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We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and
self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic
disks, themechanical pressure, inferred from the shape of themembrane, is identical for bothmembranes and
follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the
mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-
propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to
the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated
mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the
packing fractions on both sides, further evidence of the absence of an equation of state.
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Developing a thermodynamics for out of equilibrium
systems of dissipative particles, to which energy is
homogeneously provided at the particle level, has been a
long-lasting effort driven by the impressive success of
equilibrium thermodynamics. An intense activity dealt with
the search for an effective temperature and a generalized
Gibbs measure in granular media [1–9]. More recently,
defining pressure in systems of active particles, the speci-
ficity of which is to turn the injected energy into directed
motion, has attracted a lot of attention [10–19]. In both
cases, the intensity of the scientific debates highlights the
importance of the addressed issues.
At equilibrium, the mechanical, hydrodynamic, and

thermodynamic pressures are all equal quantities which
inherit mutual properties. For example, equilibrium pres-
sure is a state variable which depends only on the bulk
properties of the fluid. On the theoretical side, the fact that
some form of pressure could be considered a state variable,
hence obeying an equation of state (EOS), has been the
topic of intense debates in a series of recent works [10–19].
More specifically, probing the mechanical pressure exerted
on a wall, it was shown that the existence of an EOS
strongly depends on the details of the dynamics and, in
general, does not hold [17]. Different conclusions were
obtained when considering the virial pressure defined in the
bulk of an active suspension [12–14]. Whether these
debated results hold for realistic systems, however, remains
unclear. On the experimental side, we know of only one
result which infers the osmotic pressure of sedimenting
active particles from the measurement of their density
profiles [20]. To our knowledge, no direct measurement of
mechanical quantities have been reported.
In this Letter, we take advantage of a 2D experimental

system of vibrated disks [21,22] to investigate themechanical

pressure exerted by assemblies of passive and active disks,
respectively, on twomembranesmade of vibrated chains. Our
main results are as follows. (i) When either self-propelled
polar or passive isotropic disks are introduced on one side of
the arena, the tension in the membrane equilibrates with a
homogeneous mechanical pressure, which obeys Laplace’s
law. (ii) Quite remarkably, in the case of the isotropic disks,
the pressure follows the equilibrium equation of state for hard
disks. (iii) In the case of the self-propelled disks, the pressure
depends on the selected chain, emphasizing that mechanical
pressure is not a state variable. (iv) For a given chain, the
mechanical equilibrium between self-propelled and isotropic
disks [Fig. 1(a)] is still set by the equality of the mechanical
pressure. (v) When introducing self-propelled disks on

FIG. 1. Mechanical equilibrium and instability. Self-propelled
polar disks and/or isotropic passive disks are distributed on the
two sides of a vibrating chain attached at both ends, acting as a
separating membrane. (a) Mechanical equilibrium between a
small number of self-propelled disks (on the right) and a large
number of isotropic passive disks (on the left). (b) S-shaped
instability observed when self-propelled disks are distributed in
equal quantities on both sides of the membrane.
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both sides, an instability of the membrane [Fig. 1(b)], akin to
the one predicted theoretically for active Brownian particles
(ABPs) against a flexible wall [23], takes place. Altogether,
our results demonstrate that setting up a thermodynamical
frame for active particles remains an important conceptual
challenge, but it also offers new design opportunities in
adapting wall properties to particles specificities.
The experimental system is made of vibrated disks

with a built-in polar asymmetry which enables them to
move coherently [22]. The polar particles are micromachined
copper-beryllium disks (diameter, d ¼ 4 mm; area,
a ¼ πd2=4) with an off-center tip and a glued rubber skate
located at diametrically opposite positions (total height,
h ¼ 2 mm). These two “legs,” with differing mechanical
responses, endow the particleswith a polar axis.Under proper
vibration, the self-propelled polar (SPP) disks perform a
persistent randomwalk, the persistence length of which is set
by the vibration parameters. Here, we use a sinusoidal
vibration with frequency f ¼ 95 Hz and amplitude A, with
relative acceleration to gravity Γ ¼ 2πAf2=g ¼ 2.4. We also
use plain rotationally invariant disks (same metal, diameter,
and height), hereafter called the “isotropic” (iso) disks.
A chain—the type of chain used to attach bathtub drain
stoppers—is formed of J þ 1 beads of diameter σ, connected
by J rigid links, with a center to center distance between two
beadsl. The joint between a bead anda link is torque-free, but
the angle between successive links cannot exceed ηmax
radians. The chain is fixed at its ends, dividing the arena
diametrically. The total length of the chain L0 ¼ Jl is longer
than the end-to-end distance of the chain, the arena diameter
D ¼ 251.1 mm. In the following we use two chains, the
geometrical properties of which are summarized in Table I.
The instantaneous position of the beads along the chain is
captured using a CCD camera at a frame rate of 1 Hz for 60
min, after an equilibration timeof30min. In the following, the
unit of time is set as the inverse frame rate and the unit length is
the particle diameter d.
The chain vibrates and explores all configurations

