in the Figure 11-(b).
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Figure 8: FPGA architecture of the disparity computation module
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Figure 10: Behavior of the storage vector module

(a) kr vector

(b) dr vector

Figure 11: Pixels used to compute the Dl value

4.3.3. The fuzzy inference system module

This module consist into four different sub-modules imple-
mented in sequential form. The first sub-module conducts the
fuzzification process for the three input parameters (Crl, Dl and
Dr). With the purpose of reserving the logical elements (LEs)
of the FPGA for the defuzzification stage, the equations 9-11
were evaluated with values of 0 up to 255 with increases equal
to 1, the obtained values were integrated in a CASE structure.
This structure assigns the degrees of truth to the fuzzy input
sets good, medium and bad for the three similarity parameters.
Later, in the second sub-module the 18 rules that integrate the
proposed bank of rules are evaluated in parallel form, the an-
tecedent and consequent regarding to each rule are calculated
according to the equations 15-16. Then, the 18 calculated con-
sequent enter to the max third module that determines the two
rules with higher implication in the inference process. Finally,
the fourth module computes the arithmetic mean of its two in-
puts, defuzzification process. i.e. computes the fuzzy-similatity
value.

4.3.4. The max module

In order to reach an appropriate propagation of the processed
data, the use of the max actor is proposed, Figure 10. It consists
into one index generator module and 5 maximum modules
implemented in sequential form. First, the index generator
module assigns the corresponding indexes to all the fuzzy-
similarity values values from, then, the maximum1 module,
receives all the fuzzy-similarity values and their indexes. Af-

terwards, this module determines the maximum values for cor-
relation values, which are sorted by pairs with unrepeated cor-
relation values for any pair; the minimum correlation values and
their indexes obtained here are placed in logic vectors of type
value [x:0], where x = 16×(dmax+1)−1, and index [x:0],
where x = 8 × (dmax + 1) − 1, respectively. This process is re-
peated in sequential form five times only one correlation value
and its index are placed in the output vectors. At this time, the
stored index are equal to the disparity value.

4.4. The mapping module

In order to display the calculated disparity maps a 4,3” LCD
screen of 800x480 pixels of resolution of the terasIC brand was
used. Due to the used screen operates with color values of 10
bits per pixel, the mapping module, Fig. 5, turns the disparity
values, in this case velues ranged from 0 to 15, to grayscale val-
ues with 10 bits per pixel, equation 22. In order to reduce the
hardware resources requirements the equation 22 was evalu-
ated with disparity values from 0 up to 15 with increases equal
to 1, the obtained values were integrated in a CASE structure
which assigns disparity values with 10 bits per pixel.

5. Discussion and analysis of results

The architecture presented in Section 3 was implemented us-
ing a top-down approach. All modules were codified in Ver-
ilog and were simulated using post-synthesis simulations per-
formed in ModelSim-Altera 6.6c in order to verify its function-
ality. Quartus II Web Edition version 10.1SP1 was used for
the synthesis and FPGA implementation process. An FPGA
Cyclone II EP2C35F672C6 embedded in an Altera DE2 devel-
opment board was used. The hardware resource consumption
for the developed FPGA architecture is shown in Table 5.

Table 5: Hardware resource consumption for the developed FPGA
architecture.

Resource Demand

Total logic elements 22,075 (66.89%)
Total pins 161/475 (34%)
Total Memory Bits 390,656 (81%)
Embedded multiplier elements 0/70 (0%)
Total PLLs 0/4 (0%)
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In order to evaluate the performance of the proposed method,
the developed architecture was analyzed using different values
for the β parameter (equations 2, 5) and different sizes for
the correlation windows. The tests were conducted using as
test images the Tsukuba, Venus, Teddy and Cones scenes. β
was evaluated using the values {8, 16, 32, 64, 128} while the
window sizes used (2w + 1) were {3, 5, 7, 9, 11, 13, 15}. In the
Figure 12 is observed the behavior of the error obtained in the
disparity maps generated for different values of β considering
2w + 1 = 5. On the other hand, in Figure 13 the behavior of
the error obtained in the disparity maps generated for different
values of 2w + 1 considering β = 32 is shown. To determine the
number of erroneous pixels, the corresponding disparity maps
were submited in the website for evaluation of stereo systems
of the Middlebury University [29].

