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Abstract 

 

The use of Light Detection And Ranging (LiDAR) for archaeological purposes is becoming 

more prevalent in order to detect and to document remains located in forested areas. A manual 

digitalisation of the detected elements is possible if the aim is to focus on some particular 

elements. However, one of the main interests of airborne laser scanning is to put the 

archaeological information in their context, and to allow a better understanding of the relation 

between each item and its environment (other structures, paths, etc). This concept of 

archaeological landscape generally results in a too large amount of data to permit a manual 

analysis. This paper describes an approach for the automatic detection of particular 

archaeological artefact, archaeological grazing structures, found in high concentration in some 

places of Auvergne (France). First, a model of the elements of interest is designed with the 

archaeologist. The automatic detection of the archaeological grazing structures is then carried 

out, based on the evaluation of the matching degree of each element with the model. Finally, 

the location and the boundary of each selected elements are extracted and stored in a database. 

The efficiency of the method is tested, by comparison with the manual digitalisation of an 

expert, on a restricted zone, and the observed differences are analysed and discussed. 
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1. Introduction: 

 

 LiDAR, generally known as airborne laser scanning (ALS), is used by archaeologists 

to detect and map sites and to analyze past landscape since the last ten years (Cutchley and 

Crow, 2009; Masini et al., 2011; Georges-Leroy et al., 2014). Because of its ability to 

penetrate certain types of woodland canopy, this technology is a revolutionary tool for 

archaeologist interested in remains mostly located under forest areas which are still relatively 

unexplored. Research programs using Lidar data are becoming more and more frequent. From 

an historiographical perspective, they are in the continuity of the landscape archaeology 

studies, developed in the 1980s, especially in the Mediterranean Basin. They aspire to explore 

vast areas, linking scales from micro-regional to regional studies. Lidar survey exhibits 

archaeological remains, preserved from destruction by their position in altitude or a protective 

vegetative cover. Over the past ten years, LiDAR technology permitted to discover unknown 

or partially identified archaeological sites worldwide even under dense vegetation cover 

(Devereux et al., 2005; Humme et al., 2006; Doneus et al., 2008; Johnson and Ouimet, 2014; 

Chase et al., 2014; Ludemann, 2012; Evans et al., 2013; Johnson et al, 2014; Stark et al., 

2015). The majority of published studies examined the possibility of using ALS data for 
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archaeological investigations by visualization and interpretation of high resolution ALS 

derived-DTMs (Digital Terrain Model) (Kokalj et al, 2011; Bennet et al., 2012; Opitz and 

Cowley, 2013) after classification procedures of bare-earth elevations (Kilian et al., 1996; 

Kraus and Pfeifer, 1998; Vosselman, 2000; Zhang et al., 2003; Zaksek and Pfeifer, 2006; 

Lasaporana et al., 2011). The ALS ground point clouds are converted to raster DTMs which 

are used to build derived visualization models. A broad range of models derived from the 

raster DTMs exist and are used as supplementary tools to detect and differentiate micro-

topography and therefore archaeological features, for examples, multidirectional oblique 

weighting hillshade (MDOW), slope, local relief model (LRM), sky-view factor (SVF), 

positive and negative openness or combination of those methods (Devereux et al., 2008; 

Hesse, 2010; Challis et al., 2011; Kokaljiz et al., 2011; McCoy et al., 2011; Bennett et al., 

2012; Stular et al., 2012; Doneus, 2013). These DTM treatments are usually grouped in the 

so-called visualization methods and the archaeologist's analytical work is to filter, rank and 

interpret topographic anomalies and local details enhanced by these derived-models in order 

to discriminate only those with an historical interest. The selected structures are then 

manually digitized, mapped and integrated into GIS-based environment (Doneus and 

Küthreiber, 2013). However, the density of archaeological features and the large areas 

covered by the LiDAR surveys render the manual analysis and interpretation a time-

consuming and fastidious task (Sevara et al., 2016). The manual visual interpretation is also a 

subjective process and can have a substantial impact on remains investigations, depending of 

the level of expertise of people carrying this classification : Non-sites may be identified as 

potential archaeological sites or on the other hand elements of archaeological relevance may 

be interpreted as natural (Doneus and Briese, 2006). Specialists may also focus on singular 

points of their own interest, and may tend to see what they know and unconsciously neglect 

other elements (Cowley, 2012). 