compatible with the constraint on the angles between
successive links ηj ≤ ηmax. The positions of the successive
beads, averaged over 3600 samples, separated by 5700
vibration cycles, define a line of length Leff , which we shall
call the (effective) membrane. In the absence of particles, it
aligns along the diameter of the arena and Leff ¼ D. As
soon as a few hundred particles, whether isotropic or polar,
are introduced on one side of the chain, the symmetry is
broken. Apart from a boundary layer of one or two links at
the extremities, the membrane takes the shape of an arc

circle with a constant radius of curvature R and a length
Leff ∈ ½DL0�. The angles between the successive links
composing the membrane are all smaller than ηmax
[Fig. 2(a)]. Hence, the membrane does not support any
torque, the tension F in the membrane is constant, and the
mechanical pressure Π is homogeneous. Mechanical equi-
librium then leads to

Π ×D ¼ 2F sin

�
Leff

2R

�
: ð1Þ

Together with the purely geometric relation,

D
2R

¼ sin

�
Leff

2R

�
; ð2Þ

one finds that the mechanical pressure obeys Laplace’s law,
Π ¼ F=R, which describes the pressure difference across
an interface between two fluids [24].
To proceed further, we compute the effective elasticity of

the membrane, which relates its effective length Leff to its
tension F, assuming that it obeys an equilibrium dynamics.
To do so, we consider a model chain composed of J beads
and compute its average end-to-end distance hLi under an
imposed tension F. We proceed in two steps. First, with one
extremity being fixed and the other free of force, we
evaluate the probability density of its end-to-end distance
L. The angles ηj are generated randomly within the range
½−ηmax; ηmax�, from a uniform distribution with bins
δη ¼ 10−3 rad. The distribution ρðL; JÞ is then obtained
from 5 × 109 configurations using

L ¼ l
��XJ

j¼1

cosðθjÞ
�

2

þ
�XJ

j¼1

sinðθjÞ
�

2
�1=2

; ð3Þ

where θj ¼
Pj

i¼1 ηi, for j ¼ 1;…; J [Fig. 2(b)]. Second,
the partition function for a chain with end-to-end distance L
in the presence of a tension F is given by

ZðβlF; JÞ
Z0ðJÞ

¼
Z

L0

0

ρðL; JÞ exp ðβLFÞdL; ð4Þ

whereZ0 ¼ ð2ηmaxÞJ is the total number of configurations in
the limit β → 0, and β is the equilibrium temperature of the
chain. The above chain model is very similar to the 2D
version [25] of the well-known “freely jointed chain” [26],
with the main difference being the maximum angle con-
straint between the links. Our model thus shows an end-to-
end length distribution of intermediate type between the 2D
freely jointed chain [25] and thewormlike chainmodel [27].
Finally, the average length of the chain hLi reads [28]

hLiðF; JÞ ¼ 1

β

� ∂
∂F lnðZÞ

�
J
: ð5Þ

Figure 2(c) displays the result of the above analysis in the
form βlF ¼ F ðhLi=L0Þ, which we shall interpret as the
effective elasticity of the membranes. The two membranes

TABLE I. Geometric parameters of the chains.

J σ (mm) l (mm) ηmax L0 (mm)

Chain 1 91 2.33 3.10 π=8 282.10
Chain 2 147 1.44 1.92 π=8 282.24
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obey almost identical effective elasticity in the range of
lengthD < Leff < L0.Note, however, that theydiffer by their
dynamical properties: the relaxation time τ—evaluated as the
time to relax a typical shape fluctuation—is significantly
shorter for chain 1 (τ1 ¼ 15) than for chain 2 (τ2 ¼ 90).
We are now in a position, measuring the radius of

curvature R and the length Leff of the membrane, to access
the dimensionless mechanical pressure:

