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Summary. The statistical problem of parameter estimation in partially observed hypoel-
liptic diffusion processes is naturally occurring in many applications. However, due to
the noise structure, where the noise components of the different coordinates of the multi-
dimensional process operate on different time scales, standard inference tools are ill con-
ditioned. In this paper, we propose to use a higher order scheme to discretize the process
and approximate the likelihood, such that the different time scales are appropriately ac-
counted for. We show consistency and asymptotic normality with non-typical convergence
rates. When only partial observations are available, we embed the approximation into a
filtering algorithm for the unobserved coordinates, and use this as a building block in a
Stochastic Approximation Expectation Maximization algorithm. We illustrate on simulated
data from three models; the Harmonic Oscillator, the FitzHugh-Nagumo model used to
model the membrane potential evolution in neuroscience, and the Synaptic Inhibition and
Excitation model used for determination of neuronal synaptic input.

1. Introduction

Hypoelliptic diffusion processes appear naturally in a variety of applications, but most
parameter estimation procedures are ill conditioned, especially when only partial obser-
vations are available. Hypoellipticity means that the diffusion matrix of the stochastic
differential equation (SDE) defining the multidimensional diffusion process is not of full
rank, but its solutions admit a smooth density. In this paper we consider parametric
estimation for hypoelliptic diffusions defined as solutions to an SDE of the following
form: {

dVt = a(Vt, Ut)dt
dUt = A(Vt, Ut)dt+ Γ(Vt, Ut)dBt

(1)

where Vt ∈ XV ⊂ R, Ut ∈ XU ⊂ Rp with p ≥ 1 and Bt is an m-dimensional Brownian
motion, from discrete observations of the full system (Vt, U

T
t )T , or from discrete observa-

tions of Vt only (partial observations), the latter being the most realistic in applications.
Here, T denotes transposition. Thus, the noise acts directly on Ut, so these are the rough
components, whereas Vt is only indirectly affected by the noise, which is propagated
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through a(·), and has to depend on Ut for the model to be hypoelliptic, and thus, Vt is
the smooth component.

A prominent example is the large class of stochastic damping Hamiltonian systems,
also called Langevin equations, describing the motion of a particle subject to potential,
dissipative and random forces (Wu, 2001; Cattiaux et al., 2014b,a, 2015; Comte et al.,
2017). In this case a(·) = Ut and A(·) = −c(Vt, Ut)Ut−∇P (Vt), for some function c(·) and
where P (·) is the potential. They typically arise from a second order differential equation,
which develops into a higher dimensional system with some coordinates representing po-
sitions, and some coordinates representing velocities. The noise is degenerate because it
acts directly on the coordinates of the momentum only, and not on the positions. These
models have many applications, such as molecular dynamics (Leimkuhler & Matthews,
2015, eqs. (6.30)-(6.31)), stochastic volatility models, paleoclimate research (Ditlevsen
et al., 2002), neural mass models (Ableidinger et al., 2017), random mechanics or classical
physics. Specific examples are the harmonic oscillator (HO), where A(·) = −DVt− γUt,
which will be our first example, the van der Pol oscillator where A(·) = µ(1−V 2

t )Ut−Vt
and the Duffing oscillator where A(·) = −δUt − βVt − αV 3

t + γ cosωt. In this setting,
parametric estimation has been considered before, taking advantage of the special struc-
ture of a(Vt, Ut) = Ut. Samson & Thieullen (2012) propose contrast estimators based
on the fully observed system, by approximating the unobserved coordinate Ut by the
differences of the observed coordinate Vt. Pokern et al. (2009) propose a Gibbs algo-
rithm in a Bayesian framework, still relying on the simple form of a. The particular
case of integrated diffusions, where the dynamics of Ut do not depend on Vt, has been
investigated by Genon-Catalot et al. (2000); Ditlevsen & Sørensen (2004); Gloter (2006).

However, many applications need to allow for a more flexible formulation of function
a(·). For example, it can be convenient to model parts of a large deterministic system
exhibiting multiple time scales by a low dimensional stochastic model, leading to a
hypoelliptic structure on the reduced model (Pavliotis & Stuart, 2008). An important
field of application is neuronal models of membrane potential evolution, where the noise
only acts on the input, or on the ion channel dynamics, leading to hypoelliptic SDEs.
Examples are the FitzHugh-Nagumo (FHN) model (DeVille et al., 2005; Leon & Samson,
2017), which is our second example, the Hodgkin-Huxley model (Goldwyn & Shea-
Brown, 2011; Tuckwell & Ditlevsen, 2016), or conductance based models with stochastic
channel dynamics (Ditlevsen & Greenwood, 2013). Also neural field models are often
hypoelliptic (Coombes & Byrne, 2017; Ditlevsen & Löcherbach, 2017). It is therefore
important to develop reliable estimation methods for this class of models. A particular
sub-class are hypoelliptic homogeneous Gaussian diffusions, where the drift is linear and
the diffusion is constant, which were considered by Le Breton & Musiela (1985), and
where the transition density is explicitly known. A simple example is the HO mentioned
above.

Ergodicity of these models have been studied, based on the hypoellipticity of the
system (Mattingly et al., 2002). But even if the model is ergodic, the degenerate noise
structure complicates the statistical analysis and many standard tools break down. The
main difficulty with hypoelliptic models compared to the elliptic case is the transition
density for time ∆, which converges towards a point measure when ∆→ 0 at a faster rate,
1/∆2 (Cattiaux et al., 2014a; Comte et al., 2017), compared to the elliptic case of 1/∆.
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In general, the transition density is unknown, and the estimation fails if approximating
by the Euler-Maruyama scheme, since the scheme can fail to be ergodic for any choice of
time step, even if the underlying SDE is (Mattingly et al., 2002). Intuitively, the problem
arises because the diffusion matrix is not of full rank, and lower order schemes will have
a degenerate variance matrix, even if the underlying model does not, thanks to the
hypoellipticity. Pokern et al. (2009) suggested to circumvent this problem by adding the
first non-zero noise terms arising in the smooth components of the Itô-Taylor expansion
of the process. However, this only remedies the estimation of the diffusion parameters,
whereas drift parameters are poorly estimated, see their Fig. 4 and our Table 1. Instead
we suggest to approximate the unknown transition density with a higher order scheme,
namely the order 1.5 strong Taylor scheme (Kloeden & Platen, 1992), which leads to the
same approximation of the variance up to leading order as in Pokern et al. (2009), but
also approximates the mean correctly. We propose a contrast based on this scheme, and
prove consistency under the standard asymptotics of ∆ → 0 and n∆ → ∞. The proof
relies on the higher order approximation of the mean, and thus, provides an explanation
of why the consistency failed for the estimator proposed by Pokern et al. (2009). To
our surprise, we also obtain asymptotic normality, but with faster convergence rates for
parameters of the smooth components than the usual rates of the rough components.

When only partial observations are available, i.e., only some coordinates are ob-
served, the statistical difficulties increase. One particular problem is that the system
is coupled, such that the unobserved coordinates are not autonomous, and the hidden
Markov model framework is degenerate. We therefore embed the approximation into a
filtering algorithm for the unobserved path and a Stochastic Approximation Expectation
Maximization (SAEM) algorithm, as suggested in Ditlevsen & Samson (2014) for the
elliptic case. This framework furthermore extends the class we can handle considerably
by allowing for general drift functions also for the smooth components, as well as for
state dependent diffusion matrices.

The running examples throughout the paper are the HO model, where we compare
with the estimators proposed in Pokern et al. (2009) and Samson & Thieullen (2012),
the FHN model, where we allow for a general a(·) in the drift of the smooth component,
and the Synaptic Inhibition and Excitation (SIE) model, where p > 1 and the diffusion
matrix is state dependent. In Section 2 we introduce the general model, the likelihood
and notation, we discuss conditions for hypoellipticity, give formulas for moments and
introduce the three example models. In Section 3 we give the discretization scheme
and present some theoretical results of the scheme needed to show consistency of the
estimators. In Section 4 we present contrast estimators for the completely observed
case, which will serve as a basis for the partially observed case, where the unobserved
components have to be imputed before employing the contrast estimator. In Section
5 we introduce the particle filter to impute the hidden path and the SAEM algorithm
to estimate by alternating between imputation and estimation from the fully observed
system, and we give indications of how to choose the initial parameter values for the
algorithm. In Section 6 we conduct a simulation study on the three example models,
and we compare with other estimators. In Appendix, proofs are gathered.
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2. Models

In this paper we consider parametric estimation for hypoelliptic diffusions defined as
solutions to an Itô SDE of the following form:{

dVt = a(Vt, Ut;ψ)dt
dUt = A(Vt, Ut;ϕ)dt+ Γ(Vt, Ut;σ)dBt

(2)

where Vt ∈ XV ⊂ R, Ut ∈ XU ⊂ Rp with p ≥ 1 and Bt is an m-dimensional Brownian
motion. Denote the full state space by (Vt, U

T
t )T ∈ X ⊂ Rp+1. Functions a : X 7→ R

and A : X 7→ Rp are drift functions depending on an unknown parameter vector β =
(ψ,ϕ). Denote the full drift vector by b = (a,AT )T . Furthermore, Γ : X 7→ Rp×m is a
partial diffusion coefficient matrix depending on an unknown parameter vector σ, the
full diffusion matrix being

Σ(v, u;σ) =

[
0m

Γ(v, u;σ)

]
(3)

where 0m is the m-dimensional row vector of zeros. Equation (2) is assumed to have a
weak solution, and the coefficient functions a,A and Γ are assumed to be smooth enough
to ensure the uniqueness in law of the solution, for every β and σ. Most importantly,
the process is assumed to be hypoelliptic, meaning that it admits a smooth density with
respect to the Lebesgue measure, see Section 2.3. We will restrict attention to diagonal
noise in the examples below, such that m = p and

Γ(v, u;σ) =

 σ1(v, u;σ) 0 0

0
. . . 0

0 0 σp(v, u;σ)

 (4)

where σj(v, u;σ) > 0 for (v, uT )T ∈ X and j = 1, . . . , p. In the applications below p = 1
or 2.

2.1. Likelihood and objectives
In model (2), the parameters ψ,ϕ and σ are unknown. The objective of this paper is to
estimate these from observations of the first coordinate Vt at discrete times t0, t1, . . . , tn,
with equidistant time steps ∆ = tj+1−tj . The ideal would be to maximize the likelihood
p(V0:n;β, σ) of the data V0:n = (V0, . . . , Vn), where we write Vj := Vtj for j = 0, 1, . . . , n.
However, the likelihood is intractable, not only because the transition density of model
(2) is generally unknown, but also because V0:n is not Markovian, only (Vt, Ut) is Marko-
vian. Even if there is no noise on the first coordinate, the hypoellipticity condition
implies that the transition density of model (2) exists. Denote the unknown transition
density by p(Vt+∆, Ut+∆|Vt, Ut;β, σ), then the complete likelihood, assuming all coordi-
nates observed and using the Markov property of (Vt, Ut), is given by

p(V0:n, U0:n;β, σ) =

n−1∏
i=0

p(Vi+1, Ui+1|Vi, Ui;β, σ). (5)
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The marginal likelihood of V0:n, when only the first coordinate is observed, is a high-
dimensional integral,

p(V0:n;β, σ) =

∫ n−1∏
i=0

p(Vi+1, Ui+1|Vi, Ui;β, σ)dU0:n, (6)

which is difficult to handle.
A standard approximation to the unknown transition density is given by the Euler-

Maruyama scheme, where the transition density is normal with mean and variance given
by the drift and diffusion coefficients multiplied by ∆. However, since the diffusion coef-
ficient on the first coordinate is zero, the normal distribution of the scheme is singular,
and the estimation breaks down. The same happens for the slightly improved Milstein
scheme. We suggest instead to approximate with a higher order scheme with strong
order 1.5, where, as we shall see, a stochastic term of order ∆3/2 appears in the first
coordinate, which is a filtered version of the stochasticity from the other coordinates.
This stochasticity is enough to ensure that the estimation procedure works, as long as
drift terms of the same order is maintained in the approximation. Denote by

p∆(Vi+1, Ui+1|Vi, Ui;β, σ) (7)

the approximated transition density from this scheme.
In Section 4, we assume all coordinates (Vt, U

T
t )T observed at discrete time points,

and explain how we can estimate the parameters in that case. In Section 5 we assume
only Vt observed, and suggest to impute the hidden coordinates Ut and discuss how
to maximize the likelihood p∆(V0:n;β, σ). Before detailing the estimation approaches,
we give further details on hypoellipticity and some moment properties of the process.
Section 3 is devoted to the discretization scheme of order 1.5.

