
HAL Id: hal-01627331
https://hal.science/hal-01627331v2

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous SLAM based humanoid navigation in a
cluttered environment while transporting a heavy load

Antoine Rioux, Wael Suleiman

To cite this version:
Antoine Rioux, Wael Suleiman. Autonomous SLAM based humanoid navigation in a cluttered en-
vironment while transporting a heavy load. Robotics and Autonomous Systems, 2018, 99, pp.50-62.
�10.1016/j.robot.2017.10.001�. �hal-01627331v2�

https://hal.science/hal-01627331v2
https://hal.archives-ouvertes.fr

Autonomous SLAM Based Humanoid Navigation in a
Cluttered Environment while Transporting a Heavy

Load

Antoine Rioux, Wael Suleiman

A. Rioux and W. Suleiman are with Electrical and Computer Engineering Department,
Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada

Abstract

Although in recent years there have been quite a few studies aimed at the
navigation of robots in cluttered environments, few of these have addressed
the problem of robots navigating while moving a large or heavy objects. This
is especially useful when transporting loads with variable weights and shapes
without having to change the robot hardware. Inspired by the wide use of
makeshift carts by humans, we tackle, in this work, the problem of a humanoid
robot navigating in a cluttered environment while displacing a heavy load that
lies on a cart-like object. We present a complete navigation scheme, from the
incremental construction of a map of the environment and the computation
of collision-free trajectories to the control to execute these trajectories. Our
contributions are as follows: (1) a whole-body control scheme that makes the
humanoid use its hands and arms to control the motions of the cart-load sys-
tem (e.g. tight turns) (2) a sensorless approach to automatically select the
appropriate primitive set according to the load weight (3) a motion planning
algorithm to find an obstacle-free trajectory using the appropriate primitive set
and the constructed map of the environment as input (4) an efficient filtering
technique to remove the cart from the field of view of the robot while improving
the general performances of the SLAM algorithms and (5) a continuous and
consistent odometry data formed by fusing the visual and the robot odometry
information. We present experiments conducted on a real Nao robot, equipped
with an RGB-D sensor mounted on its head, pushing a cart with different loads.
Our experiments show that the payload can be significantly increased without
changing the robot’s main hardware, and therefore enacting the capacity of
humanoid robots in real-life situations.1

Keywords: Humanoid robot; Localization and mapping; Navigation;
Whole-body control; Motion planning

Email address: Wael.Suleiman@USherbrooke.ca (Wael Suleiman)
1A preliminary version of this paper has been presented at the 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS 2015) and published in [30].

Preprint submitted to Robotics and Autonomous Systems October 7, 2017

1. Introduction

One of the advantages of having arms on a robot is that it can carry a load.
This capacity can be useful for a wide range of actions, including transporting
objects from one place to another. However, the maximum payload is generally
pretty low and generates a lot of instability when held at the arm’s length. While
it is possible to increase the strength of the motors in the legs and arms, it is not
the best solution since a motor’s power is proportional to its size, weight and
price. Instead of putting the entire load directly on the robot, a cart-like object
can be used to help support the weight. The structure can then be pushed by
the robot and moved around more easily without having to modify the robot’s
hardware to fit the load.

Many studies have been done on robots moving objects to a specific goal.
Most of them though are executed with multiple wheeled robots that position
themselves around the object to push it in the desired direction [19, 25, 29,
36, 37]. In these researches, the manipulator comes in contact with the object
at only one point, which barely allows full control of the object while moving
and manipulating it. Holonomic wheeled robots are less complex to control
than humanoid robots and are mainly used here to slide box-like object on the
ground. Robots with humanoid arms have better control on the structure of an
object and are therefore more suitable to control various shaped objects.

More advanced and specialized models of wheeled robots can possess hu-
manoid torsos and arms which give them the same capacity to keep a high level
of control when holding or transporting objects [12, 14, 22, 35]. However, most
environments, made by and for humans, are more suitable for humanoid robots.
To this end, the subject of bulky or heavy objects transport with a humanoid
robot has received attention in the past years. To achieve this task, many dif-
ferent techniques have been developed. For instance, lifting the load from the
ground [8, 27, 39] or using a part of the transported object as a pivot to move
it [1, 38, 40].

