M Pérez-Patricio 
  
Abiel Aguilar-González 
  
M Arias-Estrada 
  
H R Hernández-De León 
  
J L Camas-Anzueto 
  
J A De Jesús Osuna-Coutiño 
  
J A De 
  
J Osuna-Coutiño 
  
An FPGA stereo matching unit based on fuzzy logic

Keywords: Stereo matching, Fuzzy logic, FPGA

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Depht values of the points contained in an image is one of the most used tasks of the computer vision systems and has been used in several applications such as positioning systems for mobile robots and both recognition, detection and threedimensional reconstruction of objects [START_REF] Parrilla | Fuzzy control for obstacle detection in stereo video sequences[END_REF][START_REF] Rong | Recognition of clustered tomatoes based on binocular stereo vision[END_REF][START_REF] Correal | Automatic expert system for 3d terrain reconstruction based on stereo vision and histagoram matching[END_REF][START_REF] Delmerico | Building facade detection, segmentation, and parameter estimation for mobile robot stereo vision[END_REF][START_REF] Åuligoj | Object tracking with a multiagent robot system and a stereo vision camera[END_REF][START_REF] Yang | Human detection for a robot tractor using omni-directional stereo vision[END_REF][START_REF] Roberto Marzotto | A real-time versatile roadway path extraction and tracking on an fpga platform[END_REF]. In stereo vision technique the correspondence between stereo pairs and the geometrical configuration of the stereo camera allows to obtain images of depth called disparity maps. In order to determine a disparity map it is necessary to measure the similarity of the points contained in the stereo pair. Techniques to determine these similarities are divided in two categories: area-based algorithms [START_REF] Stefano | A fast area-based stereo matching algorithm[END_REF][START_REF] Aguilar-Gonzalez | An fpga correlation-edge distance approach for disparity map[END_REF] and feature-based algorithms [START_REF] Feiyangcheng | Stereo matching by usingthe global edge constraint[END_REF][START_REF] Jung | Stereo reconstruction using high-order likelihoods[END_REF].

Area-based algorithm use the color value of the surrounding pixels to the interest pixel and produce dense disparity maps, i. e., these compute the disparity value for each pixel in the input stereo pair. The main characteristic of area-based algorithms is mathematical simplicity and low runtime. On the other hand, feature-based algorithms are based on specific interest points and are more stable against changes of contrast, enviroment conditions and illumination due to these represent the geometric properties of the input stereo pair. However, these algorithms possess high runtime and high mathematical complexity.

Related works

FPGA devices allow the implementation of dedicated computational architectures that can accelerate algorithms. In previous work there has been several FPGA stereo matching architectures reported in the literature [START_REF] Isakova | Fpga design and implementation of a real-time stereo vision system[END_REF][START_REF] Jin | Fpga design and implementation of a real-time stereo vision system[END_REF]. However, in most of these FPGA architectures the authors have been concentrated in the accuracy level and not in the performance regarding to hardware resource consumption, which is an important parameter in mobile autonomous applications in which the use of small FPGA devices and small power sources are required.

FPGA implementations

The system presented in [START_REF] Woodfill | Real time stereo vision on the parts reconfigurable computer[END_REF] consists in a 4×4 array of FP-GAs connected in mesh type configuration, authors use a maximum total of near 35,000 LUT of 4 inputs, allowing to process 40 frames per second for images of 320×240 pixel resolution. In [START_REF] Darabiha | Reconfigurable hardware implementation of a phase-correlation stereo algorithm[END_REF], a structure based on four FPGAs Virtex 2000E of Xilinx is presented, obtaining dense disparity maps at a speed of 40 frames per second for images of 256×360 pixel resolution. In [START_REF] Diaz | Fpga based realtime opticalflow system[END_REF], the use of a single FPGA is proposed, the developed system processes images at 30 frames per second using images of 640×480 pixel resolution. The architecture developed in [START_REF] Niitsuma | High-speed computation of the optical flow[END_REF], uses a technique based on SAD to calculate the optical flow efficiently, the system generates dense disparity maps at speeds superiors to 800 frames per second for images of 320×240 pixels using a correlation window of 7×7 and a maximum expected disparity equal to 121.

A modification of SAD is shown in [START_REF] Lee | Real-time stereo vision on a reconfigurable system[END_REF], the authors of this work synthesize diverse versions of SAD to determine the needs and the performance of the hardaware resources, by decomposing the correlation window of SAD in rows and columns using buffers a saving of resource of around 50% is reached. Using different forms of windows, the high consumptions of memory decreases without any detriment of the quality. Disparity maps are calculated at speed of 122 frames per second for images of 320×240 pixels and a maximum expected disparity equal to 64.