In the Table 6 it is presented quantitative results of the num-
ber of erroneous pixels obtained by the proposed method for a
correlation window of 5x5 (2w + 1 = 5) and β = 32 compared
with other methods reported in the Literature. Disparity maps
have been compared using the method proposed in [30] us-
ing the following configuration of images: Tsukuba (384×288,
dmax = 15), Venus (434×383, dmax = 19), Teddy (450×375,
dmax = 59),Cones (450×375, dmax = 59). In order to process
and to collect the data presented in the Table 6, the developed
architecture was scaled to operate with 64 levels of disparity. In
Figure 14 the generated disparity maps for the proposed algo-
rithm are shown.

Table 6: Comparison between quantitative results for different real-time stereo
matching algorithms.

Method Tsukuba Venus Teddy Cones

SAD 16.3% 28.5% 43.7% 39.8%

[31] 12.0% 8.0% - -

[32] 15.2% 14.1% - -

[33] 12.8% 10.8% 10.7% -

[34] 6.2% 2.4% 13.8% 9.5%

[35] 7.5% 4.1% 17.6% 18.4%

[36] 10.4% 12.1% 29.1% 25.3%

[37] 11.5% 5.27% 21.5% 17.5%

Porposed 6.84% 6.07% 27.3% 22.4%

By analyzing Table 6, due to use of geometrical features such
as edge distances the proposed algorithm allows high accuracy
level in homogeneous areas, therefore, the results of the pro-
posed algorithm improved most of SAD, SSD or NCC-based
algorithms reported in literature, [31–33, 36, 37]. In addition,
similar to most of stereo matching algorithms in the literature,
the proposed algorithm has high performance with small values
of maximum disparity (Tsukuba, Venus scenes) while medium
performance with large values of maximum disparity (Teddy,
Cones scenes). On the other hand, the proposed algorithm per-
formance is lower than the census based algorithms, [34, 35],
however, census-based algorithms involve high mathematical
complexity and the hardware resources requirements are high.

Table 7 presents comparisons of processing speed regarding
to other real-time stereo matching algorithms reported in the
literature. Due to the mathematical simplicity of the proposed
algorithm, the developed architecture does not require com-
plex arithmetical operations such as calculation of quotients
and radicals (which require a high runtime), hence, it main-
tains high processing speed. When comparison of processing
speed is conducted, Table 7, it is observed an increase with
respect to other algorithms implemented in FPGA devices up
to 78,725,120, minimum 14,417,920 pixels per second. In all
cases except for the algorithm presented in [33],the processing
speed for the proposed method is higher. However, considering
the clock specifications for the algorithm described in [33], it is
expected higher speed processing than the proposed algorithm.
It is possible to affirm that if the same clock specifications are
used, the proposed algorithm outperforms the speed process-
ing for most of the FPGA-based stereo matching algorithms re-
ported in the literature.

Table 7: Processing speed for differents real-time stereo matching algorithms

Method Resolution Frames/s Pixels/s Clock

[33] 1024×1024 102 106,954,752 441MHz.

[31] 1280×1024 65 85,196,800 246MHz.

[34] 320×240 573.7 44,060,160 3GHz.

[35] 640×480 68 20,889,600 120MHz.

[36] 1280×1024 50 65,536,000 109MHz.

[37] 640×480 230 70,656,000 245MHz.

Proposed 1280×1024 76 99,614,720 100MHz.

Proposed 450×375 592 99,900,000 100MHz.

Proposed 434×383 601 99,899,422 100MHz.

Proposed 384×288 904 99,975,168 100MHz.

Table 5 presents a comparison of the use of hardware re-
source regarding to other FPGA implementations in the liter-
ature. By analyzing the Figure 8, the higher performance for
the proposed algorithm can be reached using a 5×5 correlation
window. It is the main characteristic and difference regarding
to all others stereo matching algorithms in the literature whose
performance is proportional to the correlation window size. In
order to reach high performance, large correlation window sizes
are required. However, the correlation window size required
for the proposed method is small, therefore, it is possible to
decrease the hardware resource consumption, see Table 8.