 Recently, automatic analysis of satellite images (Lasaponara et al, 2014; D’Orazio et 

al, 2012; Figorito et al, 2014; Di Iorio et al, 2010) or LiDAR data (Cowley, 2012; Trier and 

Pilø, 2012; Casana, 2014; Trier et al., 2015; Sevara et al., 2016) were applied to extract 

remains and to offer to archaeologists an additional visualization method to detect 

archaeological features in large areas or in area where remains are not visible to the naked 

eyes. Moreover, automatic detection may be applied to ALS data, either directly on the 

LiDAR point cloud or on a derived DEM with an appropriately chosen raster resolution, i.e. 

pixel size. Several approaches have been proposed recently : Pixel-based classification, based 

on the identification of high altitudinal gradients in ALS-derived raster DTM like LRM and 

SVF models, has been applied and compared with object oriented classification (Sevara et al., 

2016). The template matching approach has also been tested for archaeological structures with 

simple forms (Trier et al., 2015, Schneider et al., 2014). The method is then based on a 

geometrical template, defined from the knowledge of the morphometric characteristics of a 

targeted archaeological feature. The main problem is that the automatic detection is mostly 

limited to simple and isolated structures (Kim et al., 2005; Krøgli et al., 2007; Rack et al., 

2005; Wan et al.,2012). The aim of this paper is to propose a combination between pixel-

based classification and template matching, in order to detect the elementary parts of complex 

archaeological structures. Each elementary structure is defined by its morphometric 

characteristics, but also by its belonging to a complex structure, that may have various shapes 

and sizes. 

 The Lidar survey of the central part of the Chaîne des Puys (volcanic chain located in 

Auvergne, France), held in winter 2011, revealed, for the first time in the Dome Mountains, 

the presence of a typical grazing structures locally called "tras" (figure 1). These structures are 

rectangular or sub circular and compartmentalized. They correspond to grazing features of 

late medieval to early modern era (D’Aussy 1788; Fournier 1983). These structures are 
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already well known in the pastoral lands of the Cézallier and Monts Dores regions, in the 

French Massif Central (Sauget et al. 2001). They can be found in highly concentrated forms 

(hundreds of structures), raising a registration problem. As a consequence, only global areas 

are so far registered, without any information on individualized structures. The discovery of 

an important concentration of grazing structures (225 elementary structures for half a square 

km) in an area covered by the LiDAR was the opportunity to develop and to test an automatic 

detection tool. As several thousand of them are present in different sectors of the Massif 

Central, the method will be easily deployable on a much larger scale and will assist 

archaeologists and the archaeological services to map these grazing structures. 

 

 
 

Fig. 1. Study site location in the French Chaîne des Puys and localisation of the investigated zone 
where the LiDAR data where used for the automatic detection validation 
 

The first part of this study concerns the characterization and the modeling of the 

archaeological grazing structures: The generation of a derived model of the DTM allows the 

identification of the structures. Then, the selection of a typical element by an expert enables to 

build a model. The second parts deals with the automatic detection process and the associated 

test of efficiency, by comparison with an expert approach. The results of the automatic 

detection are compared with manual interpretation and field walking which serve as reference 

databases, in order to evaluate the balance of the false/true detection of the automatic 

algorithm and if the data processing developed is a valuable tool to detect and map specific 

archaeological features.  