The architecture in [START_REF] Masrani | A real-time large disparity range stereosystem using fpgas[END_REF] uses four FPGAs to conduct a rectification in real-time, later, a verification of left-right consistency was applied in order to improve the quality of the produced disparity map. Speeds of 30 frames per second are reached for images of 640×480 pixel resolution and a maximum expected disparity equal to 128. In [START_REF] Aguilar-Gonzalez | An fpga correlation-edge distance approach for disparity map[END_REF] an FPGA correlation-edge distance approach is proposed. Speeds of 76 frames per second are reached for images of 1280×1024 pixel resolution and a maximum expected disparity equal to 15. By using a geometric feature, the euclidean distance between the selected point and the nearest left edge, the developed FPGA architecture provides a improvement over others conventional correlation-based stereo matching algorithms.

Fuzzy logic approaches

In [START_REF] Kumar | Stereo matching algorithms based on fuzzy approach[END_REF], similarity measure for stereo matching based on fuzzy relations is proposed. The strength of relationship of fuzzy data of two windows in the left image and the right image is determined by applying fuzzy aggregation operators. However, these measures fail to establish correspondence of the occluded pixels. In order to outperform the performance in the occluded pixels an modification of the weighted normalized cross correlation (WNCC) algorithm based on fuzzy relations of fuzzy data is used for the stereo matching process.

Authors of [START_REF] Ghazouani | Fuzzy sets based improvement of a stereo matching algorithm with balanced correlation window and occlusion detection[END_REF] present an modification of the Zitnick and Kanade stereo matching algorithm [START_REF] Zitnick | A cooperative algorithm for stereo matching and occlusion detection[END_REF]. The authors propose the use of a balanced correlation window. In addition, the use of a new fuzzy factor in the calculation of initial matching values which expresses the possibility of matching between two pixels and a new iterative function for the refinement of the initial matching values are presented. Experimental results are evaluated on synthetic and real images and a comparison of the results regarding to other algorithms reported in the literature, using the ground truth data supplied by the University of Tsukuba, is presented. Finally, in [START_REF] Georgoulas | A real-time fuzzy hardware structure for disparity map computation[END_REF] an FPGA module suitable for real-time disparity map computation is presented. This enables a hardwarebased fuzzy inference system parallel-pipelined design, for the overall module, implemented on a single FPGA device with a operating frequency of 138 MHz. This provides disparity map computation at a rate of nearly 440 frames per second, for a input stereo pair with a disparity range of 80 pixels and 640×480 pixel resolution. The proposed method allows high speed processing, enabling a suitable module for real-time stereo vision applications.

The proposed method

Stereo matching algorithms suitable for real-time processing have been studied by several authors, section 2.1. However, most of these algorithms possess high mathematical complexity; therefore, large FPGA devices are required in order implement them. On the other hand, although some approaches based on fuzzy logic have been reported in the literature section 2.2, the algorithms described in [START_REF] Kumar | Stereo matching algorithms based on fuzzy approach[END_REF][START_REF] Zitnick | A cooperative algorithm for stereo matching and occlusion detection[END_REF] presented high mathematical complexity and do not allow to be implemented in dedicated hardware for real-time processing such as FPGA devices. In case of the FPGA architecture in [START_REF] Georgoulas | A real-time fuzzy hardware structure for disparity map computation[END_REF] possesses high accuracy and high speed processing. However, the developed module maintains high hardware resource consumption.

The main objective in this research is to develop an FPGA stereo matching unit suitable for real-time processing. The disparity maps are computed at a rate of 76 frames per second for input stereo pairs of 1280×1024 pixel resolution and a maximum expected disparity (d max ) equal to 15. In order to reach high accuracy level the use of multiple similarity parameters and a fuzzy approach is proposed. Furthermore, to obtain high speed processing, the proposed method was implemented in an FPGA device. On the other hand, in order to maintain low hardware resources consumption it is proposed the use of new strategies such as: a fuzzy inference system based on point-slope equations and the use of storage vectors. Finally, to obtain an appropriate configuration regarding to the environment setting of the input stereo pair, the developed FPGA architecture allows to set up the exposition of the cameras and allows scalability for different levels of maximum disparity of simple and systematic form. This allows that the resulting hardware can be applied to a wide range of applications of real-time stereo vision.

A general block diagram of the proposed method is shown in the Figure 1, the data obtained through a stereo camera is processed to the cadence of video and it is simultaneously computed three similarity parameters inherent to each pixel. 1correlation obtained via the Sum of absolute differences (SAD) algorithm [START_REF] Olivares | Minimum sum of absolute differences implementation in a single fpga device[END_REF][START_REF] Hoa | Efficient determination of disparity map from stereo images with modified sum of absolute differences (sad) algorithm[END_REF][START_REF] Wong | Sad implementation in fpga hardware[END_REF][START_REF] Colodro-Conde | Evaluation of stereo correspondence algorithms and their implementation on fpga[END_REF]. 2 -similarity of the distance in pixels to the closer left edge. 3 -similarity of the distance in pixels the closer right edge. Later, these three parameters are submited to a fuzzy inference system which assigns fuzzy-similarity values for the zero up to d max disparity levels. Finally, the value of disparity is assigned as the index that maximizes the fuzzy-similarity value. 