2.2. Notation
We write ∂ua(Vi, Ui) for the row vector of partial derivatives evaluated at time ti,
(∂u1

a(v, u), . . . , ∂upa(v, u))|(v,u)=(Vi,Ui), and likewise for the Jacobian matrix of A and σ.

Let 52
Γ̄
(·) =

∑p
j=1 σ

2
j (v, u) ∂2

∂u2
j
(·) denote a weighted Laplace type operator, where we

choose this notation not to confuse with the time step ∆. Operated on vectors it is
applied componentwise. Write Γ̄(v, u) = (σ1(v, u), . . . , σp(v, u)) for the vector of entries
in the diagonal of matrix (4). Let ∂xf

i denote the n-dimensional row vector of partial
derivatives of the ith component of a generic function f : X → Rn with respect to the
elements of x, or just ∂xf if n = 1. We will sometimes use notation b for the drift, and
sometimes a,A, depending on what is most notational convenient. Note that b1 = a and
bj+1 = Aj for j = 1, . . . , p. We sometimes write Xt = (Vt, U

T
t )T for the process, but use

Vt and Ut when we need to distinguish between the smooth and the rough parts of the
process. Let Ip denote the identity matrix of dimension p and 1p the p-column vector of
ones.

2.3. Hypoellipticity
An SDE is hypoelliptic if the diffusion matrix is not of full rank, but its solutions admit
a smooth density with respect to the Lebesgue measure. Hörmander’s theorem asserts
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that this is the case if the SDE in its Stratonovich form satisfies the weak Hörmander
condition. We write σj : Rp → Rp for the m column vectors of the diffusion matrix Γ,
and σ̃j : Rp+1 → Rp+1 for the m column vectors of the diffusion matrix (3), such that
σ̃j = (0, (σj)T )T .

For smooth vector fields f(x) and g(x) : Rn → Rn, the ith component of the Lie
bracket [f, g] is defined by [f, g]i = (∂xg

i)f − (∂xf
i)g , i = 1, . . . , n. Define the set L of

vector fields by the initial members σ̃j ∈ L, j = 1, . . . ,m and recursively by

L ∈ L =⇒ [b, L], [σ̃1, L], . . . , [σ̃m, L] ∈ L . (8)

The weak Hörmander condition is fulfilled if the vectors of L span Rp+1. Assume that
the initial members span Rp, which in particular is the case if Γ(v, u) is given by (4).
Therefore, we only need to check if there exists some L ∈ L which has the first element
different from zero. The first iteration of (8) for system (2) yields

[b, σ̃j ]1 = −∂ua(v, u)σj(v, u)

[σ̃i, σ̃j ]1 = 0

for i, j = 1, . . . , p. This leads us to the following sufficient and necessary condition for
system (2) to be hypoelliptic.

(C1) ∀(v, uT )T ∈ X , ∂ua(v, u)σj(v, u) 6= 0 for at least one j = 1, . . . , p.

This is a natural assumption; the noise on some of the components of u should be
propagated to the first coordinate, which can only happen if a(v, u) depends on at least
one component of u. Note that the system has to be in its Stratonovich form, whereas
we assume model (2) in its Itô form. However, the condition still holds, since it only
involves the drift of the first component. If Γ(v, u) in (4) does not depend on (v, uT )T ,
the Itô and the Stratonovich forms coincide. If it is state dependent, a conversion from
Itô to Stratonovich form will change the drift functions of the Ut coordinates, but not
of Vt.

2.4. Moments
The distribution of Xt = (Vt, U

T
t )T in eq. (2) is in general unknown, but moments can

be approximated when Xt is ergodic. For sufficiently smooth and integrable functions
f : X 7→ R, then

E(f(Xt+∆)|Xt = x) =

k∑
i=0

∆i

i!
Lif(x) +O(∆k+1) (9)

where L is the generator of model (2)-(4),

Lf(x) = (∂xf(x))b(x) +
1

2
52

Γ̄ f(x),

and Lif means i times iterated application of the generator (Sørensen, 2012). This yields
the first conditional moment of the j’th component of Xt,

E(X
(j)
t+∆|Xt = x) = x(j) + ∆bj(x) +

∆2

2
Lbj(x) +O(∆3). (10)
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In particular, for model (2) we have

E(Vt+∆|Xt = x) = v + ∆a(x) +
∆2

2
∂xa(x) b(x) +

∆2

4
52

Γ̄ a(x) +O(∆3), (11)

E(Ut+∆|Xt = x) = u+ ∆A(x) +
∆2

2
∂xA(x) b(x) +

∆2

4
52

Γ̄ A(x) +O(∆3). (12)

Furthermore,

Var(Vt+∆|Xt = x) =
∆3

3
∂uaΓΓT (∂ua)T +O(∆4) (13)

Var(U jt+∆|Xt = x) = ∆σ2
j (x)+ (14)

∆2

2

(
Aj∂ujσ

2
j (x) + 2σ2

j (x)∂ujAj(x) +
1

2
σ2
j (x)∂2

u2
j
σ2
j (x)

)
+O(∆3)

Note how the order of the variance of the first coordinate is ∆3, whereas the mean is
of order ∆. This is the cause of the statistical difficulties of estimating the parameters.

2.5. Three examples
2.5.1. Harmonic Oscillator
Harmonic oscillators are common in nature, and the model is central in classical mechan-
ics. Consider the damped harmonic oscillator driven by a white noise forcing (Pokern
et al., 2009), {

dVt = Utdt
dUt = (−DVt − γUt)dt+ σdBt

(15)

with γ,D, σ > 0. Here, p = 1. The process has no parameter ψ, which makes parameter
estimation much easier, and thus β = ϕ = (D, γ). The drift function and diffusion
coefficient are Lipschitz. For this linear model we know the true distribution. The
process is an ergodic Ornstein-Uhlenbeck process, i.e., a Gaussian process. Define

Xt =

(
Vt
Ut

)
; M =

(
0 1
−D −γ

)
; Σ =

(
0
σ

)
Then

dXt = MXtdt+ ΣdBt

and the conditional distribution is

(Xt+∆|Xt = x) ∼ N
(
e∆Mx ,

∫ ∆

0
esMΣΣT esM

T

ds

)
. (16)

Let d = 1
2

√
γ2 − 4D, then

E(Xt+∆|Xt = x) = e−
1

2
γ∆

( (
cosh (d∆) + γ

2d sinh (d∆)
)
x1 +

(
1
d sinh (d∆)

)
x2(

−D
d sinh (d∆)

)
x1 +

(
cosh (d∆)− γ

2d sinh (d∆)
)
x2

)
.

(17)
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Fig. 1. Simulated traces of the three example models. Left: Harmonic Oscillator. Middle:
FitzHugh-Nagumo model. Right: Synaptic Inhibition and Excitation model. Upper plots: The
smooth coordinate V . Lower plots: The rough coordinates U . Parameter values are given in
Section 6.

To compare with the analysis of the other models, we make a Taylor expansion in ∆ up
to order 2 obtaining

E(Xt+∆|Xt = x) = x+ ∆BHO(x) +O(∆3) (18)

where

∆BHO(x) = ∆

(
x2 − (Dx1 + γx2)∆

2
−(Dx1 + γx2) + (γ(Dx1 + γx2)−Dx2)∆

2

)
. (19)

Furthermore,

Var(Xt+∆|Xt = x) =
σ2

2γD

[
1 0
0 D

]
+ (20)

σ2e−γ∆

4d2

[
2
γ−

d
D sinh (2d∆)− γ

2D cosh (2d∆) cosh (2d∆)− 1

cosh (2d∆)− 1 2D
γ +d sinh (2d∆)− γ

2 cosh (2d∆)

]
with Taylor expansion up to order 3 in ∆

Var(Xt+∆|Xt = x) = σ2

[
1
3∆3 1

2∆2 − 1
2∆3γ

1
2∆2 − 1

2∆3γ ∆− γ∆2 + 1
3∆3(2γ2 −D)

]
+O(∆4) (21)

where we need a higher order for the variance for later convergence results, since other-
wise the variance of the first coordinate is zero.

The invariant distribution is Gaussian,

X∞ ∼ N
(

0,
σ2

2γD

[
1 0
0 D

])
.
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The solution of this system has thus moments of any order. An example trace can be
found in Figure 1.

2.5.2. FitzHugh-Nagumo
A prototype of a model of a spiking neuron is the FitzHugh-Nagumo model, which is
a minimal representation of more realistic neuron models, such as the Hodgkin-Huxley
model, modeling the neuronal firing mechanisms (FitzHugh, 1961; Nagumo et al., 1962;
Hodgkin & Huxley, 1952).

Consider the stochastic hypoelliptic FitzHugh-Nagumo model, defined as the solution
to the system {

dVt = 1
ε (Vt − V 3

t − Ut + s)dt,
dUt = (γVt − Ut + β) dt+ σdBt,

(22)

where the variable Vt represents the membrane potential of a neuron at time t, and Ut is
a recovery variable, which could represent channel kinetics. Also in this model is p = 1.

Parameter s is the magnitude of the stimulus current. When only Vt is observed, s
is not identifiable (Jensen et al., 2012). Often s represents injected current and is thus
controlled in a given experiment, and it is therefore reasonable to assume it known, so
that ψ = ε. Thus, parameters to be estimated are σ, ε and ϕ = (γ, β).

The distribution of Xt = (Vt, Ut)
T is unknown, but moments can be approximated

by using (9), where the generator of model (22) is

Lf(x) =
1

ε
(x1 − x3

1 − x2 + s)
∂f

dx1
+ (γx1 − x2 + β)

∂f

dx2
+

1

2
σ2∂

2f

dx2
2

.

We obtain

E(Xt+∆|Xt = x) = x+ ∆BFHN(x) +O(∆3)

where

∆BFHN(x) = (23)

∆

 1
ε (x1 − x3

1 − x2 + s) +
∆

2

1

ε

(
1

ε
(1− 3x2

1)(x1 − x3
1 − x2 + s)− (γx1 − x2 − β)

)
(γx1 − x2 + β) +

∆

2

(γ
ε

(x1 − x3
1 − x2 + s)− (γx1 − x2 + β)

)


and

Var(Xt+∆|Xt = x) = σ2

[
1
3∆3 1

ε2 −1
2∆2 1

ε

−1
2∆2 1

ε ∆−∆2

]
+O(∆3). (24)

An example trace can be found in Figure 1.