 

2. Data and methods 

 

 2.1 Airborne Laser Scanner data and derived data set 

 

 LiDAR data were acquired by airborne on 23-march 2011 with a minimum of 18 

emitted laser pulse per square meter. The field is dominated by deciduous (hazel, beech, 

birch) and rare isolated conifers allowing a dense proportion of hits of the ground: 11.5 

grounds hits per square meter on average and a standard deviation of ± 8.9 points/m², with a 
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minimum of 0 and a maximum of 47. The maxima point’s densities correspond to overlapping 

areas and sectors without any trees, whereas low point densities correspond to regions 

covered by conifers. Finally 42 % of the studied area contains more than 10 points per m2, 50 

% between 10 and 5 points per m2, 7 % less than 5 points per m2 and 0.65 % contain no point. 

The LiDAR data were available as binary data files in the LAS file format, containing up to 

four returns per emitted laser pulse. Each return contains x, y and z coordinates in Lambert 93 

(EPSG 2154), and a class label denoting ground and vegetation or building point. We selected 

only ground returns which were first interpolated using the ANUDEM method (Hutchinson, 

1988,) and converted into a regularized raster DTM, with a 0.5 m grid resolution in the x–y 

plane. This gives 4 grid cells per square meter so as to preserve all the detail of bare earth 

point clouds. 

 In order to make possible the automatic detection of archaeological elements, a 

preliminary treatment of the DTM is essential to reveal the items of interest (Stular et al, 

2012). Several methods are usable for this, such as Local Relief Model (LRM) (Hesse, 2010), 

hillshade with one or several direction of illumination (Doneus, 2013), or models based on the 

Sky View Factors (SVF) (Zalsek et al., 2011). For all these methods, the aim is to highlight 

the micro-relief, usually due to human activity.  

 In this study, MDOW, LRM, SKV and openness were calculated using the RVT 

software (Relief Visualization Toolbox, 2015; Zakšek et al., 2014; Zakšek et al., 2011; Kokalj 

et al., 2011). We chose LRM as the best candidate to test the success of the automatic 

detection algorithm because it’s well suited in the case of slight relief and because it causes a 

negligible horizontal shift in the position of features (Bennett et al., 2012; Mcneary, 2014), 

which is important for the automatic localisation of the archaeological structures. The 

principle of the LRM computation is to apply a high pass filter to the DTM, so that only the 

highest frequencies component of dataset, corresponding to high altitude gradient 
dx

dz
 or 

dy

dz
, 

which may be associated to anthropogenic landforms, are conserved. The lower frequencies 

due to natural relief are suppressed (Bofinger and Hesse, 2011). A moving average filtering is 

applied to the DTM. This low pass filter replaces each matrix element by the average value of 

the surrounding elements: 
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where M represents the number of lines and N the number of columns of the filter  

 

 The aim of this filter is to remove all the highest frequency components of the 

topographic variation, especially the ones of anthropogenic source. The choice of the filter 

size [MxN] is an important parameter, because it corresponds to the cut-off frequency of the 

filter: It has to correspond to the size of the element that we want to detect, in this case 6x6 m, 

the dimension of a typical elementary grazing structure. If the filtering area is too small, the 

anthropogenic structures will be only partly eliminated. On the contrary, if the filtering area is 

too large, the natural relief that we want to select will be distorted. Finally, this filtered DTM 

is subtracted to the initial one. The lower frequency variations are then erased and the 

remaining information correspond to high frequency components. 
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 2.2. Description and modelling of the grazing structures 

 

 The figure 2 presents a typical configuration of the archaeological grazing structures 

structures. Each elementary structure is characterised by a sub circular depression, generally 

associated with an access corridor and surrounded by some ridges. The average measures are 

about 6x6 m for each elementary structure and 9x1.5 m for the corridor This typical 

configuration can however present several variations: for example the corridor may be 

missing or a smaller depression can be found, in the middle of the corridor. (Florez et al., 