Correlation computation

In majority of area-based algorithms, a rectangular vicinity centered on a reference pixel in one of the images from a stereo pair is compared with similar vicinities for some pixels in the same raster line of the other image. Vicinities are called correlation windows and can be compared using a correlation-based measure such as SAD, equation 1; where 2w + 1 is the size of the correlation window centered in the pixel located in the (x, y) position. I l , I r are the grayscale values of the pixels in the images left and right respectively and z takes values from 0 up to d max .

Crl(x, y, z) = u=w,v=w u=-w,v=-w

|I l (x + u, y + u) -I r (x + u + z, y + u)| (1)

Similarity of the edge distances

The euclidean distance between each pixel with coordenates I l (x, y 1 ) or I r (x, y 1 ) and the closer left edge (d 1 ), considering images of X × Y resolution and a maximum level of expected disparity equal to d max is computed via equations 2 -3; where β represents the value of threshold to determine an edge. δ is defined as l or r for the left or right images, respectively. z ranges from 0 up to d max . y 1 ranges from 1 up to Yd max and g 1 is defined by equation 4.

d 1 (x, y 1 , z) = l = 0, k 1 (x, y 1 , z) < β l = l + 1, k 1 (x, y 1 , z) > β (2) 
k 1 (x, y 1 , z) = |I δ (x, y 1 + z) -I δ (x, y 1 -g 1 + z)| (3) 
g 1 = 1, y > 1 0, otherwise (4) 
In Figure 2 the left image of the Venus scene is shown. On the other hand, Figure 3 shown the distance to the closer left edge for all the pixels that integrate the scene. The darker values represent small distances whilst the brighter values represent great distances. The euclidean distance between each pixel with coordenates I l (x, y 1 ) or I r (x, y 1 ) and the closer right edge (d 2 ), considering images of X × Y resolution and a maximum level of expected disparity equal to d max is computed via equations 5 -6; where β represents the value of threshold to determine an edge. δ is defined as l or r for the left or right images, respectively. z ranges from 0 up to d max . y 1 ranges from 1 up to Yd max and g 1 is defined by equation 7. In Figure 4 the distance to the closer right edge for all the pixels that integrate the Venus scene is shown. In order to determine the similarity between the distances to the edges d l , d r of the left and right images, I l and I r , it is proposed the use of the equation 8; where k is defined as {l, r} and z ranged from 0 up to d max .

d 2 (x, y 1 , z) = l = 0, k 2 (x, y 1 , z) < β l = l + 1, k 2 (x, y 1 , z) > β (5) 
k 2 (x, y 1 , z) = |I δ (x, y 1 + z) -I δ (x, y 1 + g 2 + z)| (6) 
g 2 = 1, y < X 0, otherwise (7) 
D k (x, y, z) = |I l (d k (x, y, 0)) -I r (d k (x, y, z))| (8) 

Fuzzy Inference System

The three similarity parameters, correlation (Crl) and the edge distances similarities (D l , D r ), ineherent to each (x, y) pixel for each z level of disparity, are submited to a fuzzy inference system that determines a fuzzy-similarity value. In the proposed fuzzy inference system, input membership functions for Crl, D 1 and D 2 are used. These functions determine the degree of truth to the fuzzy sets good , medium and bad, that represent the degree of similarity between the pixels of the left and right images, being good a high value of similarity, bad a low value of similarity and medium an intermediate value between high and low similarity.

Due to the linearity of the input data it is proposed to use triangular type functions with binary based slopes. Functions of this type allow to simplify the products and quotients to an shift operation over registers. This will be useful when implementing the proposed method in FPGA devices, this allow to reduce the hardware resources demand and maintaining low mathematical complexity. The input membership functions of for the good, medium and bad sets were defined as shown in equations 9 -11; where α, β and γ are equal to 0, 128 and 255 respectively. h corresponds to the similarity parameters values.

µ good (x, y) =            0, γ ≤ h h-γ α-γ • (255), α < h < γ 255, h ≤ α (9) 
µ medium (x, y) =            h-α β-α • (255), α < h < β h-γ β-γ • (255), β ≤ h < γ 0, otherwise (10) 
µ bad (x, y) =            0, h ≤ α h-α γ-α • (255), α < h < γ 255, γ ≤ h (11) 
In the proposed method the output with the larger numerical value regarding to the diferent z disparity levels. In order to assign output values three fuzzy output sets are proposed good, medium and bad. Where good represents the major numerical output values, descending to the values pertaining to the medium set and finally the values from the bad set that represents the minimum numerical values that can define the output. The degrees of truth to these sets are determined via the functions ψ good , ψ medium and ψ bad , equations 12 -14; where α, β, γ, ρ and σ are equal to 0, 128, 255, 96 and 160 respectively.