2.5.3. Synaptic-conductance model
A neuron, which reliably can be characterized as a single electrical compartment, and
which receives excitatory and inhibitory synaptic bombardment, has a voltage dynam-
ics across the membrane that can be described by this conductance-based model with
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diffusion synaptic input (Dayan & Abbott, 2001; Berg & Ditlevsen, 2013)
CdVt = (−GL(Vt − VL)−GE,t(Vt − VE)−GI,t(Vt − VI) + Iinj)dt

dGE,t = − 1
τE

(GE,t − ḡE)dt+ σE
√
GE,tdBE,t

dGI,t = − 1
τI

(GI,t − ḡI)dt+ σI
√
GI,tdBE,t

(25)

where C is the total capacitance, GL, GE and GI are the leak, excitation, and inhibition
conductances, VL, VE and VI are their respective reversal potentials, and Iinj is the
injected current. The conductances Ge,t and Gi,t are assumed to be stochastic functions
of time, where (BE,t) and (BI,t) are two independent Brownian motions. The square
roots in the diffusion coefficient ensures that the conductances stay positive. Parame-
ters τE , τI are time constants, ḡE , ḡI the mean conductances, and σE , σI the diffusion
coefficients, scaling the variability of these two processes. Here, Ut = (Ge,t, Gi,t)

T and
p = 2. We assume to know the capacitance and the reversal potentials, which are easily
determined in independent experiments (Berg & Ditlevsen, 2013), as well as Iinj , which
is controlled by the experimenter. Thus, there is no parameter ψ, ϕ = (ḡE , ḡI , τE , τI),
and σ = (σE , σI).

The distribution of Xt = (Vt, U
T
t )T is also unknown for this model, but as before,

moments can be approximated by using the generator of model (25),

Lf(x) =
1

C
(−GL(x1 − VL)− x2(x1 − VE)− x3(x1 − VI) + Iinj)

∂f

dx1

− 1

τE
(x2 − ḡE)

∂f

dx2
− 1

τI
(x3 − ḡI)

∂f

dx3
+

1

2
σ2
Ex2

∂2f

dx2
2

+
1

2
σ2
Ix3

∂2f

dx2
3

and equation (9). We obtain

E(Xt+∆)|Xt = x) = x+ ∆BSIE(x) +O(∆3) (26)

where

∆BSIE(x)=∆


b1(x)− ∆

2C
(b1(x)(GL+x2+x3)+b2(x)(x1−VE) + b3(x)(x1−VI))

b2(x)− ∆

2

(
b2(x)

1

τE

)
b3(x)− ∆

2

(
b3(x)

1

τI

)

(27)

and

Var(Xt+∆|Xt = x) = (28)
0 −∆2

4 σ
2
E(x1 − VE) −∆2

4 σ
2
I (x1 − VI)

−∆2

4 σ
2
E(x1 − VE) σ2

E

(
∆x2 − ∆2

2τE
(3x2 − ḡE)

)
0

−∆2

4 σ
2
I (x1 − VI) 0 σ2

I

(
∆x3 − ∆2

2τI
(3x3 − ḡI)

)
+O(∆3).

An example trace can be found in Figure 1. The red trace is the excitatory conductance,
the green trace is the inhibitory conductance.
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3. Discretization scheme

The transition density for model (2) is generally unknown, and a possible approxima-
tion to the likelihood function is the likelihood for some approximating scheme of the
discretized process X0:n. We will write X̃i for the approximated process, or Ṽi and Ũi
where relevant.

The most commonly applied scheme to approximate the likelihood in SDEs, especially
for high-frequency data, is the Euler-Maruyama approximation of model (2), which leads
to a discretized model defined as follows

Ṽi+1 = Ṽi + ∆a(Ṽi, Ũi), (29)

Ũi+1 = Ũi + ∆A(Ṽi, Ũi) + Γ(Ṽi, Ũi)ηi,

where (ηi) are centered Gaussian vectors with variance ∆Ip. Thus, the transition density
of the approximate discretized scheme is a degenerate Gaussian distribution, since there
is no stochastic term on the first coordinate. The same happens for the Milstein-scheme
with strong order of convergence equal to 1. This causes the estimation to break down,
as we will explain later.

3.1. Discretization with 1.5 scheme
We propose to use a higher order scheme, namely the 1.5 strong order scheme (Kloeden
& Platen, 1992), using the hypoellipticity of (2) to propagate the noise into the first
coordinate. For a diagonal diffusion matrix as in (4) the scheme is as follows, where we
for readability have suppressed the dependence on (Vi, Ui),

Ṽi+1 = Ṽi + ∆a+
∆2

2
∂xa b+

∆2

4
52

Γ̄ a+ ∂uaΓξi (30)

Ũi+1 = Ũi + ∆A+
∆2

2
∂xAb+

∆2

4
52

Γ̄ A+ Γηi + ∂uAΓξi

+
1

2
∂uΓ̄ Γ(η∗2i − 1p) + ∂uΓ̄A(∆ηi − ξi) +

1

2
52

Γ̄ Γ̄(∆ηi − ξi)

+
1

2
∂uΓ̄ (∂uσ Γ) Γ(

1

3
ηiη

T
i −∆Ip)ηi (31)

where (ηi) are centered Gaussian vectors with variance ∆Ip, (ξi) are centered Gaussian
vectors with variance ∆3/3Ip, Cov(ηi, ξi) = ∆2/2Ip and Cov(ηi, ξj) = 0 for i 6= j.
Furthermore, η∗2i denotes the vector with the squared entries of ηi. Notice how noise of

order ∆3/2 is now propagated into the first equation, since the last term on the right
hand side of (30) is non-zero if condition (C1) is fulfilled. If Γ is independent of the
process (additive noise) then the last two lines in (31) are zero.

To simplify the notation later on, we rewrite equations (30)-(31) as(
Ṽi+1

Ũi+1

)
=

(
Ṽi
Ũi

)
+ ∆B(Ṽi, Ũi) + εi, εi ∼ Np+1(0,Σ(Ṽi, Ũi)) (32)

where ∆B(v, u)j = ∆bj + ∆2

2 ∂xbj b+ ∆2

4 5
2
Γ̄
bj is the scheme for the drift and Σ(v, u) is
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the variance matrix of the scheme. Up to leading order, the variance matrix is given by

Σ(v, u) =

(
∂uaΓΓT (∂ua)T ∆3

3 ∂uaΓΓT ∆2

2

ΓΓT (∂ua)T ∆2

2 ΓΓT∆

)
(33)

Since the mean term coincides with the true mean up to order ∆2, see eqs. (11)
and (12), the functions B(v, u) for models (15), (22), and (25) are given in (19), (23)
and (27), respectively, where x = (v, uT )T . The variance matrix Σ(Ṽi, Ũi) of the above
scheme for the three models (15), (22), and (25) are

ΣHO = σ2

(
1
3∆3 1

2∆2 − 1
3∆3γ

1
2∆2 − 1

3∆3γ ∆−∆2γ + 1
3∆3γ2

)
(34)

ΣFHN = σ2

(
1
3∆3ε−2

(
−1

2∆2 + 1
3∆3

)
ε−1(

−1
2∆2 + 1

3∆3
)
ε−1 ∆−∆2 + 1

3∆3

)
(35)

ΣSIE(Ṽi, Ũi) = (36)
∆3

3 Ṽi

(
σ2
EG̃E,i+σ

2
I G̃I,i

)
−σ2

EṼiG̃E,i

(
∆2

2 + ∆3

6τE

)
−σ2

I ṼiG̃I,i

(
∆2

2 + ∆3

6τI

)
−σ2

EṼiG̃E,i

(
∆2

2 + ∆3

6τE

)
σ2
EG̃E,i

(
∆− ∆2

2τE
+ ∆3

12τ2
E

)
0

−σ2
I ṼiG̃I,i

(
∆2

2 + ∆3

6τI

)
0 σ2

I G̃I,i

(
∆− ∆2

2τI
+ ∆3

12τ2
I

)


For comparison, we recall the variance matrix for the HO model suggested by Pokern
et al. (2009),

ΣHO, Pokern = σ2

(
1
3∆3 1

2∆2

1
2∆2 ∆

)
(37)

which coincides with (34) up to lowest order at each matrix entry. Furthermore, it
coincides with (33) when p = 1, a(v, u) = u and Γ(v, u) = σ. This is sufficient to
obtain reasonable estimates of variance parameters, but their drift approximation is not
of sufficiently high order to ensure reasonable estimates of drift parameters.

3.2. Theoretical results

3.2.1. Strong and weak convergence

The scheme (30)–(31) has a strong order 1.5 and a weak order 2 convergence (Kloeden
& Platen, 1992). The following bounds follow by comparing eqs. (9)–(14) with eqs.
(30)–(31). These bounds are needed later to prove consistency.
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Proposition 1. [Weak convegence]

E(Vi+1 − Vi −∆B(Xi)1|Xi) = O(∆3)

E(Ui+1 − Ui −∆B(Xi)(−1)|Xi) = O(∆3)

E((Vi+1 − Vi −∆B(Xi)1)2|Xi) =
∆3

3
∂uaΓΓT (∂ua)T +O(∆4)

E((Ui+1−Ui−∆B(Xi)(−1))(Ui+1−Ui−∆B(Xi)(−1))
T |Xi) = ∆ΓΓT +O(∆2)

E((Vi+1 − Vi −∆B(Xi)1)4|Xi) = O(∆4)

E(((Ui+1−Ui−∆B(Xi)(−1))(Ui+1−Ui−∆B(Xi)(−1))
T )2|Xi) = O(∆2)

3.2.2. Convergence of the transition density
To prove the convergence of the particle filter to impute the unobserved path (Section
5), we need a stronger convergence rate of the transition density of the scheme than the
result which Bally & Talay (1996) prove on the convergence rate of the density of the
Euler-Maruyama scheme when the SDE is elliptic, which we repeat here for convenience.

Proposition 2 (Bally & Talay (1996)’ result). Assume that the drift functions
and the diffusion coefficients are 2 times differentiable with bounded derivatives of all
orders up to 2. Let p(x|x0) denote the exact transition density at x at time ∆ given it
was at x0 at time 0 under an elliptic SDE, and let p∆(x|x0) denote the transition density
of the corresponding Euler approximation. Then

∀x, |p(x|x0)− p∆(x|x0)| ≤ C∆e−C
′|x−x0|2 (38)

where C and C ′ are constants not depending on ∆.

This result is much more difficult to obtain for a hypoelliptic SDE such as system (2),
in particular because the Euler approximation does not propagate noise into the first
coordinate. Bally & Talay (1996) propose a perturbed version of the Euler scheme, intro-
ducing an independent uncorrelated additive noise at each step (similar to introducing
a measurement noise in the model). However, we use a higher order scheme instead to
handle the hypoellipticity, which should be more precise. As discussed by Del Moral
et al. (2001), so far an estimate like (38) is not available for more sophisticated dis-
cretization schemes. In this paper, we conjecture that the result from Bally & Talay
(1996) can be extended to a higher order scheme with corresponding improved bounds,
under the following assumption

(H1) Functions a, A, Γ are 2 times differentiable with bounded derivatives with respect
to u and v of all orders up to 2.