2014). Due to their originality, their morphology, their global complexity and their spatial 

concentration, these structures are particularly well suited for the development of the 

automatic detection algorithm. They can be found isolated, as it can be the case for charcoal 

kiln (Schneider et al, 2014), but several structures are mostly associated together, with a great 

variety of typologies (Florez et al., 2013). Thus, a classical template matching approach may 

not be sufficient to detect them. The elementary structures arrangement can be another 

identification indicia, but as these groupings can have various sizes and shapes, they can’t be 

identified by classical morphometric criteria. The proposed method combines information on 

both elementary and complex archaeological structures, in order to allow the detection of each 

elementary structure. The automatic detection and identification of complex archaeological 

structures become possible, from an a priori knowledge of elementary components of these 

structures. In this paper we use both general geometrical signatures of the complex structures 

and coupled template matching and pixel-based classification approach of its main elementary 

component to automatically detect them. In the rest of this article, each elementary part will 

be referred to as “elementary grazing structure”, an association of several coalescing 

elementary structures being referred to as “complex grazing structure. (figure 2) 

 

 
 

Fig. 2. Typology of the grazing structures showing their main characteristics. aerial photography of 
archaeological grazing structures (Cezallier) (a), Local relief Model of a small part of the investigated 

zone (b). The red parts represent what we call "elementary archaeological grazing structures", 

surrounded by some “ridges” and sometimes associated with an "access corridor". All of these 

elements belong to the "complex archaeological grazing structures". 
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 In order to implement the automatic detection process, the elementary grazing 

structures have to be modelled. This model is synthesized, from a sub-raster chosen by the 

archaeologist and extracted from the LRM. The expert selects a structure considered as the 

more representative of the searched elements. It is a form well-preserved or barely degraded 

by the erosion and with a well-marked specific shape. The characteristic information of the 

reference structure (length, width, depth) are automatically extracted to be used for the 

automatic detection. A model of the elementary archaeological grazing structure is then 

designed, based on a clipped sinus cardinal function normalised to correspond to the reference 

structure dimensions and described by the following mathematical expression : 
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The obtained negative values are truncated, in order to equilibrate maximum and minimum 

values according to the characteristics of the reference structure:  

if z < zmax  then z = -zmax 

The modelling process of the elementary grazing structure is summarized on figure 3. 
 

 
 

Fig. 3. Process of creation of a model of the archaeological grazing structure : choice of a 

representative element (a), extraction of its characteristics (b), creation of a numerical model (c) 
 

 2.3. Automatic detection process 

  

The anomalies highlighted by the LRM can now be detected automatically. The first step 

consists in the binarization and segmentation process, based on two complementary 

segmentation stages: all the matrix element corresponding to positive LRM values (relative 

elevation above the local mean) of at least 33 % of the maximum elevation value of the LRM 
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are selected. The coalescing elements obtained are then merged together and interpreted as 

potential interesting element. The same process is applied for the segmentation of elements 

with negative LRM values (relative elevation under the local mean). The second step consists 

in detecting all the objects that could be associated to a human activity, i.e. characterised by a 

high gradient. The third step is to classify them basically in four classes, based on their planar 

shapes: 

 Narrow linear elements with a negative relative altimetry (topographic depression) and 

interpreted as trails, pathways or deep gullies 

 Narrow linear elements with a positive relative altimetry and interpreted as small plot walls 

and ridges 

 Smalls and compact elements, with a size lower than half the one of the reference structure, 

interpreted as artefacts and eliminated by an erosion/dilatation process 

 The remaining objects, interpreted as potential grazing archaeological structures. 

 

Two detection processes are then carried out in parallel :  

 A pixel based detection is implemented, based on morphometric characteristic of the 

structures. The potential complex structures, i.e. groups of nested elementary items are 

detected. These groupings are complex to identify, because they can contain a various number 

of basic elements, and so have variable dimensions and geometric configurations. A set of 

three general features have to be evaluated to characterise a complex structure:  

 a) each candidate must have some hollow parts surrounded by element in relative 

elevation, leading to high elevation gradient in the LRM. 

 b) the minimum size of each element must be at least equal to the one of the reference 

structure 

 Then, all the hollow parts being inside the complex structures and having dimensions 

consistent with the ones of the model are selected and interpreted as potential elementary 

structures. 