Table 8: Hardware resource consumption for different FPGA-based stereo
matching algorithms

Method Logic Elements (LEs) Memory bits (ALUTs)

[33] 86,252 62,669

[31] 89,459 84,307

[35] 80,270 32 RAMs

[36] 31,863 49,331

[37] 53,616 60,598

Proposed 22,075 48,832
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(a) Tsukuba scene (b) Venus scene

(a) Teddy scene (b) Cones scene

Figure 12: β parameter behavior.

(a) Tsukuba scene (b) Venus scene

(a) Teddy scene (b) Cones scene

Figure 13: Behavior for different correlation window sizes.
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(a) Tsukuba scene (b) True disparity map (c) Disparity map by proposed method

(d) Venus scene (e) True disparity map (f) Disparity map by proposed method

(g) Cones scene (h) True disparity map (i) Disparity map by proposed method

(j) Teddy scene (k) True disparity map (l) Disparity map by proposed method

Figure 14: Disparity maps generated for different test images.
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Finally, in Tables 9 and 10 present a comparison of the use
of hardware resource regarding to all the synthesized and simu-
lated configurations of the developed FPGA architecture. as can
bee seen the hardware consumption for the developed FPGA ar-
chitecture is appropriate for the majority of the low gamma of
FPGA devices such as the Cyclone II family of Altera or Spar-
tan II family of Xilinx. Low hardware resources requirements
is useful in autonomous applications such as robotic applica-
tions, where the use of small FPGA devices that implies rela-
tively few hardware resources is needed. On the other hand, due
to high speed processing, low hardware resources consumption
and high accuracy level compared with most of the FPGA im-
plementations in the literature, any real-time application wich
involve real-time stereo matching algorithms will take advan-
tages by applying the proposed algorithm.

Table 9: Logic elements (combinational functions and logic registers)
consumption for different configurations of the developed FPGA architecture

aa
dmax

resolution
15 31 63

384x288 21,967 LEs 23,015 LEs 24,871 LEs

434x383 22,003 LEs 23,621 LEs 25,457 LEs

450x375 22,035 LEs 24,145 LEs 26,013 LEs

1280x1024 22,075 LEs 24,450 LEs 26,487 LEs

Table 10: Memory bits consumption for different configurations of the
developed FPGA architecture

aa
dmax

resolution
15 31 63

384x288 20,160 bits 20,296 bits 20,552 bits

434x383 21,760 bits 21,869 bits 22,152 bits

450x375 22,270 bits 22,408 bits 22,664 bits

1280x1024 48,832 bits 48,968 bits 49,224 bits

6. Conclusions

In this article, an area-based algorithm suitable for real-time
stereo matching using similarity measures and geometric fea-
tures was presented. Geometric features such as edge sitan-
taces allow high accuracy level in homogeneous areas. Then,
in order to relate the similarity measures with the geometrical
features, the use of a fuzzy inference system is proposed. Fur-
thermore, in order to maintain low mathematical complexity
suitable for FPGA implementations, a fuzzy inference mecha-
nism based in point-slope equations is proposed. The main dif-
ference and advantage for the proposed algorithm is the use of
small correlation windows in order to reach high accuracy level.
Small correlation windows allow higher speed processing and
lower computational resources requirement in comparison with
the large correlation windows used in most of the SAD-based
stereo matching algorithms reported in the literature.

In order to improve its processing speed, the proposed al-
gorithm was implemented in a FPGA device. The developed
FPGA architecture outperforms most of the real-time stereo
matching algorithms in the literature, allowing high accuracy
level and enables both increasing the processing speed and de-
creases the hardware resources consumption.

Finally, an important characteristic of the presented architec-
ture is the scalability permissible; all the modules in the de-
veloped FPGA architecture, allow to be adapted for processing
larger correlation windows than the simulated and implemented
correlation windows. On the other hand, the FPGA architec-
ture enables to configure different levels of maximum expected
disparity (dmax), consequently, it is possible to configure the
module for the computation of disparity maps with appropriate
values to the environmental characteristics of the input video
streams. This allows that the developed architecture can be ap-
plied to a wide range of applications of real-time stereo vision
such as positioning systems for mobile robots and recognition,
detection and so on.
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