ψ good (x, y) =            0, γ ≤ h h-γ α-γ • (255), α < h < γ 255, h ≤ α (12) 
ψ medium (x, y) =            h-ρ β-ρ • (255), ρ < h < β h-σ β-σ • (255), β ≤ h < σ 0, otherwise (13) 
ψ bad (x, y) =            0, h ≤ α h-α γ-α • (255), α < h < γ 255, γ ≤ h (14) 
To relating the input sets to the output sets, the use of rules IF-THEN type and the AND operator of Zadet is proposed [START_REF] Zadeth | Fuzzy sets[END_REF]. The design rules are shown in the Table 1. In order to use a fuzzy inference process with low hardware resource consumption, it is proposed the following fuzzy inference mechanism. First, the precedent of each rule is computed replacing the numerical values of the Crl, D 1 and D 2 inputs in equations 9-11; where ε n (x, y) is the precedent of the nth rule and µ 1 (x, y), µ 2 (x, y) are both fuzzy sets included in each rule (Table 1). On the other hand, the consequent to each rule is determined as shown in equation 16; where ϑ n (x, y) is the consequent of the nth rule. inp is the input value for the corresponding similarity parameter and f s is an point-slope type equation that describes a linear segment of the output membership functions, equations 12-14. In the column f r of the Table 1 the assignation of functions f s for each rule is shown. Finally, the result of the fuzzy inference is determined using the Mean-Max method, equation 20; where ϑ m1 (x, y), ϑ m2 (x, y) are the consequence of the two rules with higher implication in the fuzzy inference process while the corresponding disparity value is determined via the equation 21.

ε n (x, y) = min (µ 1 (x, y), µ 2 (x, y)) (15) 
ϑ n (x, y) = f s (ε n (x, y)) (16) 
f 1 (ε n (x, y)) = ε n (x, y) (17) 
f 2 (ε n (x, y)) = -ε n (x, y) + 255 (18) 
f 3 (ε n (x, y)) = (ε n (x, y) -768)/8, inp < 128 (-ε n (x, y) + 1280)/8, otherwise (19) 
fuzzy inference(x, y, z) = (ϑ m1 (x, y) + ϑ m2 (x, y))/2 [START_REF] Kumar | Stereo matching algorithms based on fuzzy approach[END_REF] disparity(x, y) = arg max z fuzzy inference(x, y, z)

Output mapping

In order to turn the disparity values defined by values from 0 up to (d max ) to RGB values with 10 bits of depth, it is proposed to applying the equation 22; where d max is the maximum expected disparity value ∀ η {1, 2, 3}. disparity mapped (x, y, η) = disparity(x, y) * 1023/d max [START_REF] Zitnick | A cooperative algorithm for stereo matching and occlusion detection[END_REF] 

Computational complexity

In order to explain the computational complexity of the proposed algorithm, first, the SAD computational complexity is analyzed. In this case the computational complexity is defined as following: O SAD (M S D/d ); where M is the size of the input stereo pair. S is the size of the correlation window. D is the maximum expected disparity and d is the increment regarding to the disparity values. Like SAD, the proposed algorithm possesses a computational complexity defined in the same terms, Table 3

. i.e. O SAD = O propoed = O(M S D/d ).
Based on the high efficient of to the SAD algorithm and considering that his computational complexity is equal to the complexity of the proposed algorithm. It is possible to affirm the high efficient of the proposed method.

On the other hand, although the proposed method possesses mathematical complexity similar to SAD, due to edges extraction, similarity computation stage and the fuzzy inference process, the runtime is increased. In Table 2 the runtime of the SAD algorithm considering different synthetic stereo pairs and different values for the maximum expected disparity compared with the proposed method runtime considering similar settings is presented. As can be seen, in all the cases an increment of the runtime is observed, near to 10 times. However, most of the new runtime corresponds to the fuzzy inference process. In MatLab this is an iterative process that computes in sequential form the degree of truth for all the input fuzzy sets. Then evaluates in sequential form all the fuzzy rules and assigns the corresponding antecedent and consequent values. Finally the fuzzy similarity value is computed. However, this process could be parallelized when the proposed method is implemented in dedicated hardware such as FPGA devices that enables to reach real-time processing. Furthermore, considering the proposed fuzzy inference method any FPGA architecture must maintain low hardware resources consumption. Finally, in Table 3 the detailed pseudocode for the proposed method is shown. As can be seen this consist into several recursive and sequential operations, such as edge extraction stage, edge similarity computation, fuzzy inference process and so on, characteristics that allow parallel-pipelined design suitable for FPGA devices. In Fig. 5, an overview of the developed FPGA architecture is shown. This architecture has three inputs. clk pixel as the pixel rate of the input stereo pairs. key [3:0] as as control signals for the left and right cameras and P [29:0] as input/output bus for the cameras. On the other hand, the developed architecture has one output, disparity [10:0], corresponding to disparity value for the selected pixel. The developed FPGA architecture was set to process input stereo pairs of 1200 × 1024 pixel resolution, and considering a maximum expected disparity equal to 15. Its general behavior can be described as following: first, the image acquisition modules capture stereo video streams. Then, the storage vector modules store gray scale values of pixels contained in 5 horizontal lines for both left and right images of input stereo pair. Later, the disparity value are computed via disparity computation module. Finally, the mapping convert the final disparity value to grayscale values of 10 bits of depth. In the following subsections the architecture of all the individual modules is shown in detail.