 

 In parallel, another step is necessary to focus on the researched archaeological 

structure, by carrying a template matching approach (De Boer, 2005; Schneider et al, 2014). A 

moving cross-correlation is realised between the model previously defined and the whole 

studied area. For each point with coordinates [i,j] of the LRM, the cross-correlation 

coefficient is defined as :  
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where: 

Corr is the result of the cross-correlation 

Ref correspond to the reference object (model) 

LRM is the whole Local Relief Model 

ref is the mean value of the relative elevations for the reference object 

LRM  is the mean value of the LRM relative elevations in the analysis window, the size of the 

reference object 

Ni is the width of the model 

Nj is the height of the model 

 

The figure 4 shows the result of the cross-correlation process on a small area. It turns out that 

even if correlation peaks match well the grazing structures elementary cells, some high values 
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of the correlation coefficient also correspond to other elements, like lanes or access corridors 

fragments. 
 

 

Fig. 4. Visualization of the archaeological grazing structures (a) and of the associated correlation 
peaks (b) 
 

 These results, obtained on a small area allow defining a minimum correlation rate for 

the detection. In our case, this limit value chosen for the acceptable correlation rate is 60 %. 

Our choice was to favour the completeness of the diagnostic, rather than its accuracy. The 

reason of this choice will be explained in the discussion. 

At last, the two approaches are merged, in order to limit the number of artefacts: only the 

elements detected by the two complementary approaches are retained. Elements characterised 

by a high correlation rate with the model but not included in a complex structure can then be 

suppressed. The characteristics of the selected elements (centroid coordinates, length, width, 

depth, correlation rate with the model) are then automatically extracted and stored in a 

database. 

 The figure 5 summarizes the algorithmic approach implemented for the automatic 

detection process in MATLAB® environment. The computation is carried out on a laptop 

computer with Intel® Core i7-3720QM processor. The total computation time, for the 

detection of all the elements and the storage of the associated information in the database is 

214.79 s 
 

 2.4. Testing the efficiency of the automatic detection process 

 The quality of the automatic detection was tested, using a comparison between the 

grazing structures detected automatically and the result of an expert detection. In a first step, a 

map of the true elementary grazing structures, which serve as reference, is produced. The 

mapping work is based on the digitization of each element using common visualisation tools 

(DEM, multi-direction hillshading and local relief models) within a GIS environment. 

Fieldworks were also performed to confirm the location of grazing structures using a 

handheld GPS (Geoexplorer XT) enabling decimetric precision. 
 

 In a second step, the pixel by pixel comparison (resolution of 50 cm) between the 

expert mapping and the results of the automatic detection allows the construction of a 

confusion matrix which count the number of pixel of the four possible outcomes: true positive 

(successful detections of structures), false negative (undetected structures), true negative 
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(correct detection of the absence of structure) and false positive (erroneous detections of 

structures). 

 

Fig. 5. Flowchart of the approach implemented for the automatic detection process 

 

The confusion matrix enables the calculation of common performance metrics of the 

automatic detection process (Fawcett, 2006; Kim, 2005). Four parameters are then computed: 

 

 the sensitivity is the probability that the detection result is positive when the structure is 

present: 

 
 the specificity is the probability that the detection result is negative when the structure is not 

present: 
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 the positive predictive value (PPV) is the probability that the structure is present when the 

detection result is positive 

 
 the negative predictive value (NPV) is the probability that the structure is not present when 

the detection result is negative: 

 
 

3. Results and Discussion 
 

 3.1. Efficiency of the automatic detection process. 

 

 The quality of the automatic detection process is now evaluated at the scale of the 

structure and at the scale of each pixel. The table 1 gives the results of the comparison 

between the expert approach and the automatic detection, in terms of number of elementary 

structures. 

 
Table.1 

Results of the elementary structures detection 

Expert 

detection 

Automatic 

detection 

Successful 

detection 

Undetected 

structures 

Erroneous 

detection 

225 280 204 21 76 

 

 

 From the structures point of view, the automatic detection process locates 282 grazing 

structures whereas the results of the expert mapping and fieldwork count 225 features in the 

study area. This difference is due to erroneous detections (76 elements are misread as 

archaeological grazing structure) and to undetected structures (21 elements). 204 detection are 

classified as successful (automatic detection validated by the expert), representing 90.7% of 

the actual archaeological grazing structures. The table 2 gives the values of the quality 

indicators computed, in terms of number of pixel. 

