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Abstract—The graph Fourier transform (GFT) is in general
dense and requires O(n2) time to compute and O(n2) memory
space to store. In this paper, we pursue our previous work on the
approximate fast graph Fourier transform (FGFT). The FGFT
is computed via a truncated Jacobi algorithm, and is defined
as the product of J Givens rotations (very sparse orthogonal
matrices). The truncation parameter, J , represents a trade-off
between precision of the transform and time of computation
(and storage space). We explore further this trade-off and study,
on different types of graphs, how is the approximation error
distributed along the spectrum.

I. INTRODUCTION

Recently, methods have been developed to analyze and
process signals defined over the vertices of a graph [1], [2],
instead of over a regular grid, as is classically assumed in
discrete signal processing. The starting point of graph signal
processing is to define a graph Fourier transform (GFT), via
an analogy with classical signal processing. Depending on the
preferred analogy, there exists several definitions of GFTs, all
of them based on the diagonalisation of a graph operator, may
it be the adjacency matrix [2], the Laplacian matrix [1], their
degree-normalized versions, etc. We refer the reader to [3] for
a recent review on different existing definitions of GFTs.

In this paper, we restrict ourselves to the study of the
Laplacian-based Fourier matrix of undirected graphs. In this
case, and denoting by n the number of vertices of the graph,
the Laplacian L ∈ Rn×n (see the Methods Section for a
precise definition) may be diagonalized as:

L = UΛU>, (1)

where U ∈ Rn×n is an orthonormal matrix whose columns
are the graph Fourier modes and Λ ∈ Rn×n is a non-negative
diagonal matrix whose diagonal entries correspond to the
graph’s generalized frequencies.

The graph Fourier transform of a graph signal x ∈ Rn is its
scalar product with all Fourier modes, i.e., x̃ = U>x ∈ Rn.
This Fourier matrix U being in general dense, these n scalar
products require O(n2) computations. Nevertheless, in the
classical signal processing case, the well-known Fast Fourier
Transform (FFT) [4] allows to apply the Fourier transform in
only O(n log n) arithmetic operations. In fact, the FFT is a fast
linear algorithm [5], which implies that the classical Fourier
matrix can be factorized into sparse factors, as discussed
in [6]. It is natural to wonder if this kind of factorization

can be generalized to the graph Fourier transform, in order
to tend towards a “fast” graph Fourier transform, scaling in
O(n log n), thus mimicking the classical case.

In [7], we propose such a factorization approach. More
precisely, we develop a truncated Jacobi method that amounts
to an approximate diagonalization of the Laplacian L, as

L ≈ S1 . . .SJΛ̂STJ . . .S
T
1 , (2)

where the so-called Givens rotation matrices S1, . . . ,SJ are
both sparse and orthogonal, and Λ̂ is a diagonal matrix whose
diagonal entries are approximations of the graph frequencies.
J is typically chosen such as J = o(n2). The approximate fast
graph Fourier transform of x reads Û>x = S>J . . .S

>
1 x. It is

approximate because we stop the Jacobi algorithm before its
convergence. It is fast because applying each Givens rotation
Si to a vector requires only 6 elementary operations (4
multiplications and 2 sums): computing Û>x thus requires
only 6J computations.

Contributions. In this paper, we build upon our previous
work [7] and explore more precisely the approximation error
due to the truncated Jacobi method: where in the spectrum
are the errors localized, and what are the consequences from
a graph signal processing point of view.

II. METHODS

A. Notations, conventions and definitions

General notations. Matrices are denoted by bold upper-case
letters: A; vectors by bold lower-case letters: a; the ith column
of a matrix A by ai; its entry on the ith row and jth column
by aij . Sets are denoted by calligraphic symbols: A, and
we denote by δA the indicator function of the set A in the
optimization sense (δA(x) = 0 if x ∈ A, δA(x) = +∞
otherwise). The standard vectorization operator is denoted
vec(·). The `0-pseudonorm is denoted ‖·‖0 (it counts the
number of non-zero entries), ‖·‖F denotes the Frobenius
norm, and ‖·‖2 the spectral norm. By abuse of notations,
‖A‖0 = ‖vec(A)‖0. The identity matrix is denoted Id.
Graph Laplacian. We consider in this paper undirected
weighted graphs, denoted G , {V, E ,W}, where V represents
the set of vertices (otherwise called nodes), E ⊂ V × V is
the set of edges, and W is the weighted adjacency matrix of
the graph. We denote n , |V| the total number of vertices
and the adjacency matrix W ∈ Rn×n is symmetric and such
that wij = wji is non-zero only if (i, j) ∈ E and represents