Conjecture 1. Consider a discretization scheme of model (2), with weak order 2. Let
p∆(x|x0) denote the corresponding density at x at time ∆ with initial condition x0.
Under H1, there exist constants C and C ′ such that

|p(x|x0)− p∆(x|x0)| ≤ C∆2e−C
′|x−x0|2 (39)
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Even if we cannot prove this in general, it can be checked for the HO model, where the
exact transition density is known. In fact, for this model we obtain a better bound of
∆3. Assumption (H1) is very restrictive, and probably not needed for most models, and
in fact not fulfilled for the FHN and the SIE models. However, we conjecture that these
models are still sufficiently well-behaved for the above to hold.

4. Complete observations

In this Section we investigate parameter estimation when all coordinates are discretely
observed. Later, we extend to the situation where only the first coordinate is observed.

4.1. Contrast estimator
The goal is to estimate the parameter θ = (ψ,ϕ, σ) by maximum likelihood of the
approximate model, with complete likelihood

p∆(V0:n, U0:n; θ) = p(V0, U0; θ)

n∏
i=1

p∆(Vi, Ui|Vi−1, Ui−1; θ). (40)

It corresponds to a pseudo-likelihood for the exact diffusion, with exact complete likeli-
hood given in (5). The estimator is then the minimizer of minus 2 times the log complete
likelihood:

arg min
θ

n−1∑
i=0

(
(Xi+1−Xi −∆B(Xi; θ))

T Σ−1
i (Xi+1−Xi −∆B(Xi; θ)) + log det(Σi)

)
(41)

This criteria is ill behaved because the system is hypoelliptic, so the order of the variance
for V is ∆3 and of order ∆ for U . Therefore, we propose to separate the estimation of
parameter ψ of the first coordinate from parameters (φ, σ) of the second coordinate.

We thus introduce two new contrasts and their corresponding estimators.

Definition 1. The estimator of the parameters of the first coordinate is given by

ψ̂n = arg min
ψ

(
3

∆3

n−1∑
i=0

(Vi+1 − Vi −∆B(Xi; θ)1)2

(∂ua(Xi;ψ))ΓΓT (Xi;σ)(∂ua(Xi;ψ))T
(42)

+

n−1∑
i=0

log((∂ua(Xi;ψ))ΓΓT (Xi;σ)(∂ua(Xi;ψ))T )

)
where the parameters ϕ and σ are fixed to the true values.

The estimator of the parameters of the second coordinate is given by

(ϕ̂n, σ̂
2
n) = arg min

ϕ,σ2

(
n−1∑
i=0

log(det(ΓΓT (Xi;σ)) (43)

+

n−1∑
i=0

(Ui+1−Ui−∆B(Xi; θ)(−1))
T
(
∆ΓΓT(Xi;σ)

)−1
(Ui+1−Ui−∆B(Xi; θ)(−1))

)
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where the parameter ψ is fixed to its true value.

The first contrast corresponds to the pseudo-likelihood of the marginal distribution of
the first coordinate. The second contrast is a simplification of the pseudo-likelihood of
the marginal of the coordinates with direct noise: the variance appearing in the pseudo-
likelihood is ∆ΓΓT (Xi, σ)(1 + o(∆)) and is simplified to ∆ΓΓT (Xi, σ) in the contrast
(43), since the variance is dominated by the lowest order term. The contrasts (42)
and (43) require the other parameters to be fixed to their true values. The numerical
optimization of the criteria is not sensitive to those fixed values as they appear in higher
order term.

4.2. Theoretical properties of the contrast estimators
We start by proving the consistency of the contrast estimators. The asymptotics are in
number of observations n and length of time step between observations ∆n, where we
have introduced an index n to clarify the relevant asymptotics.

Proposition 3. Denote by ψ0 the true values of the parameter, and assume (ϕ, σ2)
known. If ∆n → 0 and n∆n →∞ then

ψ̂n
P→ ψ0

Proposition 4. Denote by (ϕ0, σ
2
0) the true values of the parameters, and assume ψ

known. If ∆n → 0 and n∆n →∞ then

(ϕ̂n, σ̂
2
n)

P→ (ϕ0, σ
2
0)

The proofs are given in Appendix 7.
The convergence conditions are standard: the length of the observation interval has to

increase for consistency of drift parameters. For consistency of the variance parameter,
it can be proven that only ∆n → 0 and n→∞ are needed, but we will not pursue that
here. It is possible to study directly the consistency of the estimator minimizing the
pseudo-likelihood (41) using the same arguments as in the proof of Propositions 3 and
4, but at the price of heavy matrix calculations, which are skipped in this paper.

The estimators are asymptotically normal. We prove the result for (ϕ̂n, σ̂
2
n) and give

some partial proofs for ψ̂n.

Theorem 1. Let ν(·) denote the stationary density of model (2). If ∆n → 0, n∆n →
∞ and n∆2

n → 0, then√
n∆n(ϕ̂n − ϕ0)

D→ N
(

0,
(
ν
(
(∂ϕA(·, ϕ0))T (ΓΓT (·, σ0))−1(∂ϕA(·, ϕ0))

))−1
)

√
n(σ̂n − σ0)

D→ N
(

0, 2
(
ν
(
(∂σΓΓT (·, ϕ0))T (ΓΓT (·, σ0))−1(∂σΓΓT (·, ϕ0))

))2)
Theorem 2. Let ν(·) denote the stationary density of model (2). Assume the drift

function a can be decomposed as either: a(x;ψ) = av(v, ψ) + au(u) or a(x;ψ) = av(v) +
ψau(x). If ∆n → 0, n∆n →∞ and n∆2

n → 0, then√
n

∆n
(ψ̂n − ψ0)

D→ N
(

0,
1

3

(
ν
(
(∂ψa(·, ψ0))T (∂ua(·, ψ0)ΓΓT (·, σ0)(∂ua(·, ψ0))T )−1(∂ψa(·, ϕ0))

))−1
)

The proofs are given in Appendix 7.



16 Ditlevsen and Samson

5. Partial observations

In this Section we assume that we do not observe the coordinates Ut, which is the most
relevant case for applications. The likelihood to maximize is therefore not the complete
approximate likelihood, but the approximate likelihood p∆(V0:n; θ) defined as the integral
of the complete approximate likelihood (40) with respect to the hidden components.

p∆(V0:n; θ) =

∫
p(X0; θ)

n∏
i=1

p∆(Xi|Xi−1; θ)dU0:n. (44)

It corresponds to a discretization of the exact likelihood (6).
The multiple integrals of equation (44) are difficult to handle and it is not possible

to maximize the pseudo-likelihood directly. As explained in Section 4, it is easier to
maximize the complete approximate likelihood, after imputing the hidden coordinates.

For models where a(v, u) = f(v)+g(v)u for some functions f and g that do not depend
on the parameter, such as in the HO model, the imputation is intuitive: the unobserved
coordinate Ut can be approximated by the differences of the observed coordinate Vt,
Ui ≈ ((Vi+1 − Vi)/∆ − f(Vi))/g(Vi). However, this induces a bias in the estimation of
σ (see Samson & Thieullen, 2012, for more details), and is moreover only applicable
for drift functions of the observed coordinate such that u can be isolated. We will take
advantage of that when initializing the estimation algorithm in Section 5.3.

In this paper we propose to use a particle filter, also known as Sequential Monte
Carlo (SMC), to impute the hidden coordinates. Then, this imputed path is plugged
into a stochastic SAEM algorithm (Delyon et al., 1999), as done in Ditlevsen & Samson
(2014) for the elliptic case. The SMC proposed by Ditlevsen & Samson (2014) allows
to filter a hidden coordinate that is not autonomous in the sense that the equation for
Ut depends on the first coordinate Vt. Here, we extend the algorithm to the case of p
hidden coordinates, to deal with a p+ 1-dimensional SDE.

More precisely, the observable vector V0:n is then part of a so-called complete vector
(V0:n, U0:n), where U0:n has to be imputed. At each iteration of the SAEM algorithm, the
unobserved data are filtered under the smoothing distribution p∆(U0:n |V0:n; θ) with an
SMC. Then the parameters are updated using the pseudo-likelihood proposed in Section
4. Details on the filtering are given in Section 5.1, and the SAEM algorithm is presented
in Section 5.2.

5.1. Particle filter
The SMC proposed in Ditlevsen & Samson (2014) is designed for a p = 1-dimensional
hidden coordinate. Here we extend to the general case. For notational simplicity, θ is
omitted in the rest of this Section.

The SMC algorithm provides K particles (U
(k)
0:n)k=1,...,K and weights (W

(k)
0:n )k=1,...,K

such that the empirical measure ΨK
n =

∑K
k=1Wn(U

(k)
0:n)1U (k)

0:n
approximates the condi-

tional smoothing distribution p∆(U0:n|V0:n) (Doucet et al., 2001). The SMC method
relies on proposal distributions q(Ui|Vi, Vi−1, Ui−1) to sample the particles from these
distributions. We write V0:i = (V0, . . . , Vi) and likewise for U0:i.
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Algorithm 1 (SMC algorithm).

• At time i = 0: ∀ k = 1, . . . ,K

(a) sample U
(k)
0 from p(U0|V0)

(b) compute and normalize the weights:

w0

(
U

(k)
0

)
= p

(
V0, U

(k)
0

)
, W0

(
U

(k)
0

)
=

w0(U (k)
0 )∑K

k=1 w0(U (k)
0 )

• At time i = 1, . . . , n: ∀ k = 1, . . . ,K

(a) sample indices A
(k)
i−1 ∼ r(·|Wi−1(U

(1)
0:i−1), . . . ,Wi−1(U

(K)
0:i−1)) and set

U
′(k)
0:i−1 = U

(A
(k)
i−1)

0:i−1

(b) sample U
(k)
i ∼ q

(
·|Vi−1:i, U

′(k)
i−1

)
and set U

(k)
0:i = (U

′(k)
0:i−1, U

(k)
i )

(c) compute and normalize the weights Wi(U
(k)
0:i ) =

wi(U (k)
0:i )∑K

k=1 wi(U
(k)
0:i )

with

wi

(
U

(k)
0:i

)
=

p∆(V0:i,U
(k)
0:i )

p∆

(
V0:i−1,U

′(k)
0:i−1

)
q
(
U

(k)
i |Vi−1:i,U

′(k)
0:i−1

)

Natural choices for the proposal q are either the transition density q(Ui|Vi−1:i, Ui−1) =
p∆(Ui|Vi−1, Ui−1) or the conditional distribution q(Ui|Vi−1:i, Ui−1) = p∆(Ui|Vi−1:i, Ui−1),
following Ditlevsen & Samson (2014). The two choices are not equivalent in the hypoel-
liptic case because the covariance matrix of the approximate scheme is not diagonal. The
conditional distribution gives better results in practice and is used in the simulations.
This is due to the extra information provided by also conditioning on Vi.

In the following, we present some asymptotic convergence results on the SMC algo-
rithm. The assumptions can be found in Appendix 8.2. For a bounded Borel function f ,

denote ΨK
n f =

∑K
k=1 f(U

(k)
n )Wn(U

(k)
0:n), the conditional expectation of f under the em-

pirical measure ΨK
n . We also denote πn,∆f = E∆ (f(Un)|V0:n) and πnf = E (f(Un)|V0:n),

the conditional expectation under the smoothing distribution p∆(U0:n|V0:n) of the ap-
proximate model, and under the smoothing distribution p(U0:n|V0:n) of the exact model,
respectively.