 
Table.2 

Quality indicators at the pixel scale 

True positive True negative False positive False negative 

10328 8414757 2712 910 

Sensitivity Specificity PPV NPV 

0.919 0.999 0.792 0.999 

 

 The values of the sensitivity and specificity metrics (respectively 0.919 and 0.999) 

indicate that the algorithm is efficient for the detection and the location of grazing structures. 

More precisely, the positive predictive value (PPV) and the negative predictive value (NPV) 

(0.792 and 0.999 respectively) express the ability of the algorithm to locate grazing structures 

with a higher amount of erroneous detection (false positive) than undetected features (false 

negative). A total of 2712 pixels are classified as false positive and correspond to 76 

topographic marks which are not grazing structures. By contrast, the number of undetected 
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grazing structures remains relatively low, 910 false negative pixels corresponding to 21 

undetected features 

 Almost the totality (94.7%) of erroneous detections is related to archaeological or 

anthropic features (figure 6-A). They are mostly surrounding fragments of detected "tras" 

which are interpreted as independent grazing structures, like corridors (n=34) and eroded 

ridges (n=7). The remaining erroneous detections are modern topographic features like trails 

parts (n=15) and recent structures (n=16) as circular excavations for military training. Only 4 

erroneous detections are attributed to natural depressions. The undetected grazing structures 

mostly correspond to strongly eroded features with smoothed ridges and partially filled 

hollows (figure 6-B). Furthermore, coalescent "tras" are detected as single structure five 

times, leading to the underestimation of the grazing structure count. 

Moreover, mapping of the results do not show distinct spatial patterns for successful, 

erroneous and undetected structures. It suggests that the global variation of the terrain 

morphology does not influence the algorithm efficiency (Roussel et al, 2014). 
 

 

Fig. 6. Types of erroneous detections (A) and types of undetected structure (B) 

 

Fig. 7. Mapping of the results for successful (A), erroneous (B) and undetected (C) structures. 
 

 3.2. Discussion 

 

 The principle of automatic detection already exists since several years in industrial 

context (Rabbani et al, 2005; Pourreza et al, 2008; Tang et al, 2000, Fazlollahi et al, 2013). 

The application to LiDAR data is much more complex, for two main reasons. First, the 

quality and the resolution of the digital terrain model is generally insufficient to allow a 

precise description of the searched pattern. In our case, the elementary structure is defined by 

only about a hundred pixels, whereas a classical low definition image used in industrial vision 

context contain at least one million of pixels. The consequence is that some elements appear 

sometimes distorted or fragmented, making their identification difficult. For example, paths 
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are theoretically easy to identify, because of their linear characteristic. However, if they 

appear truncated, as a dotted line, each elementary part will be interpreted as standalone 

object. In the case of the archaeological grazing structures, the hollow part (the black pixels of 

the LRM) can exhibit very different shapes, even for structures with the similar size and 

functionalities. The figure 7, showing the result of the automatic detection, illustrates this 

problem. 
 

 
Fig. 8. visualisation of the results of the automatic detection : complex structures in green and 

elementary structures in red (a), example of undetected elements and illustration of the variability of 
the shape for the elementary grazing structures (b) 
 

 The detection process, based on finding elements characterised by enough similarity 

with a model, has to take into account this inaccuracy. If the degree of similarity imposed is 

too high, the more eroded or atypical elements won’t be detected. On the contrary, if the 

degree of similarity imposed is too low, the number of erroneous detection will increase 

dramatically. It is so necessary to establish a clear detection strategy, to optimize the dilemma 

between the accuracy and the completeness of the algorithm. The aim is indeed to limit the 

number of artefacts, but especially not to forget any element, even if it’s a little bit different 

from the model. The choice presented in this paper is to give priority to completeness, 

because it is easier to remove inappropriate elements from a database than complete this 

database with all the characteristic of the forgotten items. (Toumazet et al., 2014). But this 

choice is arbitrary, and it is possible to focus on the accuracy, especially if the searched 

elements are precisely defined. The proportion of undetected grazing structures revealed by 

the performance indicators and compared to erroneous detection depends on the degree of 

similarity expected with the model. The values obtained in this study correspond to the chosen 

strategy to be as exhaustive as possible on the actual structure detection, even if it causes an 

increase of improper detections.  