The image acquisition module

In order to acquire input stereo pairs, CCD sensors connected in a TRDB DC2 board is used. This board provides stereo pairs of 1280×1024 pixel resolution in RGB scale. In most of the FPGA stereo matching implementations reported in the literature, grayscale values with 8 bits of depth are used. However, the TRDB DC2 board provided images in RBG format with 10 bits of depth. Although the developed architecture could be configured to process 10 bits of depth, this increases the hardware resource consumption. In order to perform appropriate comparisons regarding to other methods, only the most significant 8 bits of the data provided by the TRDB DC2 board are used. On the other hand, in order to determine the grayscale value for the input images, the value of the green channel is used as grayscale value.

In Figure 6 

The storage vector module

In order to store necessary data for the disparity computation, the use of the storage vector module is proposed. This module consists into five logic vectors. The size of four vector is equal to horizontal resolution×bits per pixel-1 while one vector size is defined as d max × bits per pixel -1.

Although the proposed module possesses similar behavior with respect to a shift register unit, this allows to read multiple data in one clock cycle. In general, when a image line begins, the gray scale value of the pixel with coordinate (1) is stored in index [7:0] of one storage vector, in the following clock cycle, this value is moved to index [15:8] and the gray scale value of the pixel with coordinate ( 2) is stored in index [7:0]. A similar process is repeated for all the pixels that integrate the line. In Figure 7, behavior of storage vector module with settings as follows: number of lines to process = 5, horizontal resolution = 1200. An pixel-parallel window-parallel architecture was designed. Using the appropriate indexes for the storage vector is possible to process the image to the video cadence, giving as result a disparity map of (Xw)*(Yw) pixels of resolution, where X, Y are the values of resolution of the input frames and 2w + 1 is the dimension of the correlation window used. In the following subsections, details regarding to the operation of the module disparity computation is shown.

The similarity parameter module

The similarity parameter module calculates the similarity parameters necessary to estimate the disparity value for one particular pixel, Crl(x, y, z), D l , D r . This module consists into three sub-modules implemented in parallel form. Furthermore, a 5×5 correlation window and maximum expected disparity equal to 15 are used. In order to compute the first parameter (Crl(x, y, z)); the first sub-modules performs the absolute difference between all pixels in the correlation window in parallel form. Then, all absolute difference values are summed.

The second sub-module computes the second similarity parameter D l . First, this sub-module applies the equations 3 and 4 and computes the k 1 value. The Figure 9 shows the position of the pixels used in this stage; by maintaining this position it is possible to compute the d l value at the video cadence. In addition, this figure shows a scenario in which the storage process for the five lines of the first correlation window have been completed; as can be seen the third vector correspond to the central line of the correlation. Due to shift behavior it is possible to compute the k 1 value at video cadence. After the k l value is computed , it is determines the d 1 value by assigning to β (equation 2) a constant value equal to 32. Finally, the similarity value between the edges of the left and right images is computed via equation 8. Finally, the third sub-module computes the third similarity parameter, D r . This sub-module possesses a similar behavior to the D l computation sub-module. First, it is applied the equations 6 and 7 and it is computed the k r value. After the k r value is computed , it is determines the d r value by assigning to β (equation 5) a constant value equal to 32. Finally, the similarity value between the edges of the left and right images is computed via equation 8. However, the storage vector module, Figure 7 only allows to determine the left edge distance values. In order to compute the right edge distance values it is proposed the use of the right direction vector module.

The right direction vector module

This module consist into three stages. First, it is determined when all the pixels from one line of the input frame are stored in the number 1 vector of the storage vector module, Figure 7. i.e., it is determined when the storage process for all the pixels of the line 1 or 2 or 3 and so on is completed. Then, in the second stage the values contained in the number 1 vector of the storage vector module are copied and placed in the k r vector, Figure 11-(a). The k r vector possesses a similar behavior to the vectors of the storage vector module, however, the order in the data of the k r are inverted. Using the k r vector it is possible to obtain the D r value. Finally, in the third stage the d r values are placed in the d r vector. The behavior of this vector is shown in the Figure 11-(b). This structure assigns the degrees of truth to the fuzzy input sets good, medium and bad for the three similarity parameters. Later, in the second sub-module the 18 rules that integrate the proposed bank of rules are evaluated in parallel form, the antecedent and consequent regarding to each rule are calculated according to the equations 15-16. Then, the 18 calculated consequent enter to the max third module that determines the two rules with higher implication in the inference process. Finally, the fourth module computes the arithmetic mean of its two inputs, defuzzification process. i.e. computes the fuzzy-similatity value.