Proposition 5. Under assumption (SMC3), for any ε > 0, and for any bounded Borel
function f on R, there exist constants C1 and C2, such that

P
(∣∣ΨK

n f − πn,∆f
∣∣ ≥ ε) ≤ C1,∆ exp

(
−K ε2

C2,∆‖f‖2

)
(45)

where ‖f‖ is the sup-norm of f and C1,∆, C2,∆ are constants detailed in Ditlevsen &
Samson (2014).

The proof is the same as in Ditlevsen & Samson (2014). The hypoellipticity of the
process is not a problem as the filter is applied on the discretized process where the
noise has been propagated to the first coordinate.
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We also study the convergence of the particle filter to the exact filtering distribution,
as was done in Del Moral et al. (2001) for an Euler scheme to filter an autonomous
hidden coordinate. Here the hypoellipticity plays a role and we have to work with the
1.5 scheme. The proof uses eq. (39) of Conjecture 1.

Proposition 6. Under assumption (SMC3), consider a number of particles K and a
step size ∆ of the discretisation scheme of weak order 2 such that

∆2 ≤ 1/
√
K. (46)

For any ε > 0, and for any bounded Borel function f on R, there exist constants C1 and
C2, such that

P
(∣∣ΨK

n f − πnf
∣∣ ≥ ε) ≤ C1 exp

(
−K ε2

C2‖f‖2

)
(47)

where ‖f‖ is the sup-norm of f .

Remark 1. The condition (46) linking the step size ∆ of the discretization scheme
and the number of particles K is a less restrictive condition than the one in Del Moral
et al. (2001) (∆ ≤ 1/

√
K) when ∆ is less than 1. This was expected because the weak

order of the scheme is 2, whereas it is 1 for the Euler scheme.

The proof is given in Appendix 8.1.

5.2. SAEM
The estimation method is based on a stochastic version of the EM algorithm (Dempster
et al., 1977), namely the SAEM algorithm (Delyon et al., 1999) coupled to the SMC al-
gorithm, as already proposed by Ditlevsen & Samson (2014) in the elliptic case. To fulfill
convergence conditions of the algorithm, we consider the particular case of a distribution
from an exponential family. More precisely, we assume:

(M1) The parameter space Θ is an open subset of Rp. The complete likelihood belongs to
a curved exponential family, i.e., log p∆(V0:n, U0:n; θ) = −ψ(θ)+〈S(V0:n, U0:n), ν(θ)〉,
where ψ and ν are two functions of θ, S(V0:n, U0:n) is known as the minimal suffi-
cient statistic of the complete model, taking its value in a subset S of Rd, and 〈·, ·〉
is the scalar product on Rd.

The three models considered in this paper satisfy this assumption. Details of the suffi-
cient statistic S for the HO model are given in Appendix 8.3.

Under assumption (M1), introducing a sequence of positive numbers (am)m∈N de-
creasing to zero, the SAEM-SMC algorithm is defined as follows.

Algorithm 2 (SAEM-SMC algorithm).

• Iteration 0: initialization of θ̂0 and set s0 = 0.

• Iteration m ≥ 1:
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S-Step: simulation of the non-observed data (U
(m)
0:n ) with SMC targeting the distribution

p∆(U0:n|V0:n; θ̂m−1).

SA-Step: update sm−1 using the stochastic approximation:

sm = sm−1 + am−1

[
S(V0:n, U

(m)
0:n )− sm−1

]
(48)

M-Step: update of θ̂m by θ̂m = arg max
θ∈Θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

Following Ditlevsen & Samson (2014), we can prove the convergence of the SAEM-
SMC algorithm, under standard assumptions that are recalled in the Appendix.

Theorem 3. Assume that (M1)-(M5), (SAEM1)-(SAEM3), and (SMC1)-(SMC3)

hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈ Θ, ∂θ`∆(θ) = 0}
is the set of stationary points of the log-likelihood `∆(θ) = log p∆(V0:n; θ).

Moreover, under assumptions (LOC1)-(LOC3) given in Delyon et al. (1999) on the

regularity of the log-likelihood, the sequence θ̂m converges with probability 1 to a (local)
maximum of the likelihood p∆(V0:n; θ).

The classical assumptions (M1)-(M5) are usually satisfied. Assumption (SAEM1)
is easily satisfied by choosing properly the sequence (am). Assumptions (SAEM2) and
(SAEM3) depend on the regularity of the model. They are satisfied for the 3 approximate
models.

The SAEM algorithm converges to a maximum of the approximate likelihood (44).
Assuming Conjecture 1, the distance between this pseudo-likelihood and the exact like-
lihood is bounded.

Proposition 7. Under H1, there exists a constant C, independent of θ, such that for
any θ ∈ Θ, and any vector V0:n

|p(V0:n; θ)− p∆(V0:n; θ)| ≤ Cn∆2

The proof follows the proof of Theorem 2 from Ditlevsen & Samson (2014) with a 2 weak
order scheme. The result is improved: for a time interval T = n∆, the bound decreases
with ∆.

5.3. Initializing the algorithm
The SAEM algorithm requires initial values of θ to start. We detail our strategy to
find initial values for the two first models. The SIE model is arbitrarily initialized with
unknown parameters fixed to 1.

For the HO model, we run the two-dimensional contrast based on complete observa-
tions of the two coordinates. As the U coordinate is not observed, we replace it by the
increments of V : Ũi = (Vi+1 − Vi)/∆. Then the two dimensional criteria is minimized

and initial values D̂0, γ̂0, σ̃0 are obtained. The value σ̃0 is biased due to the approxi-
mation of Ui, as shown by Samson & Thieullen (2012). Therefore, we apply the bias

correction suggested by Samson & Thieullen (2012) and use σ̂0 =
√

3
2 σ̃0 as initial value.
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Table 1. Harmonic Oscillator, mean and standard deviation (in parentheses) of estimators
calculated from 100 trajectories with ∆ = 0.02 and n = 1 000. Five estimation methods.
Complete observations: new contrast estimator given in eq. (43) and Euler contrast from
Samson & Thieullen (2012). Partial observations: SAEM, Euler contrast from Samson &
Thieullen (2012) and estimator from Pokern et al. (2009) obtained with n = 10 000 and ∆ =
0.01 (only the mean values for D and γ are given in their paper).

Observations
Complete Partial

True New Contrast Euler Contrast SAEM Euler Contrast Pokern
D 4.0 3.712 (0.634) 3.969 (0.540) 4.081 (0.503) 3.969 (0.540) 1.099 (–)
γ 0.5 0.701 (0.287) 0.716 (0.273) 0.663 (0.273) 0.754 (0.278) 0.139 (–)
σ 0.5 0.496 (0.014) 0.496 (0.011) 0.509 (0.012) 0.503 (0.011) – (–)

For the FHN model, the problem is more difficult because the unknown parameter
ε appears in the equation of the observed coordinate. We fix an arbitrary value for ε̂0.
Then we replace the hidden coordinate Ui by Ũi = Vi+1 − V 3

i + s − ε̂0
Vi+1−Vi

∆ . Using

(Vi, Ũi), we minimize the two-dimensional contrast to obtain initial values γ̂0, β̂0, ε̂0.

6. Simulation study

6.1. Harmonic Oscillator
Parameter values of the Harmonic Oscillator used in the simulations are the same as
those of Pokern et al. (2009); Samson & Thieullen (2012). The values are: D = 4,
γ = 0.5, σ = 0.5. Trajectories are simulated with the exact distribution eqs. (16)–
(17)–(20) with time step ∆ = 0.02 and n = 1000 points. Then θ is estimated on each
simulated trajectory. A hundred repetitions are used to evaluate the performance of the
estimators.

The Particle filter aims at filtering the hidden process (Ut) from the observed process
(Vt). We illustrate its performance on a simulated trajectory, with θ fixed at its true
value. The SMC Particle filter algorithm is implemented with K = 100 particles and
the conditional transition density as proposal.

The performance of the SAEM-SMC algorithm is illustrated on 100 simulated trajec-
tories. The SAEM algorithm is implemented with m = 80 iterations and a sequence (am)
equal to 1 during the 30 first iterations and equal to am = 1/(m − 30)0.9 for m > 30.
The SMC algorithm is implemented with K(m) = 100 particles at each iteration of
the SAEM algorithm. The SAEM algorithm is initialized automatically by maximizing
the log likelihood of the complete data, replacing the hidden (Ui∆) by the differences
((V(i+1)∆ − Vi∆)/∆).

Several estimators are compared. The complete observation case is illustrated with
the new contrast estimator (numerical optimisation of contrast (43)) and the Euler
contrast from Samson & Thieullen (2012) (explicit estimators). The partial observation
case is illustrated with the SAEM estimator and the Euler contrast from Samson &
Thieullen (2012). Bayesian results from Pokern et al. (2009) are also recalled, even if
they are obtained with a different sampling (n = 10000 and ∆ = 0.01). Results are
given in Table 1.
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The first four estimators give overall acceptable results, while the estimator of Pokern
et al. (2009) is seriously biased. The best results are obtained with SAEM. It might seem
surprising that the SAEM performs even better than the estimators based on complete
observations. This is due to the sensitivity of the numerical optimisation of the contrast
(43) to the initial conditions, that were set to (3, 1, 1). The stochasticity of the SAEM
algorithm helps to avoid local optimization points, while the numerical optimizer might
get stuck in some local minimum. The optimization of the Euler contrast is explicit
for the HO model, and there is thus no dependence on initial conditions. It therefore
outperforms the new contrast for D.

Comparing SAEM and the Euler contrast for the partial observation case, they give
results of the same order, even if slightly better for the SAEM. However, SAEM is much
more time consuming. Note also that the SAEM algorithm provides confidence intervals
easily, which is not possible with the contrast estimators.

6.2. FitzHugh-Nagumo
Parameter values of the FitzHugh-Nagumo used in the simulations are : ε = 0.1, s = 0,
γ = 1.5, β = 0.8, σ = 0.3. Trajectories are simulated with time step δ = 0.002
and n = 1000 points are subsampled with observation time step ∆ = 10δ. Then θ
is estimated on each simulated trajectory. A hundred repetitions are used to evaluate
the performance of the estimators.

beta sigma

epsilon gamma

0.6 0.8 1.0 1.2 1.4 0.250 0.275 0.300 0.325 0.350 0.375

0.09 0.10 0.11 0.12 1.25 1.50 1.75 2.00

0

1

2

3

0

20

40

60

0

20

40

60

0

1

2

3

4

value

de
ns

ity

estimator

Contrast

SAEM 1

SAEM 2

Fig. 2. FHN estimation results for partial observations. Densities of estimated parameters over
100 repetitions for the new contrast method assuming ε known (red), SAEM assuming ε known
(blue), SAEM estimating ε (green). The blue vertical lines are the true values.
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Table 2. FitzHugh-Nagumo model. Mean and standard deviation (in parenthe-
ses) of estimators calculated from 100 trajectories with ∆ = 0.02 and n = 1 000.
Seven estimation methods. Complete observations, ε fixed: new contrast estima-
tor and Euler contrast from Samson & Thieullen (2012). Complete observations,
ε estimated: new contrast estimator. Partial observations, ε fixed: SAEM, new
contrast and Euler contrast from Samson & Thieullen (2012) ε fixed. Partial ob-
servations, ε estimated. SAEM.