the strength of the connection between nodes i and j. We
define the degree matrix D ∈ Rn×n as a diagonal matrix
with ∀i, dii ,

∑n
j=1 wij , and the combinatorial Laplacian

matrix L , D−W (we only consider this type of Laplacian
matrix in this paper, and hereafter simply call it the Laplacian).

Givens rotations. An n-dimensional Givens rotation [8] is a
linear transformation that does not act on n − 2 coordinates
and rotates the two remaining by an angle θ ∈ [0; 2π[. Noting
p and q the indices of the two rotated coordinates, Givens
rotations thus correspond to matrices of the following form,

where c , cos(θ) and s , sin(θ). A Givens rotation only
depends on three parameters: the two coordinates p and q
and the rotation angle θ, hence the notation Gp,q,θ.

B. Objective

Our goal is to approximately diagonalize the Laplacian
L with an efficient approximate eigenvector matrix Û =
S1 . . .SJ , where the factors S1, . . . ,SJ ∈ Rn×n are Givens
rotations. Using the Frobenius norm to measure the quality of
approximation, this objective can be stated as the following
optimization problem:

minimize
Λ̂,S1,...,SJ

∥∥∥L− S1 . . .SJΛ̂STJ . . .S
T
1

∥∥∥2
F

+
∑J
j=1 δS(Sj) + δD(Λ̂),

(DP)

where D is the set of diagonal matrices and S is the set of
Givens rotations.

C. Optimization framework

The truncated Jacobi algorithm. To approximately solve
problem (DP), one can rely on a truncated version of the
classical Jacobi eigenvalues algorithm [9], [10]. The Jacobi
algorithm is an iterative procedure where at each step one
seeks the Givens rotation reducing the most the cost function.
At the first step, this means setting S1 and Λ̂ as follows:

(S1, Λ̂)← argmin
D∈D,S∈S

∥∥L− SDST
∥∥2
F
,

which can be reformulated, given that the Frobenius norm is
invariant under orthogonal transformations, as

(S1, Λ̂)← argmin
D∈D,S∈S

∥∥STLS−D
∥∥2
F
.

Since D is the set of all diagonal matrices, the optimal
estimated generalized frequencies factor is simply Λ̂ =

Input: matrix L, target number J of Givens rotations.
1: L1 ← L
2: for j = 1 to J do
3: Sj ← argmin

S∈S

∥∥STLjS
∥∥2

offdiag

4: Lj+1 ← STj LjSj
5: end for
6: Λ̂← diag(LJ+1)
7: Sort diagonal entries of Λ̂ in increasing order. Reorder

columns of SJ accordingly.
Output: sparse orthogonal factors S1, . . . ,SJ ; diagonal fac-

tor Λ̂.

Fig. 1: Truncated Jacobi algorithm: Approximate diagonal-
ization algorithm with prescribed complexity.

Input: matrix Lj .
1: (p, q)← argmax

(r,s)∈[n]2
|ljrs|

2: θ ← 1
2 arctan(

ljqq−l
j
pp

2ljpq
) + π

4

3: Sj ← Gp,q,θ

Output: matrix Sj = argmin
S∈S

∥∥STLjS
∥∥2

offdiag.