The max module

In order to reach an appropriate propagation of the processed data, the use of the max actor is proposed, Figure 10. It consists into one index generator module and 5 maximum modules implemented in sequential form. First, the index generator module assigns the corresponding indexes to all the fuzzysimilarity values values from, then, the maximum 1 module, receives all the fuzzy-similarity values and their indexes. Af-terwards, this module determines the maximum values for correlation values, which are sorted by pairs with unrepeated correlation values for any pair; the minimum correlation values and their indexes obtained here are placed in logic vectors of type value [x:0], where x = 16×(d max +1)-1, and index [x:0], where x = 8 × (d max + 1) -1, respectively. This process is repeated in sequential form five times only one correlation value and its index are placed in the output vectors. At this time, the stored index are equal to the disparity value.

The mapping module

In order to display the calculated disparity maps a 4,3" LCD screen of 800x480 pixels of resolution of the terasIC brand was used. Due to the used screen operates with color values of 10 bits per pixel, the mapping module, Fig. 5, turns the disparity values, in this case velues ranged from 0 to 15, to grayscale values with 10 bits per pixel, equation 22. In order to reduce the hardware resources requirements the equation 22 was evaluated with disparity values from 0 up to 15 with increases equal to 1, the obtained values were integrated in a CASE structure which assigns disparity values with 10 bits per pixel.

Discussion and analysis of results

The architecture presented in Section 3 was implemented using a top-down approach. All modules were codified in Verilog and were simulated using post-synthesis simulations performed in ModelSim-Altera 6.6c in order to verify its functionality. Quartus II Web Edition version 10.1SP1 was used for the synthesis and FPGA implementation process. An FPGA Cyclone II EP2C35F672C6 embedded in an Altera DE2 development board was used. The hardware resource consumption for the developed FPGA architecture is shown in Table 5. In order to evaluate the performance of the proposed method, the developed architecture was analyzed using different values for the β parameter (equations 2, 5) and different sizes for the correlation windows. The tests were conducted using as test images the Tsukuba, Venus, Teddy and Cones scenes. β was evaluated using the values {8, 16, 32, 64, 128} while the window sizes used (2w + 1) were {3, 5, 7, 9, 11, 13, 15}. In the Figure 12 is observed the behavior of the error obtained in the disparity maps generated for different values of β considering 2w + 1 = 5. On the other hand, in Figure 13 the behavior of the error obtained in the disparity maps generated for different values of 2w + 1 considering β = 32 is shown. To determine the number of erroneous pixels, the corresponding disparity maps were submited in the website for evaluation of stereo systems of the Middlebury University [29].

In the Table 6 it is presented quantitative results of the number of erroneous pixels obtained by the proposed method for a correlation window of 5x5 (2w + 1 = 5) and β = 32 compared with other methods reported in the Literature. Disparity maps have been compared using the method proposed in [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF] using the following configuration of images: Tsukuba (384×288, d max = 15), Venus (434×383, d max = 19), Teddy (450×375, d max = 59),Cones (450×375, d max = 59). In order to process and to collect the data presented in the Table 6, the developed architecture was scaled to operate with 64 levels of disparity. In Figure 14 the generated disparity maps for the proposed algorithm are shown. By analyzing Table 6, due to use of geometrical features such as edge distances the proposed algorithm allows high accuracy level in homogeneous areas, therefore, the results of the proposed algorithm improved most of SAD, SSD or NCC-based algorithms reported in literature, [31-33, 36, 37]. In addition, similar to most of stereo matching algorithms in the literature, the proposed algorithm has high performance with small values of maximum disparity (Tsukuba, Venus scenes) while medium performance with large values of maximum disparity (Teddy, Cones scenes). On the other hand, the proposed algorithm performance is lower than the census based algorithms, [START_REF] Martin Humenberger | A fast stereo matching algorithm suitable for embedded real-time systems[END_REF][START_REF] Stefania Perri | Adaptive census transform: A novel hardware-oriented stereovision algorithm[END_REF], however, census-based algorithms involve high mathematical complexity and the hardware resources requirements are high.