Complete observations
ε fixed ε fixed ε estimated

True New Contrast Euler Contrast New Contrast
ε 0.1 – – 0.101 (0.0005)
γ 1.5 1.412 (0.221) 1.363 (0.201) 1.516 (0.149)
β 0.8 0.826 (0.146) 0.756 (0.131) 0.822 (0.131)
σ 0.3 0.303 (0.014) 0.338 (0.024) 0.299 (0.007)

Partial observations
ε fixed ε fixed ε fixed ε estimated

True SAEM New Contrast Euler Contrast SAEM
ε 0.1 – – – 0.105 (0.006)
γ 1.5 1.523 (0.130) 1.512 (0.129) 1.499 (0.196) 1.592 (0.165)
β 0.8 0.822 (0.110) 0.815 (0.110) 0.779 (0.107) 0.865 (0.129)
σ 0.3 0.293 (0.008) 0.300 (0.023) 0.381 (0.038) 0.306 (0.021)

Several estimators are compared. First note that ε is difficult to estimate because it
appears in the first coordinate. Therefore, we first fix it at its true value. This allows
to transform the system into a Langevin equation with dVt = Ztdt, and to apply the
Euler contrast proposed by Samson & Thieullen (2012). With ε fixed, we compare in
the complete observation case the contrast estimator (numerical optimisation of contrast
(43)) and the Euler contrast from Samson & Thieullen (2012) (explicit estimators). We
also include the estimation of the full parameter vector by the new contrast given in
eqs. (42) and (43). In the partial observation case we compare the SAEM estimator,
the new contrast and the Euler contrast from Samson & Thieullen (2012). We also run
the SAEM algorithm where ε is not fixed but estimated.

The SAEM algorithm is implemented with m = 350 iterations and a sequence (am)
equal to 1 during the 250 first iterations and equal to am = 1/(m− 250)0.9 for m > 250.
The SMC algorithm is implemented with K = 100 particles at each SAEM iteration.
The SAEM algorithm is initialized automatically by maximizing the log likelihood of the
complete data, replacing the hidden (Ui∆) by the differences (Vi∆ − V 3

i∆s− ε(V(i+1)∆ −
Vi∆))/∆, ε being initialized at 0.12. Results are given in Table 2, and densities of
estimates in the partially observed case are presented in Figure 2.

The results are acceptable overall. In the complete observation case, the new contrast
gives better results than the Euler. This is expected because the new constrast has a
higher order of convergence. For the partial observation case, when ε is fixed, the
performance of SAEM and the contrast are close. The Euler contrast gives better results
with partial observations than complete observations (except for σ). This might be due
to the sensitivity of the numerical optimization used to minimize the criteria. Finally,
SAEM gives good results when ε is estimated, and this is the only method that can
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Table 3. Synaptic conductance hypoelliptic model, estimation
results obtained from 100 repeated trajectories with SAEM,
from partial observations.

Parameters
τE τI ḡE ḡI σE σI

true 0.500 1.000 17.800 9.400 0.100 0.100
mean 0.580 1.105 17.696 9.167 0.080 0.021
SE 0.036 0.138 0.124 0.266 0.002 0.003

estimate it.

6.3. Synaptic-conductance model
Parameter values of the SIE model used in the simulations are : GL = 50, VL = −70,
VE = 0, VI = −80, I = −60, τE = 0.5, τI = 1, ḡE = 17.8, ḡI = 9.4, σE = 0.1, σI = 0.1.
Initial conditions of the system are V0 = −60, Ge,0 = 10, Gi,0 = 1.

Trajectories are simulated with time step δ = 0.002 and n = 1000 points are subsam-
pled with observation time step ∆ = 10δ. Then θ = (τE , τI , ḡE , ḡI , σE , σI) is estimated
on each simulated trajectory. A hundred repetitions are used to evaluate the performance
of the estimators.

The SAEM algorithm is implemented with m = 100 iterations and a sequence (am)
equal to 1 during the 80 first iterations and equal to am = 1/(m − 80)0.9 for m > 80.
The SMC algorithm is implemented with K(m) = 100 particles at each iteration of the
SAEM algorithm. The SAEM algorithm is initialized with all unknown parameters fixed
to 1.

Results are given in Table 3. Excitatory parameters (τE , ḡE , σE) are accurately es-
timated. Results are less accurate for the inhibitory parameters, especially σI which is
difficult to identify and estimate. Inhibitory conductances are generally more difficult
to estimate, as also observed in Berg & Ditlevsen (2013), where analytic expressions for
approximations of the variance of the estimators of the conductances in a similar model
were derived from the Fisher Information matrix. This is because the dynamics of Vt
are close to the inhibitory reversal potential VI , whereas it is far from the excitatory
reversal potential VE , and thus, the synaptic drive is higher for excitation.
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7. Appendix: Proofs of Propositions 3 and 4 and Theorems 1 and 2

To ease the notation, we assume that p = 1 throughout this Section. Furthermore,
let Bi(θ) := B(Xi; θ) and Γi(σ) := Γ(Xi;σ), and note that Γ(·) is a scalar. Let ν(·)
denote the stationary density of model (2). We write Gi for the filtration endorsed by
(Xt, t ≤ ti).

7.1. Technical lemmas
We first present the equivalent of Lemma 8-10 of Kessler (1997) that are essential for
the proofs of consistency. Equivalent of Lemma 7 is presented in Proposition 1.

Lemma 1. Let f : Rp+1×Θ→ R be a function with derivatives of polynomial growth
in x, uniformly in θ. Assume ∆n → 0 and n∆n →∞. Then

νn(f) :=
1

n

n∑
i=1

f(Xi, θ)
Pθ0→
∫
f(x, θ)ν0(dx)

uniformly in θ.

The proof is the same as the proof of Lemma 8 in Kessler (1997), since it does not
depend on the scheme, only on the ergodicity of the process.

Lemma 2. Let f : Rp+1×Θ→ R be a function with derivatives of polynomial growth
in x, uniformly in θ.
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(a) Assume ∆n → 0 and n→∞. Then

Q1,n(f) :=
1

n∆2
n

n−1∑
i=0

f(Xi, θ)(Vi+1 − Vi −∆nBi(θ0)1)2 Pθ0→ 0,

uniformly in θ.
(b) Assume ∆n → 0 and n→∞. Then

Q2,n(f) :=
1

n∆n

n−1∑
i=0

f(Xi, θ)(Ui+1 − Ui −∆nBi(θ0)2)2 Pθ0→
∫
f(x, θ)Γ2(x;σ0)ν0(dx),

uniformly in θ.

Proof of Lemma 2 To prove the first assertion (first coordinate), let

ξi+1(θ) =
1

n∆2
n

f(Xi, θ)(Vi+1 − Vi −∆nBi(θ0)1)2

Due to Proposition 1 and the ergodic theorem, Lemma 1, we have

n−1∑
i=0

Eθ(ξi(θ)|Gi−1) = O(∆n)→ 0 for ∆n → 0

n−1∑
i=0

Eθ(ξi(θ)2|Gi−1) =
1

n
O (1)→ 0 for n→∞

Hence, Lemma 9 from Genon-Catalot & Jacod (1993) proves the convergence for all θ.
Uniformity in θ follows as for Lemma 1. The proof of the second assertion is the same.
The scaling is different because the variance of the scheme is of order ∆n instead of order
∆3
n (Proposition 1). 2

Lemma 3. Let f : Rp+1×Θ→ R be a function with derivatives of polynomial growth
in x, uniformly in θ.

(a) Assume ∆n → 0 and n∆n →∞. Then

I1,f :=
1

n∆2
n

n−1∑
i=0

f(Xi, θ)(Vi+1 − Vi −∆nBi(θ0)1)
Pθ0→ 0,

uniformly in θ
(b) Assume ∆n → 0 and n∆n →∞. Then

I2,f :=
1

n∆n

n−1∑
i=0

f(Xi, θ)(Ui+1 − Ui −∆nBi(θ0)2)
Pθ0→ 0,

uniformly in θ
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(c) Assume ∆n → 0 and n→∞. Then

I3,f :=
1

n

n−1∑
i=0

f(Xi, θ)(Ui+1 − Ui −∆nBi(θ0)2)
Pθ0→ 0,

uniformly in θ

Proof of Lemma 3 To prove the first assertion (first coordinate), let

ξi+1(θ) =
1

n∆2
n

f(Xi, θ)(Vi+1 − Vi −∆nBi(θ0)1)

Due to Proposition 1 and intermediate calculations (not shown), we have

n−1∑
i=0

Eθ0
(ξi(θ)|Gi−1) = O(∆n)→ 0 for ∆n → 0

n−1∑
i=0

Eθ0
(ξi(θ)

2|Gi−1) =
1

n∆n
O (1)→ 0 for n∆n →∞

Hence, Lemma 9 from Genon-Catalot & Jacod (1993) proves the convergence for all θ.
The proof of uniformity in θ is the same as for Lemma 10 of Kessler (1997).

The proofs of the second and third assertions are the same, only the scalings are
different due to Proposition 1. 2

Next we present some Lemmas which are needed to prove asymptotic normality.

Lemma 4. (a) Assume that n∆2
n → 0. Then

1√
n∆n

n−1∑
i=0

f(Xi)(Ui+1 − Ui −∆nBi(θ0)2)
D→ N (0, ν0(Γ2f2(·)))

(b) Assume that n∆2
n → 0. Then

1√
n∆n

n−1∑
i=0

f(Xi)(Ui+1 − Ui)2 − 1√
n

n−1∑
i=0

f(Xi)Γ
2
i (σ0)

D→ N (0, 2ν0((Γ(·))4f2(·)))

Proof of Lemma 4. Recall that Ui+1 − Ui − ∆nBi(θ0)2 =
√

∆nξ̃
U
i Γi(σ0) + εUi , where√

∆nξ̃
U
i = ηi + ∂uAξi and εUi is the difference between the true process and the scheme.

Thus, E(ξ̃Ui ) = 0, V ar(ξ̃Ui ) = 1 + O(∆n), Cov(ξUi , ξ
U
i+1) = 0, and from Proposition 1

follows that E(εUi ) = O(∆3
n) and V ar(εUi ) = O(∆2

n). To prove assertion a), rewrite

1√
n∆n

n−1∑
i=0

f(Xi)(Ui+1−Ui−∆nBi(θ0)2) =

√
∆n√
n∆n

n−1∑
i=0

ξ̃Ui Γi(θ)f(Xi) +
1√
n∆n

n−1∑
i=0

εUi f(Xi)

= T1 + T2
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Since E(ξ̃Ui Γi(θ)f(Xi)|Gi) = 0 and E((ξ̃Ui Γi(θ)f(Xi))
2|Gi) = (Γi(θ))

2f(Xi)
2(1 +O(∆n)),

then 1
n

∑n−1
i=0 E

(
(ξ̃Ui Γi(θ)f(Xi))

2|Gi
)
→ ν0(Γ2(·, θ)f(·)2). Since E((ξ̃Ui )4(Γi(θ))

4f(Xi)
4|Gi)

is bounded it follows that 1
n2

∑n−1
i=0 E((ξ̃Ui )4(Γi(θ))

4f(Xi)
4|Gi) → 0. Using theorem 3.2

in Hall & Heyde (1980), these two conditions are sufficient to imply

T1 =
1√
n

n−1∑
i=0

ξ̃Ui Γi(σ)f(Xi)
D→ N (0, ν0(f2Γ2)).

Then we study T2. We have 1√
n∆n

∑n−1
i=0 E(εUi |Gi) =

√
nO(

√
∆5
n) and 1

n∆n

∑n−1
i=0 E((εUi )2|Gi) =

O(∆n). The condition n∆2
n → 0 implies n∆5

n → 0 and T2 → 0. This gives the proof of
1.