 Two parameters allow adapting the compromise between accuracy and completeness: 

the tolerances on the characteristic dimensions of the structures and the correlation rate with 

the model. It is important to note that the value of the correlation rate give important 

information on the degree of resemblance with the model. The result of the automatic 

detection process is thus not only binary (it is an element of interest or not), but, for each of 

the retained elements, it indicates the reliability of this detection. It is then possible to create 

classes, with an associated range of probability to correspond to the researched archaeological 

landform. 
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 This consideration implies a question about the choice of the model. It has an 

important consequence on the result of the detection process. The question is: "What is the 

best model to detect all the archaeological structures?" The natural trend is obviously to 

choose an element as "perfect" as possible, but maybe it won't be the most adapted to detect 

eroded elements. For the detection step based on the correlation with the model, we chose to 

simplify the model as much as possible: the structure is then represented by a circular 

depression surrounded by a higher relative elevation area (figure 3). Another approach to 

explore, in further investigations, is to use several models (closer from the actual 

archaeological elements), reflecting the different typologies or degrees of conservation of the 

structures. In this approach, after the first step of selection of potential element of interest, a 

multi-model correlation would be carried out, in order to detect the archaeological structures, 

but also to classify them according to their correlation rate with each model. The probability 

of belonging to each class would then be computed, and the confidence level of this 

classification for each element would be evaluated, helping the archaeologist for the 

validation work. 

 The automatic detection of archaeological remains from LiDAR data set is a new tool 

to help archaeologists, just like it was for GIS and spatial analysis in the early 2000s. The aim 

is not merely to create a “press-button” tool but to promote a close cooperation between the 

archaeologist and the computer engineers. The efficiency of the pattern recognition algorithm 

is strongly dependent on the archaeological landforms features. This means that this tool can 

be successful only if the model selected to feed the algorithm is relevant, i.e. with a well 

characterized morphological signature that only the archaeologists are trained to find and 

interpret. In addition, this tool is only relevant when it is applied to large areas survey with a 

high number of similar structures. For examples, charcoal places, shell holes, or “tras” are 

good candidates for automatic detection. Validation of the results by an archaeologist will be 

always required, but the identification and classification work can be greatly facilitated by the 

upstream automatic analysis.  

 

 

Conclusion 

 

 The use of LiDAR derivative dataset is now widespread in archaeological context. 

This paper is focused on the development of a methodology involving the automatic detection 

of grazing archaeological structures. Anthropogenic elements can generally be detected 

because of their high altitudinal gradient signature, compared to most of natural items. After 

filtering, the natural relief with the Local Relief Model technique, the elements identified as 

potential grazing archaeological structures are isolated and classified according to recognition 

algorithms. The quality and the limits of the automatic detection have been discussed, 

comparing the results with an expert approach. The results indicate that the proposed method 

is efficient for the detection and the location of grazing structures. They are obtained with a 

simple model for the sought structure. The idea is now to work on a more elaborate model, 

including several conservation status examples. This solution would allow a more exhaustive 

detection, and above all to give information on the typology of each element. 

This tool offers the potential to automatically produce a database of all sites. Future studies 

will now deal with a more detailed description of the structures, with an automatic extraction 

of their geographical and morphological characteristics. The aim is to undertake a quantitative 

analysis of forms that encompasses size, shape and orientation, and perform a spatial analysis 

of their distribution. With the increasing number of LiDAR surveys, there are real benefits to 

develop improved algorithms for remains detection, but the fieldwork knowledge and 

experience will remain essential to advise and to guide the development of computer tools.  
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