Table 7 presents comparisons of processing speed regarding to other real-time stereo matching algorithms reported in the literature. Due to the mathematical simplicity of the proposed algorithm, the developed architecture does not require complex arithmetical operations such as calculation of quotients and radicals (which require a high runtime), hence, it maintains high processing speed. When comparison of processing speed is conducted, Table 7, it is observed an increase with respect to other algorithms implemented in FPGA devices up to 78,725,120, minimum 14,417,920 pixels per second. In all cases except for the algorithm presented in [START_REF] Georgoulas | Fpga based disparity map computation with vergence control[END_REF],the processing speed for the proposed method is higher. However, considering the clock specifications for the algorithm described in [START_REF] Georgoulas | Fpga based disparity map computation with vergence control[END_REF], it is expected higher speed processing than the proposed algorithm. It is possible to affirm that if the same clock specifications are used, the proposed algorithm outperforms the speed processing for most of the FPGA-based stereo matching algorithms reported in the literature. Table 5 presents a comparison of the use of hardware resource regarding to other FPGA implementations in the literature. By analyzing the Figure 8, the higher performance for the proposed algorithm can be reached using a 5×5 correlation window. It is the main characteristic and difference regarding to all others stereo matching algorithms in the literature whose performance is proportional to the correlation window size. In order to reach high performance, large correlation window sizes are required. However, the correlation window size required for the proposed method is small, therefore, it is possible to decrease the hardware resource consumption, see Table 8. Finally, in Tables 9 and 10 present a comparison of the use of hardware resource regarding to all the synthesized and simulated configurations of the developed FPGA architecture. as can bee seen the hardware consumption for the developed FPGA architecture is appropriate for the majority of the low gamma of FPGA devices such as the Cyclone II family of Altera or Spartan II family of Xilinx. Low hardware resources requirements is useful in autonomous applications such as robotic applications, where the use of small FPGA devices that implies relatively few hardware resources is needed. On the other hand, due to high speed processing, low hardware resources consumption and high accuracy level compared with most of the FPGA implementations in the literature, any real-time application wich involve real-time stereo matching algorithms will take advantages by applying the proposed algorithm. 

Conclusions

In this article, an area-based algorithm suitable for real-time stereo matching using similarity measures and geometric features was presented. Geometric features such as edge sitantaces allow high accuracy level in homogeneous areas. Then, in order to relate the similarity measures with the geometrical features, the use of a fuzzy inference system is proposed. Furthermore, in order to maintain low mathematical complexity suitable for FPGA implementations, a fuzzy inference mechanism based in point-slope equations is proposed. The main difference and advantage for the proposed algorithm is the use of small correlation windows in order to reach high accuracy level. Small correlation windows allow higher speed processing and lower computational resources requirement in comparison with the large correlation windows used in most of the SAD-based stereo matching algorithms reported in the literature.

In order to improve its processing speed, the proposed algorithm was implemented in a FPGA device. The developed FPGA architecture outperforms most of the real-time stereo matching algorithms in the literature, allowing high accuracy level and enables both increasing the processing speed and decreases the hardware resources consumption.

Finally, an important characteristic of the presented architecture is the scalability permissible; all the modules in the developed FPGA architecture, allow to be adapted for processing larger correlation windows than the simulated and implemented correlation windows. On the other hand, the FPGA architecture enables to configure different levels of maximum expected disparity (d max ), consequently, it is possible to configure the module for the computation of disparity maps with appropriate values to the environmental characteristics of the input video streams. This allows that the developed architecture can be applied to a wide range of applications of real-time stereo vision such as positioning systems for mobile robots and recognition, detection and so on.
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 1 Figure 1: Block Diagram of the proposed method.
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 2 Figure 2: Venus scene, left image.
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 3 Figure 3: Venus scene, distance to the closer left edge.
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 4 Figure 4: Venus scene, distance to the closer right edge.
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 5 Figure 5: General diagram of the developed FPGA architecture

  the detailed architecture of the image acquisition module is shown. The settings module send instructions regarding to the exposition and operation mode to the TRDB DC2 board, P [29:0]. The value of the exposition is defined via the Q [7:0] input while the operation mode is defied by the G [3:0], Table 4. The frame capture module consider the user settings S [15:0] and captures frames of 1280×1024 pixel resolution, obtaining at the D [7:0] output a binary chain with the RGB value form one pixel of the captured frame while the x [7:0], y [7:0] outputs consist on the indexes of each pixel. Finally, raw to grayscale enables to obtain grayscale values with 8 bits of depth, P [7:0] output.

Figure 6 :

 6 Figure 6: FPGA architecture for the stereo pair acquisition module.
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 7 Figure 7: Behavior of the storage vector module
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 9 Figure 9: Behavior of the storage vector module
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 8 Figure 8: FPGA architecture of the disparity computation module
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 10 Figure 10: Behavior of the storage vector module
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 11 Figure 11: Pixels used to compute the D l value
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 12 Figure 12: β parameter behavior.
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 13 Figure 13: Behavior for different correlation window sizes.
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 14 Figure 14: Disparity maps generated for different test images.