Π� ¼ βΠa ¼ a
lR

F
�
Leff

L0

�
: ð6Þ

The experimental results are summarized in Fig. 3. For both
the isotropic and polar disks, the chain indeed takes the
shape of an arc circle when the number of particles is large
enough (say, larger than a hundred). For fewer particles, we
observe some distortion, which, in the case of the isotropic
disks, can reasonably be attributed to statistical fluctua-
tions. In the case of the polar particles, they are more
significant, and we shall come back to them below. For the
moment, we assume a perfect arc circle shape, extract its
curvature radius, and compute the mechanical pressure
using Eq. (6).
In the case of the isotropic disks, Π�ðϕÞ is well described

by the thermodynamic equation of state PHDðϕÞ for hard
disks [29], up to a multiplicative constant:

P�
HD ¼ βPHDa ¼ β

βHD
ϕ
1þ αϕ2

½1 − ϕ�2 ; ð7Þ

where α ¼ 7=3 − 4
ffiffiffi
3

p
=π. The multiplicative constant

β=βHD accounts for the fact that the effective temperatures
of the chains and that of the disks have no reason to be
equal (β=βHD ¼ 0.45 for chain 1 and β=βHD ¼ 0.55 for
chain 2). As a matter of fact, it is already remarkable (i) that
the equilibrium assumption used to describe the mem-
branes holds, and (ii) that the isotropic disks can also be
described within an equilibrium framework.
In the case of the self-propelled polar disks, we observe a

very different dependence of the mechanical pressureΠ� on
the packing fractionwith a clear concave shape. The data can
be captured by a virial expansion at the second order in ϕ:

Π�
SPP ¼ βΠSPPa ¼ β

βSPP
ϕð1þ b1ϕÞ þOðϕ3Þ; ð8Þ

with a negative b1, which accounts for the concave shape.
We find β=βSPP ¼ ½6; 35� and b1 ¼ ½−1.6;−5.8� for chain 1
and chain 2, respectively. The mechanical pressure Π�ðϕÞ
for the self-propelled particles, whenmeasured with the two
different chains, follows different dependences on the
packing fraction, which cannot be absorbed in a multipli-
cative factor: there is no equation of state.
We now consider the equilibration of the mechanical

pressure induced by NSPP self-propelled disks on one
side of the chain by Niso isotropic disks on the other side
[Fig. 1(a)]. The experiment is first conducted with chain 1
and for NSPP ¼ 100, 300. As demonstrated by the dotted-

(a)

(c)

(b)

FIG. 2. Membrane barometer. (a) Instantaneous configurations
of chain 1 separating the system into two compartment, one filled
with 640 isotropic particles and the second left empty. The blue
curve is the effective membrane of length Leff , which takes the
form of an arc circle of radius R. (b) Sketch of the simplified
chain model: rigid links are connected by torque-free joints. The
angle between two successive links is bounded to ηmax. (c) Ef-
fective elasticity. Tension F ¼ βlF in a model chain as a
function of its normalized averaged length hLi=L0 for chain 1
(the blue curve) and chain 2 (the red curve); the vertical dashed
lines indicate D=L0.

(a)

(b)

FIG. 3. Pressure. (Left panels) Average chain-1 configurations
when disks are confined to a single region, with (a) N1 ¼
½0; 100; 200;…; 900� isotropic disks (iso) and (b) N1 ¼ ½0; 10;
25; 50; 75; 100; 150; 200; 300; 400� self-propelled polar disks
(SPP). (Right panel) Dimensionless pressure Π� as a function
of the packing fraction ϕ, for the isotropic (blue) and polar (red)
disks, for chain 1 (open circle) and chain 2 (open square). The
plain curves are the equilibrium equation of state for hard disks
[Eq. (7)]—at different temperatures; the dashed curves are obtained
from a second order virial expansion [Eq. (8)]. The dotted-dashed
lines point at the configurations for which the mechanical equilib-
rium between the SPP and iso disks has been probed.
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dashed lines in Fig. 3(c), the number of isotropic disks
Niso ¼ 370, 627 required to equilibrate the mechanical
pressure imposed by the self-propelled disks is prescribed
by the equality of the mechanical pressure Π�

isoðϕisoÞ ¼
Π�

SPPðϕSPPÞ, which has been measured independently.
When mechanical equilibrium holds for chain 1 (say, with
NSPP ¼ 300 and Niso ¼ 627), and one replaces chain 1 by
chain 2, the equilibrium is broken, with the SPP developing
a much larger pressure. It is restored only for NSPP ¼ 45,
further stressing the dependence of the mechanical equi-
librium on the chain properties.
Finally, we consider the situation where the two contain-