Fig. 2: Resolution of subproblem (SP)

diag(STLS). This allows to rule out this factor of the problem
and to reformulate it as follows:

S1 ← argmin
S∈S

∥∥STLS
∥∥2

offdiag ,

where ‖A‖2offdiag is the sum of the squared off-diagonal entries
of A. Once the factor S1 is set this way, and introducing
the notation L2 , ST1 LS1, the next step of the strategy is
to choose S2 ← argmin

S∈S

∥∥STL2S
∥∥2

offdiag, and so on until

the J th and last step. The algorithm thus amounts to solve a
sequence of J very similar subproblems of the form

minimize
S∈S

∥∥STLjS
∥∥2

offdiag , (SP)

with Lj , STj−1Lj−1Sj−1. This is summarized by the
algorithm of Figure 1. Compared to the traditional Jacobi
eigenvalues algorithm [9], [10], where new Givens rotations
are chosen until a certain accuracy is attained, the main
difference is that by prescribing the number J of Givens
rotations we can adjust the trade-off between accuracy and
computational efficiency of the product S1 . . .SJ .

Remark II.1. Note that in order for the approximate FGFT
Û = S1 . . .SJ to make sense in a graph signal processing
context, we reorder its columns according to the estimated
eigenvalues (line 7 of the algorithm). This way, the first
columns of Û = S1 . . .SJ “physically” correspond to low
frequencies, and its last columns to high frequencies.

Subproblem resolution. The algorithm requires to solve
J times the optimization subproblem (SP) (at line 3 of the



algorithm of Figure 1). The solution of this subproblem is
given by the Givens rotation Gp,q,θ, where the indices p and
q correspond to the greatest entry of Lj in absolute value
(denoted |ljpq|), and the rotation angle has the expression

θ = 1
2 arctan(

ljqq−l
j
pp

2ljpq
) + (2k + 1)π4 , k ∈ Z. We then have

‖Lj+1‖2offdiag = ‖Lj‖2offdiag − 2(ljpq)
2. For a proof as well as

a review of the different implementations and variants of the
Jacobi algorithm, see [11, pages 426-435]. Figure 2 details
the algorithm to solve subproblem (SP).

Refinements. This truncated Jacobi algorithm requires O(n2+
nJ) operations to compute. We proposed in [7] a parallel
framework that reduces this complexity to O(nJ log n). Nev-
ertheless, in this paper, we will not concentrate on the cost
of obtaining the sparse matrix factorization; we will rather
concentrate on the tradeoff between the cost of applying Û
to a graph signal, which, in both cases (truncated or parallel
truncated Jacobi), is O(J), and the quality of the approxima-
tion of U by Û. The codes of this truncated Jacobi algorithm
are freely available at https://faust.inria.fr/.

III. EXPERIMENTS

In the following, let us denote by uk the k-th eigenvector
of L; i.e., U = (u1| . . . |un). Let us also denote by ûJk the
k-th approximate eigenvector of L; i.e., Û = S1 . . .SJ =
(ûJ1 | . . . |ûJn). Given this approximate fast graph Fourier matrix
Û, a natural question is to investigate how well does this
matrix approximate the real graph Fourier matrix U as a
function of J , the number of Givens rotations1. To conduct
this analysis, we propose the following experiments.

A. Types of graphs

We consider three types of random graphs:
• Erdos-Renyi graphs. We set the number of nodes n to

128. All pairs of nodes are connected with probability p.
The average degree of such a model is c = p(n− 1).

• Stochastic Block Model (SBM), a random community-
structured graph model. We specifically look at graphs
with m communities of same size n/m. In the SBM,
the probability of connection between any two nodes i
and j is q1 if they are in the same community, and q2
otherwise. One can show that the average degree reads
c = q1

(
n
k − 1

)
+ q2

(
n− n

k

)
. Thus, instead of providing

the probabilities (q1, q2), one may characterize a SBM
by considering (ε = q2

q1
, c). The larger ε, the fuzzier the

community structure. In fact, authors in [12] show that
above the critical value εc = (c−

√
c)/(c+

√
c(m− 1)),

community structure becomes undetectable in the large n
limit. In the following, we set n = 128 and m = 8.