To prove assertion 2, rewrite

1√
n∆n

n−1∑
i=0

f(Xi)
(
(Ui+1 − Ui)2 −∆nΓ2

i (σ0)
)

=
1√
n

n−1∑
i=0

Γ2
i (σ0)((ξ̃Ui )2 − 1)f(Xi)

+
2√
n∆n

n−1∑
i=0

(εUi + ∆nBi(θ0)2)Γi(σ0)ξ̃Ui f(Xi) +
1√
n∆n

n−1∑
i=0

(εUi + ∆nBi(θ0)i)
2f(Xi)

=T1 + T2 + T3

Note that E((ξ̃Ui )2 − 1|Gi) = O(∆n) and E(((ξ̃Ui )2 − 1)2|Gi) = 2 +O(∆n). Thus,

1

n

n−1∑
i=0

E
((

Γ2
i (σ0)((ξ̃Ui )2 − 1)f(Xi)

)2
|Gi
)
→ 2ν0(Γ4(·, θ)f(·)2). Since

E
((

((ξ̃Ui )2 − 1)(Γ2
i (θ))f(Xi)

)4
|Gi
)

is bounded it follows that

1
n2

∑n−1
i=0 E

((
((ξ̃Ui )2 − 1)Γ2

i (θ)f(Xi)
)4
|Gi
)
→ 0. Using theorem 3.2 in Hall & Heyde

(1980), these two conditions are sufficient to imply

T1 =
1√
n

n−1∑
i=0

Γ2
i (σ0)((ξ̃Ui )2 − 1)f(Xi)

D→ N (0, 2ν0(f2Γ4)).

We have 1
n∆n

∑n−1
i=0 E((εUi +∆nBi(θ0)2)2Γ2

i (σ0)(ξ̃Ui )2f2(Xi)|Gi) = O(∆2
n) goes to 0 when

∆n → 0 since E((ξ̃Ui )2(εUi + ∆nBi(θ0)2)2|Gi) = O(∆2
n), which implies T2 → 0. Further-

more, the condition n∆2
n → 0 and E((εUi + ∆nBi(θ0)2)2|Gi) = O(∆2

n) imply E(T3)→ 0.
We also have E((εUi + ∆nBi(θ0)2)4|Gi) = O(∆3

n). We can conclude that T3 → 0. This
proves Lemma 4. 2

Lemma 5. (a) Assume that n∆2
n → 0. Then

1√
n∆3

n

n−1∑
i=0

f(Xi)(Vi+1 − Vi −∆nBi(θ0)1)
D→ N (0,

1

3
ν0((∂ua)2Γ2f2(·)))
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(b) Assume that n∆2
n → 0. Then

1√
n∆3

n

n−1∑
i=0

f(Xi)(Vi+1 − Vi −∆nBi(θ)1)2 − 1√
n

n−1∑
i=0

f(Xi)
1

3
Γ2
i (σ0)(∂ua)2

D→ N (0,
2

9
ν0(Γ4(∂ua)4f2(·)))

Proof of Lemma 5. Recall that Vi+1 − Vi − ∆nBi(θ0)1 =
√

∆3
nξ̃
V
i Γi + εVi , where√

∆3
nξ̃
V
i = ∂uaξi and εVi is the difference between the true process and the scheme.

Thus, E(ξ̃Vi ) = 0, V ar(ξ̃Vi ) = 1
3(∂ua)2, Cov(ξVi , ξ

V
i+1) = 0, and from Proposition 1

follows that E(εVi ) = O(∆3
n) and V ar(εVi ) = O(∆4

n). To prove assertion a), rewrite

1√
n∆3

n

n−1∑
i=0

f(Xi)(Vi+1−Vi−∆nBi(θ0)1) =

√
∆3
n√

n∆3
n

n−1∑
i=0

ξ̃Vi Γi(θ)f(Xi) +
1√
n∆3

n

n−1∑
i=0

εVi f(Xi)

= T1 + T2

Note that E(ξ̃Vi Γi(θ)f(Xi)|Gi) = 0 and E((ξ̃Vi Γi(θ)f(Xi))
2|Gi) = 1

3(∂uaΓi(θ)f(Xi))
2.

Thus, 1
n

∑n−1
i=0 E

(
(ξ̃Vi Γi(θ)f(Xi))

2|Gi
)
→ 1

3ν0((∂ua)2Γ2(·, θ)f(·)2). Since E((ξ̃Vi Γi(θ)f(Xi))
4|Gi)

is bounded it follows that 1
n2

∑n−1
i=0 E((ξ̃Vi Γi(θ)f(Xi))

4|Gi) → 0. Using theorem 3.2 in
Hall & Heyde (1980), these two conditions are sufficient to imply

T1 =
1√
n

n−1∑
i=0

ξ̃Vi Γi(σ)f(Xi)
D→ N (0,

1

3
ν0(f2(∂ua)2Γ2)).

To study T2, note that 1√
n∆3

n

∑n−1
i=0 E(εVi |Gi) =

√
nO(

√
∆3
n) and 1

n∆3
n

∑n−1
i=0 E((εVi )2|Gi) =

O(∆n). The condition n∆2
n → 0 implies n∆3

n → 0 and T2 → 0. This gives the proof of
a).

To prove assertion b), rewrite

1√
n∆3

n

n−1∑
i=0

f(Xi)

(
(Vi+1 − Vi −∆nBi(θ0)1)2 −∆3

n

1

3
(∂ua)2Γ2

i (σ0)

)

=
1√
n

n−1∑
i=0

Γ2
i (σ0)((ξ̃Vi )2 − 1

3
(∂ua)2)f(Xi)

+
2√
n∆3

n

n−1∑
i=0

εVi Γi(σ0)ξ̃Vi f(Xi) +
1√
n∆3

n

n−1∑
i=0

(εVi )2f(Xi)

=T1 + T2 + T3

Note that E((ξ̃Vi )2 − 1
3(∂ua)2|Gi) = 0 and E(((ξ̃Vi )2 − 1

3(∂ua)2)2|Gi) = 2
9(∂ua)4. Thus,

1
n

∑n−1
i=0 E

(
(Γ2
i (σ0)((ξ̃Vi )2 − 1

3(∂ua)2)f(Xi))
2|Gi

)
→ 2

9ν0(Γ4(·, θ)(∂ua)4f(·)2). Moreover,

since E(((ξ̃Vi )2 − 1
3(∂ua)2))4(Γ2

i (θ))
4f(Xi)

4|Gi)) is bounded, it follows that
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1
n2

∑n−1
i=0 E(((ξ̃Vi )2 − 1

3(∂ua)2))4(Γ2
i (θ))

4f(Xi)
4|Gi)) → 0. Using theorem 3.2 in Hall &

Heyde (1980), these two conditions are sufficient to imply

T1 =
1√
n

n−1∑
i=0

Γ2
i (σ0)((ξ̃Vi )2 − 1

3
(∂ua)2))f(Xi)

D→ N (0,
2

9
ν0(Γ4(·, θ)(∂ua)4f(·)2)).

We have 1
n∆3

n

∑n−1
i=0 E((εVi )2Γ2

i (σ0)(ξ̃Vi )2f2(Xi)|Gi) = O(∆n) goes to 0 when ∆n → 0

since E((ξ̃Vi )2(εVi )2|Gi) = O(∆4
n), which implies T2 → 0. Furthermore, the condition

n∆2
n → 0 and E((εVi )2|Gi) = O(∆4

n) imply T3 → 0. This proves Lemma 5. 2

7.2. Proof of consistency of σ̂2
n, Proposition 3

The estimator σ̂2
n is defined as the minimal argument of (43) which for p = 1 reduces to

`n(β, σ) =

n−1∑
i=0

(Ui+1 − Ui −∆nBi(β)2)2

∆nΓ2
i (σ)

+

n−1∑
i=0

log(Γ2
i (σ)). (49)

We follow Kessler (1997) and the aim is to prove the following lemma

Lemma 6. Assume ∆n → 0 and n∆n →∞. Then

1

n
`n(β, σ)

Pβ0→
∫ (

Γ2(x;σ0)

Γ2(x;σ)
+ log Γ2(x;σ)

)
ν0(dx) =: F (σ, σ0) (50)

uniformly in θ.

Then, using Lemma 6, we can prove that there exists a subsequence nk such that
(ϕ̂nk , σ̂nk) converges to a limit (ϕ∞, σ

2
∞). Hence, by continuity of σ → F (σ, σ0), we

have

1

nk
`nk(β, σ)

Pθ0→ F (σ∞, σ0).

By definition of (ϕ̂nk , σ̂nk), F (σ∞, σ0) ≤ F (σ0, σ0).

On the other hand, for all y > 0, y0 > 0, (y0/y)+log y ≥ 1+log y0. Thus, F (σ∞, σ0) =
F (σ0, σ0), and by identifiability assumption σ2

∞ = σ2
0. Hence, there exists a subsequence

of σ̂2
n that converges to σ2

0. That proves the consistency of σ̂2
n. It remains to prove

Lemma 6.
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Proof of Lemma 6 We have 1
n`n(β, σ) = T1 + T2 + T3 + T4 with

T1 =
1

n

n−1∑
i=0

(Ui+1 − Ui −∆nBi(β0)2)2

∆nΓ2
i (σ)

T2 =
2

n

n−1∑
i=0

(Ui+1 − Ui −∆nBi(β0)2)(Bi(β0)2 −Bi(β)2)

Γ2
i (σ)

T3 =
∆n

n

n−1∑
i=0

(Bi(β0)2 −Bi(β)2)2

Γ2
i (σ)

T4 =
1

n

n−1∑
i=0

log Γ2
i (σ)

We start with T1. Lemma 2 implies

1

n∆n

n−1∑
i=1

(Ui+1 − Ui −∆nBi(β0)2)2 Pθ0→
∫

Γ2(x;σ0)ν0(dx)

and thus, T1
Pθ0→

∫ Γ2(x;σ0)
Γ2(x;σ) ν0(dx), uniformly in θ. Using Lemma 3, we obtain that

T2
Pθ0→ 0, uniformly in θ. From Lemma 1 follows T3

Pθ0→ 0 and T4
Pθ0→
∫

log Γ2(x;σ)ν0(dx),
uniformly in θ. Finally, we obtain (50). 2

7.3. Proof of consistency of ϕ̂n, Proposition 3
The estimator ϕ̂n is defined as the minimal argument of (49). Consistency of ϕ̂n is
deduced from the following lemma.

Lemma 7. Assume ∆n → 0 and n∆n →∞. Then

1

n∆n
`n(β, σ)− 1

n∆n
`n(β0, σ)

Pθ0→
∫

(A(x;ϕ)−A(x;ϕ0))2

Γ2(x;σ)
ν0(dx)

uniformly in θ.