Table 1 :

 1 Bank of rules of the proposed fuzzy inference system

	Rule number	Crl	D 1	D 2	Output	f s
	1	good	good	none	good	f s = f 1
	2	good	medium	none	good	f s = f 1
	3	good	bad	none	medium	f s = f 3
	4	medium	good	none	medium	f s = f 3
	5	medium	medium	none	bad	f s = f 2
	6	medium	bad	none	medium	f s = f 3
	7	bad	good	none	medium	f s = f 3
	8	bad	medium	none	medium	f s = f 3
	9	bad	bad	none	bad	f s = f 2
	10	good	none	good	good	f s = f 1
	11	good	none	medium	medium	f s = f 3
	12	good	none	bad	medium	f s = f 3
	13	medium	none	good	bad	f s = f 2
	14	medium	none	medium	medium	f s = f 3
	15	medium	none	bad	medium	f s = f 3
	16	bad	none	good	medium	f s = f 3
	17	bad	none	medium	bad	f s = f 2
	18	bad	none	bad	bad	f s = f 2

Table 2 :

 2 Runtime for the proposed method

	Scene/Algorithm			Window size (2w + 1)		
		3	5	7	9	11	13
	Tsukuba/SAD	7.48	9.32	11.5	14.2	16.9	21.2
	Venus/SAD	10.2	13.1	17.0	22.5	28.6	36.1
	Teddy/SAD	16.7	23.5	33.5	48.0	63.9	83.0
	Cones/SAD	16.7	23.5	33.5	48.0	63.9	83.0
	Tsukuba/proposed	79.5	99.3	123	154	193	241
	Venus/proposed	108	135	168	210	262	327
	Teddy/proposed	177	221	276	345	431	561
	Cones/proposed	177	221	276	345	431	561

*All the runtimes are measured in seconds and were obtained via MatLab implementations

Table 3 :

 3 Pseudo code for the proposed stereo matching algorithm

Table 4 :

 4 Operation specifications for the TRDB DC2 board

	Name	Description
	G 0	Reset the frame capture
	G 1	Assign the exposure value
	G 2	Pause the frame capture
	G 3	Continuous frame capture

Table 5 :

 5 Hardware resource consumption for the developed FPGA architecture.

	Resource	Demand
	Total logic elements	22,075 (66.89%)
	Total pins	161/475 (34%)
	Total Memory Bits	390,656 (81%)
	Embedded multiplier elements	0/70 (0%)
	Total PLLs	0/4 (0%)

Table 6 :

 6 Comparison between quantitative results for different real-time stereo matching algorithms.

	Method	Tsukuba	Venus	Teddy	Cones
	SAD	16.3%	28.5%	43.7%	39.8%
	[31]	12.0%	8.0%	-	-
	[32]	15.2%	14.1%	-	-
	[33]	12.8%	10.8%	10.7%	-
	[34]	6.2%	2.4%	13.8%	9.5%
	[35]	7.5%	4.1%	17.6%	18.4%
	[36]	10.4%	12.1%	29.1%	25.3%
	[37]	11.5%	5.27%	21.5%	17.5%
	Porposed	6.84%	6.07%	27.3%	22.4%

Table 7 :

 7 Processing speed for differents real-time stereo matching algorithms

	Method	Resolution	Frames/s	Pixels/s	Clock
	[33]	1024×1024	102	106,954,752	441MHz.
	[31]	1280×1024	65	85,196,800	246MHz.
	[34]	320×240	573.7	44,060,160	3GHz.
	[35]	640×480	68	20,889,600	120MHz.
	[36]	1280×1024	50	65,536,000	109MHz.
	[37]	640×480	230	70,656,000	245MHz.
	Proposed	1280×1024	76	99,614,720	100MHz.
	Proposed	450×375	592	99,900,000	100MHz.
	Proposed	434×383	601	99,899,422	100MHz.
	Proposed	384×288	904	99,975,168	100MHz.

Table 8 :

 8 Hardware resource consumption for different FPGA-based stereo matching algorithms

	Method	Logic Elements (LEs)	Memory bits (ALUTs)
	[33]	86,252	62,669
	[31]	89,459	84,307
	[35]	80,270	32 RAMs
	[36]	31,863	49,331
	[37]	53,616	60,598
	Proposed	22,075	48,832

Table 9 :

 9 Logic elements (combinational functions and logic registers) consumption for different configurations of the developed FPGA architecture

	a a d max	15	31	63
	resolution			
	384x288	21,967 LEs	23,015 LEs	24,871 LEs
	434x383	22,003 LEs	23,621 LEs	25,457 LEs
	450x375	22,035 LEs	24,145 LEs	26,013 LEs
	1280x1024	22,075 LEs	24,450 LEs	26,487 LEs

Table 10 :

 10 Memory bits consumption for different configurations of the developed FPGA architecture

	a a d max	15	31	63
	resolution			
	384x288	20,160 bits	20,296 bits	20,552 bits
	434x383	21,760 bits	21,869 bits	22,152 bits
	450x375	22,270 bits	22,408 bits	22,664 bits
	1280x1024	48,832 bits	48,968 bits	49,224 bits
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