• Sensor graphs. n = 128 sensors (points in two di-
mensions) are randomly and uniformly generated on
the unit square. Two sensors i and j are connected if

1Note that the orientation of uJ
i is arbitrary: both ûJ

i and −ûJ
i are

equivalent from a diagonalisation point of view. For a fair comparison with
ui, the orientation of ûJ

i is decided by settling that u>
i ûJ

i should be positive.

their interdistance is inferior to a given threshold τ . The
obtained graph is binary. The average degree c of such a
model is not explicit.

For the sensor graph, we set τ = 0.161, which yields graphs
with average degree c = 10. In experiments with Erdos-Renyi
and SBM graphs, we enforce the same average degree by
setting p = c/(n − 1) = 10/127 for the Erdos-Renyi model,
and c = 10 for the SBM model (besides, ε is set to εc/10).

B. Analysis of the approximation errors

In [7], we concentrated on global approximation error
measures such as:

‖U− Û‖F
‖U‖F

. (3)

This measure does not differentiate where in the spectrum are
the errors. The goal of this paper is to refine this analysis.
First of all, note that:

‖U− Û‖2F
‖U‖2F

=
‖Id−U>Û‖2F
‖U‖2F

=
1

‖U‖2F

n∑
k=1

n∑
j=1

(δjk − u>j ûJk )2

=
1

n

n∑
k=1

err1(k, J)2,

where we consider the fine-grain error measure

err1(k, J)2 :=
∥∥δk −U>ûJk

∥∥2
2

(4)

that enables a finer analysis of the approximation error (3).
In Figure 3, we show err1(k, J)2 as a function of k and

J for the three random models detailed above. We readily
observe very different behaviors. Firstly, for small values of
J , the approximation error is large and somewhat uniform
over the whole spectrum, except for high values of k where
the error drops. Moreover, as J increases, the approximation
error decreases, but not uniformly: the error decreases faster
for some values of k. In the Erdos-Renyi example, the
approximation error decreases faster on the boundaries (small
or large values of k) than in the middle. In the random
sensor graph example, the approximation error decreases
faster around k = 10 and for large values of k. For the SBM
graph, the error decreases very fast around k = 8 (notice that
this coincides with k = m, the number of communities), and
faster on the boundaries than in the middle. In the following,
we give tentative explanations accounting for these differences.

Normalized error measure. For J = 0 we have Û = Id,
up to column permutation (cf Remark II.1) according to the
diagonal of Û>LÛ = L, i.e. with respect to D, the degree
matrix. Taking into account this ordering yields

Û =
(
δσ(1)|δσ(2)| . . . |δσ(n)

)
, (5)
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Fig. 3: Median of the error err1(k, J)2 over 100 random draws: a) Erdos-Renyi graph, b) sensor graph, c) SBM graph.
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Fig. 4: Median of the (degree-corrected) normalized error ẽrr1(k, J)2 over 100 random draws: a) Erdos-Renyi graph, b) sensor
graph, c) SBM graph. The red line represents a measure of eigenvalue density as a function of k (see Eq. (7)).

with σ a permutation such that dσ(1),σ(1) 6 dσ(2),σ(2) 6 . . . 6
dσ(n),σ(n). In particular σ(n) indexes the node with largest
degree, and one has:

err1(k, 0)2 =
∥∥δk −U>δσ(k)

∥∥2
2
.

As shown on Figure 5-a, this error is not evenly dis-
tributed along the spectrum: higher values of k show a
comparatively lower approximation error. As U>δσ(k) =
(u1(σ(k)), . . . , un(σ(k)))>, this non-uniformity shows in fact
that high degree nodes tend to contribute more to high-
frequency Fourier modes than other nodes. In other words,
high frequency Fourier modes tend to localize more on high
degree nodes, at least on the three random graph models
considered here.

To validate that this accounts for the non-uniformity ob-
served for large k and small J on Figure 3, we define a
normalized error measure as:

ẽrr1(k, J)2 =
err1(k, J)2

err1(k, 0)2
. (6)

As shown on Figure 4, the non-uniformity at low values of
J is corrected, but the heterogeneity over the spectrum of the
decrease of the error with respect to k is still unaccounted for.