Using Lemma 7, there exists a subsequence ϕ̂nk that tends to ϕ∞. Hence,

1

nk∆nk

`nk(β̂nk , σ)− 1

nk∆nk

`nk(β0, σ)
Pθ0→
∫

(A(x;ϕ∞)−A(x;ϕ0))2

Γ2(x;σ)
ν0(dx)

The consistency follows by identifiability of A(x;ϕ). It remains to prove Lemma 7.
Proof of Lemma 7. We have 1

n∆n
`n(β, σ)− 1

n∆n
`n(β0, σ) = T1 + T2 with

T1 =
2

n∆n

n−1∑
i=0

(Ui+1 − Ui −∆nBi(β0)2)

Γ2
i (σ)

(Bi(β0)2 −Bi(β)2)

T2 =
1

n

n−1∑
i=0

(Bi(β0)2 −Bi(β)2)2

Γ2
i (σ)
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Lemma 3 implies T1
Pθ0→ 0, uniformly in θ. Recall that Bi(β0)2 − Bi(β)2 = A(Xi;ϕ0) −

A(Xi;ϕ) +O(∆n). Combined with Lemma 1 we obtain T2
Pθ0→
∫ (A(x;ϕ)−A(x;ϕ0))2

Γ2(x;σ) ν0(dx),

uniformly in θ. Note that the parameter of the first coordinate ψ is not involved in the
limit. The result applies for any ψ. This gives the Lemma. 2

7.4. Proof of consistency of ψ̂n, Proposition 4
To ease the notation, we assume that the drift function a can be split into two functions
of v and u: a(x;ψ) = av(v, ψv) + ψuau(u). Estimator ψ̂n = (ψ̂vn, ψ̂un) is defined as the
minimal argument of (42) which for p = 1 reduces to

`n(ψ, σ) =
3

∆3
n

n−1∑
i=0

(Vi+1 − Vi −∆nBi(β)1)2

ψ2
u Γ2

i (σ)(a′u(Ui))2
+ n log(ψ2

u). (51)

Consistency of ψ̂n is deduced from the following lemma.

Lemma 8. Assume ∆n → 0 and n∆n →∞. Then

∆n

n
`n(ψ, σ)− ∆n

n
`n(ψ0, σ)

Pθ0→
∫

(a(x;ψ)− a(x;ψ0))2

ψ2
u Γ2(x;σ)(a′u(u))2

ν0(dx)

uniformly in θ.

Proof of Lemma 8. We have ∆n

n `n(ψ, σ)− ∆n

n `n(ψ0, σ) = T1 + T2 + T3 + T4 with

T1 =
3∆n

n∆3
n

n−1∑
i=0

(Vi+1 − Vi −∆nBi(β0)1)2

Γ2
i (σ)(a′u(Ui))2

(
1

ψ2
u

− 1

ψ2
u,0

)

T2 =
6∆2

n

n∆3
n

n−1∑
i=0

(Vi+1 − Vi −∆nBi(β0)1)

Γ2
i (σ)(a′u(Ui))2

(Bi(β0)1 −Bi(β)1)

ψ2
u

T3 =
3∆3

n

n∆3
n

n−1∑
i=0

(Bi(β0)1 −Bi(β)1)2

ψ2
u Γ2

i (σ)(a′u(Ui))2

T4 = ∆n log(ψ2
u/ψ

2
u,0)

Lemma 2 implies T1
Pθ0→ 0 and Lemma 3 implies T2

Pθ0→ 0, uniformly in θ. From Lemma

1 combined with Bi(β0)1 − Bi(β)1 = a(Xi;ψ0) − a(Xi;ψ) + O(∆n) follows that T3
Pθ0→

3
∫ (a(x;ψ)−a(x;ψ0))2

ψ2
u Γ2(x;σ)(a′u(u))2 ν0(dx), uniformly in θ. Finally T4

Pθ0→ 0, uniformly in θ. Note that

the parameter of the second coordinate ϕ is not involved in the limit. The result applies
for any ϕ. This gives the Lemma. 2

7.5. Proof of the asymptotic normality of (ϕ̂n, σ̂
2
n) (Theorem 1)

Proof of Theorem 1. The proof of the asymptotic normality is standard, see for
instance Genon-Catalot & Jacod (1993); Kessler (1997). Denote θ = (ψ,ϕ, σ) and
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θ̂n = (ψ0, ϕ̂n, σ̂n). Let Ln(θ) = `n(β, σ) from (49). By Taylor’s formula,∫
Cn(θ0 + u(θ̂n − θ0))du En = Dn

where

Cn(θ) =

[
1

n∆n

∂2

∂ϕ2Ln(θ) 1
n
√

∆n

∂2

∂ϕσLn(θ)
1

n
√

∆n

∂2

∂ϕσLn(θ) 1
n
∂2

∂σ2Ln(θ)

]
,

En =

[ √
n∆n(ϕ̂n − ϕ0)√
n(σ̂n − σ0)

]
, Dn =

[
− 1√

n∆n

∂
∂ϕLn(θ0)

− 1√
n
∂
∂σLn(θ0)

]
Lemmas 1-2-3 and 4 allow to prove that

Dn
D→ N

(
0,

[
4
∫ (∂ϕB2)2

Γ2 (·; θ0)ν0(dx) 0

0 2
∫

(∂σΓ2

Γ2 )2(·; θ0)ν0(dx)

])
(52)

(see Kessler, 1997, for more details). From Lemmas 1-2 follows

Cn(θ0)→ C :=

[
2
∫ (∂ϕB2)2

Γ2 (·; θ0)ν0(dx) 0

0
∫

(∂σΓ2

Γ2 )2(·; θ0)ν0(dx)

]

Using the consistency of θ̂n, we obtain the result. 2

7.6. Proof of the asymptotic normality of (ψ̂)

Proof of Theorem 2. Denote θ̂n = (ψ̂, ϕ0, σ0). Let Ln(θ) = `n(ψ, σ) from (51). By
Taylor’s formula, ∫

Cn(θ0 + u(θ̂n − θ0))du En = Dn

where

Cn(θ0) =
∆n

n

∂2

∂ψ2
Ln(θ), En =

√
n

∆n
(ψ̂n − ψ0), Dn = −

√
∆n

n

∂

∂ψ
Ln(θ0).

Lemma 5 yields

Dn
D→ N

(
0, 12

∫
(∂ψB1)2

Γ2(∂ua)2
(·; θ0)ν0(dx)

)
(53)

and Lemmas 3 and 1 yield

Cn(θ0)→ C := 6

∫
(∂ψB1)2

Γ2(∂ua)2
(·; θ0)ν0(dx).

Using the consistency of θ̂n, we obtain the result. 2
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8. Appendix: details on SAEM-SMC algorithm

8.1. Proof of the convergence of the particle filter, Proposition 6
We follow the proof from Del Moral et al. (2001). We need to study, for each time
j = 1, . . . , n − 1, the distance between the two kernels ‖H∆

j f − Hjf‖ defined, for any
function f and any u, as:

Hjf(u) =

∫
p(u′, vj+1|u, vj)f(u′)du′

H∆
j f(u) =

∫
p∆(u′, vj+1|u, vj)f(u′)du′

We have

|Hjf(u)−H∆
j f(u)| = |

∫
(p(u′, vj+1|u, vj)− p∆(u′, vj+1|u, vj))f(u′)du′

≤
∫
|p(u′, vj+1|u, vj)− p∆(u′, vj+1|u, vj)||f(u′)|du′

≤ C∆2

∫
e−C

′‖u−u′‖2 |f(u′)|du′ ≤ C∆2‖f‖

where the last inequality follows from Conjecture 1 and inequality (39). Thus,

‖Hjf −H∆
j f‖ ≤ C∆2‖f‖.

Following Proposition 2.1 from Del Moral et al. (2001), we deduce that for all bounded
Borel functions f , and all j = 1, . . . , n, we have

‖πn,θf − πn,∆,θf‖ ≤ αC0∆2‖f‖Aj (54)

where α,C0, Aj are Del Moral et al. (2001)’s constants.
Now, we prove (47). We already proved Proposition 5 and inequality (45). It remains

to apply (54). For ε such that ∆2‖f‖Aj ≤ ε/2, we have under condition (46) that
Kε2/‖f‖2 ≥ (2αC0Aj)

2. Thus we obtain the following bound:

P
(∣∣ΨK

n,θf − πn,θf
∣∣ ≥ ε) ≤ P

(∣∣ΨK
n,θf − πn,∆,θf

∣∣ ≥ ε/2) ≤ C1,∆ exp

(
−K ε2

4C2,∆‖f‖2

)
.

Otherwise, when ∆2‖f‖Aj ≥ ε/2, P
(∣∣∣ΨK

n,θf − πn,θf
∣∣∣ ≥ ε) is smaller than 1, and the

result holds changing the constants to C1 and C2 as proposed by Del Moral et al. (2001).
2

8.2. Assumptions for SAEM convergence
(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on Θ.

(M3) The function s̄ : Θ −→ S defined by s̄(θ) =
∫
S(v, u)p∆(u|v; θ)dv du is continuously

differentiable on Θ.
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(M4) The function `∆(θ) = log p∆(v, u, θ) is continuously differentiable on Θ and ∂θ
∫
p∆(v, u; θ)dv du =∫

∂θp∆(v, u; θ)dv du.

(M5) Define L : S × Θ → R by L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a function

θ̂ : S → Θ such that ∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation (am)m≥1 is such
that

∑
m am =∞ and

∑
m a

2
m <∞.

(SAEM2) `∆ : Θ → R and θ̂ : S → Θ are d times differentiable, where d is the dimension of
S(v, u).

(SAEM3) For all θ ∈ Θ,
∫
||S(v, u)||2 p∆(u|v; θ)du <∞ and the function Γ(θ) = Covθ(S(·, U0:n))

is continuous, where the covariance is under the conditional distribution p∆(U0:n|V0:n; θ).

(SAEM4) Let {Fm} be the increasing family of σ-algebras generated by the random variables

s0, U
(1)
0:n, U

(2)
0:n, . . . , U

(m)
0:n . For any positive Borel function f , E∆(f(U

(m+1)
0:n )|Fm) =∫

f(u)p∆(u|v, θ̂m)du.

(SMC1) The number of particles K used at each iteration of the SAEM algorithm varies
along the iteration: there exists a function g(m) → ∞ when m → ∞ such that
K(m) ≥ g(m) log(m).

(SMC2) The function S is bounded uniformly in u.

(SMC3) The functions p∆(Vi|Ui, Vi−1, Ui−1; θ) are bounded uniformly in θ.

8.3. Sufficient statistics of the HO model
We detail the sufficient statistics for the HO model. Let us denote Yi = Vi+1 − Vi − Ui.
There are 6 statistics:

S1 =
1

∆5

n−1∑
i=0

(
−∆3

2
UiYu +

∆3

6
(Ui+1 − Ui)Vi +

∆4

3
(Ui+1 − Ui)Ui

)

S2 =
1

∆5

n−1∑
i=0

(
−∆Y 2

i +
2

3
∆2Yi(Ui+1 − Ui) +

∆3

6
(Ui+1 − Ui)Ui

)

S3 =
2

∆5

n−1∑
i=0

(
∆4

12
V 2
i +

∆5

12
UiVi +

∆6

12
U2
i

)

S4 =
2

∆5

n−1∑
i=0

(
∆2

3
Y 2
i +

∆4

12
U2
i +

∆3

6
YiUi

)

S5 =
1

∆5

n−1∑
i=0

(
∆3

6
YiVi +

∆4

6
UiVi +

∆4

3
UiYi +

∆5

12
U2
i

)

S6 =
1

∆−∆2 + ∆3/3

n−1∑
i=0

(Ui+1 − Ui −∆(−DVi − γUi))2
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Then the maximisation step and the updates of the parameters are as follows:

D̂m =
S2S5 − S1S4

S3S4 − S2
5

γ̂m =
S1S5 − S2S3

S3S4 − S2
5

σ̂2
m =

S6

n∆
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