ers are filled with self-propelled disks. Instead of displaying
the now familiar arc circle configuration, the membrane
takes a series of amazing shapes with inhomogeneous
curvature. The most spectacular case takes place when
there is an identical number of disks on both sides: instead
of fluctuating around an average flat configuration, the
membrane takes a quite pronounced S shape [Fig. 1(b)],
which is very reminiscent of the one adopted by a flexible
filament with fixed ends immersed in an active gas of active
Brownian particles [23]. While the mechanical pressure is
certainly not uniform along the chain, the symmetry of the
S-shaped pattern suggests that the integrated pressures
along the chain are equal on both sides. To gain further
insight into that matter, we systematically vary the number
of polar disks on both sides, with N1 ¼ ½100; 200; 300;
400� and N2 < N1. A remarkable fact is that for all pairs
ðN1; N2Þ, the a priori complicated shape of the average
chain can be decomposed into an arc circle plus a
modulation of wavelength D, as illustrated in Figs. 4(a)–
4(c) for the case N1 ¼ 400, N2 ¼ ½0; 100; 200; 300; 400�.
As shown in Fig. 4(d), the amplitude of the sinusoidal
modulation is maximal when N1 ¼ N2 (with the packing
fraction difference close to zero, δϕ → 0), and it
approaches zero when one side is empty. The above
systematic deviation of the chain shape from a perfect
arc circle, alluded to in the previous section, thus finds its
origin in the present instability. At first order, the sinusoidal
part being odd does not contribute to the integrated pressure
difference between the two sides, δΠ⋆. We thus extract the
latter using the same procedure as above and compare it to
Π⋆

SPPðϕ1Þ − Π⋆
SPPðϕ2Þ, obtained from the measurement of

the packing fractions ϕ1 and ϕ2, and the virial expression
(8). In the limiting cases, where either one side is empty or
both sides are equally filled in the number of particles, both
should be equal by construction. It is, however, clear from
Fig. 4(e) that the equality holds in these two limits only. In
between, when there is an unequal number of self-propelled
particles on both sides, the mechanical pressure across
the membrane cannot be computed from the sole knowl-
edge of the packing fractions on both sides. This further
demonstrates the absence of an EOS.
Altogether, while the mechanical pressure exerted by a

gas of shaken isotropic granular disks against a membrane

essentially obeys the EOS for equilibrium hard disks—a
nontrivial result—the one exerted by a gas of self-propelled
polar disks obeys a very different physics. First, it increases
much faster with the packing fraction and presents a
negative value of the first virial coefficient. A similar
observation was made for the osmotic pressure measured
in a suspension of self-propelled phoretic Janus colloids
[20]. Second, it depends on the properties of the membrane
itself and is thus not a state variable. Our results reinforce
those theoretical analyses, which conclude to the generic
absence of EOSs for active particles [17,23]. They may,
however, look surprising in regard to the fact that active
Brownian disks do obey an EOS [10–12,15,16]. The reason
is that this last result holds only when the propulsive force
decouples from the orientational dynamics [17]. Here, it is
not the case: the orientation dynamics obeys a torque
coupled to the velocity dynamics [30]. It would be
interesting to perform a perturbative analysis of the effect
of such coupling around the ideal ABP case. Finally, with
the membranes being essentially identical from the point of
view of their effective elasticity, the difference in mechani-
cal pressure probed by each membrane must take its root in
their dynamics. The importance of dynamics in determin-
ing quantities, which at equilibrium are computed from
static quantities only, is, we believe, a hallmark of active
matter on which future investigations shall concentrate.

We thankMichael Schindler for the inspiring discussions
and helpful suggestions. G. B. is supported by Ecole

(a)

(b)

(c)

(d)

(e)

FIG. 4. Mechanical instability. (a) Average chain configuration
for SPP, which is distributed in the two regions, Nð1Þ ¼ 400 and
several values of Nð2Þ ≤ Nð1Þ. The chain configuration (a)
decomposes into (b) a circular segment plus (c) a sinusoidal
shape. (d) Amplitude of the sinusoidal modulation A as a function
of the packing fraction difference δϕ. (e) Integrated pressure
difference as a function of the packing fraction difference δϕ,
obtained (diamond) from the geometry of the average chain and
Eq. (6) and (open circle) from the independent measurement of
ϕ1 and ϕ2 and the virial expression (8).
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