Eigenvalue density. The remaining heterogeneity can be
conjectured to be due to the inhomogeneity of the spectrum
density: in the extreme case of eigenvectors associated to an
eigenvalue of multiplicity greater than one, the error cannot
be small. To elaborate, define an eigenvalue density measure:

f(k) = #{i s.t. λi ∈ [λk −∆, λk + ∆]. (7)

If λk is isolated and there are no other eigenvalues in its
vicinity (defined by ±∆), then f(k) = 1. Whereas if λk is
in a high-density part of the spectrum, then f(k) is large.
Superimposed on Figure 4 representing ẽrr1(k, J), we plot
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Fig. 5: Median error err1(k, 0)2 (top) [resp. err2(k, 0)2 (bot-
tom)] over 100 draws.

f(k) (computed with ∆ = 0.25) as a function of k. We indeed
observe an interesting correlation between the approximation
error for k and the density of the spectrum around λk: the
higher the eigenvalue density, the larger the error.

To validate this correlation, we define an error measure that
probes how well ûJk approximates uk as an eigenvector of L:

err2(k, J)2 =
∥∥LûJk − λkûJk∥∥22 , (8)

where λk is the exact k-th eigenvalue of L. This measure may
be rewritten as:

err2(k, J)2 =
∥∥UΛU>ûJk − λkûJk

∥∥2
2

=
∥∥ΛU>ûJk − λkU>ûJk

∥∥2
2

=

n∑
j=1

(λj − λk)2(uᵀ
j û

J
k )2.

To illustrate the difference between the two errors, say ûJk
is a weighted sum of two true eigenvectors ûJk = αuk +
βuk+1, with α2 + β2 = 1. The first error measures err21 =
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Fig. 6: The first (resp. second) line of figures represents err2(k, J)2 (resp. ẽrr2(k, J)2). Note that the color scale is logarithmic.
Results shown here are the median behaviour over 100 realisations of the underlying random model: a+d) Erdos-Renyi graph,
b+e) sensor graph, c+f) SBM graph.

2(1− α) and does not depend on the distance between λk+1

and λk, whereas the second error measures err22 = (λk+1 −
λk)2(1− α2), meaning that if ûJk is not exactly uk but close
to it from a “spectral point-of-view”, then the error is small.
Once again, one may normalize this error to correct for degree
heterogeneities, using the notations of (5) to write:

err2(k, 0)2 =
∥∥Lδσ(k) − λkδσ(k)∥∥22 .

Figure 5-b shows how err2(k, 0) varies with k. We observe
how it increases at extreme values of k (very small or very
large). Interestingly, for the SBM, the large error at small
k is due to the community structure that imposes the first
m = 8 eigenvalues (because there are 8 communities in
the model) to be very small. We checked (experiments not
displayed here) that decreasing the strength of the community
structure (by increasing ε to values closer to εc) increases the
first eigenvalues, and decreases the error at J = 0.

Figure 6 displays err2(k, J) and its normalized version
ẽrr2(k, J). For visualisation purposes, the color scale is loga-
rithmic. This new measure drastically decreases the inhomo-
geneity of the error over the spectrum.

IV. CONCLUSION

In this paper, the approximation capabilities of FGFTs
were empirically studied. In order to do so, the FGFT of
graphs pertaining to various families were computed and their
approximation errors analyzed with respect to the number of
used Givens rotations. Two main conclusions can be drawn.
First, high frequency modes tend to be localized around high
degree nodes, and are thus well approximated with few Givens
rotations (that are very sparse matrices). Second, Fourier
modes corresponding to dense regions of the spectrum are
more difficult to disentangle, and thus need more Givens
rotations to be well approximated. Stated differently, if one
wishes to exactly recover the ordering of the eigenmodes,
FGFTs perform poorly in the dense parts of the spectrum. On

the other hand, if one only whishes to approximate eigenspaces
in the vicinity of a given eigenvalue, the FGFT is an interesting
tool to consider and leads to fast implementations.
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säkularstörungen vorkommenden gleichungen numerisch aufzulösen,” J.
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