Other works have explored the usage of humanoid robots that push heavy
objects that are placed on a cart while keeping a firm grip on the handles. In
theory, two arms are enough to fully constrain and control all the degrees of
freedom of a cart. It was demonstrated that Honda’s ASIMO is capable of
moving a large cart in rooms and hallways [32] and a HRP-2 [18] is able to
push a person on a wheelchair [26]. However, in both cases, the cart is mostly
controlled as a Dubins car [2] instead of taking advantage of the full possibility
of the humanoid robot’s holonomic movement. Also, the arms serve only as a
mean of attaching the cart to the robot and are not taken into consideration to
control the cart further.

In [34], a planning method for humanoids to navigate among movable obsta-
cles has been proposed. The main purpose of that method is to find a path from
a starting to a goal points in a complex environment where the robot can easily

2

move objects to create a clear path, if it exists. Our objective is however differ-
ent, as we are interested in not only navigating in a cluttered environment, but
also transporting a heavy load that is significantly bigger than the humanoid
payload.

In the work of [31], a PR2 robot possessing a wheeled holonomic base and
two 7 DoF (Degree of Freedom) arms is used to push a small cart and control
its orientation. However, despite having humanoid arms to orient the cart,
since the PR2 has wheels instead of legs, no lateral swing is transmitted to the
transported object causing oscillations and instability, which is a problem with
humanoid robots. Furthermore, the cart is very small and light weight with
respect to the PR2, in contrast to our proportionally big cart that is able to
carry a load heavier than the robot itself.

The main contribution of our work is providing a complete framework for
autonomous humanoid robot navigation in a cluttered environment while ma-
nipulating a cart-like object that carries a heavy load. In addition, an efficient
swing reduction control algorithm and an automated sensorless primitive set se-
lection based on the load weight are explained. Finally, an optimized algorithm
to filter out the cart and an improved odometry data are proposed.

To address the problem of navigating a cart-like object supporting a load
with a humanoid robot in a cluttered environment, the following sub-problems
should be solved: (I) planning, (II) controlling the cart-like object and (III) sens-
ing the environment. This paper is organized according to these sub-problems.
Section 2 presents an anytime search-based planner that exploits a given set
of motion primitives, which consider both the robot and the cart footprint in
order to plan a safe trajectory between obstacles. Section 3 describes how to
find the humanoid robot’s footprints, and then compute the humanoid’s feet
and hands trajectories in order to minimize the swing effect and follow the
cart trajectory using a task priority whole-body control scheme. In Section 4,
real-time information from a consumer level depth camera is used to perform
simultaneous localization and mapping (SLAM) of the surrounding obstacles in
the cluttered environment. Finally, in Section 5, results of simulation and real
world experiments are presented and analyzed.

2. Planning a valid path

To be able to navigate through a cluttered environment, a path provided by
a motion planning algorithm is essential. Among the different possibilities, we
chose a lattice-based graph planning with an ARA* search [23]. This choice is
mainly motivated by the use of motion primitives that assures feasible robot-
cart configurations and transitions. The environment is modeled by a 2D grid
costmap that discriminates obstacles from free space at a fixed threshold and
allows obstacles inflations to increase the security margin.

2.1. State representation

Each node of the search graph needs a complete state representation of the
robot-cart to properly operate. To achieve this, it is possible to model the state

3

in R2 × S1 × R2 × S1:

s = (xr, yr, θr, xca, yca, θca) (1)

Where xr, yr and θr are the positions and orientation of the robot, xca, yca and
θca are those of the cart. The problem can be, however, simplified by setting a
pivot point positioned in the middle of both hands to reduce the dimensionality
of the search space, this simplification is valid in our case because: I)- the
working space of our robot’s arms is too small to fully take advantage of both
rotation and translation, II)- we consider that the robot is always grasping the
cart handles during the execution of the trajectory. The closed loop grasping of
the robot on the table is shown in Fig. 8. The chosen position of the pivot point
maximizes the rotation range within the robot’s workspace (see pivot point 1
in Fig. 11), resulting in a 4 dimensions state space R2 × S1 × S1:

s = (xr, yr, θr, θca) (2)

Even-though the above simplification removes the ability of the cart to translate
on the plane, the robot retains enough manipulability to minimize the cart
footprint on tight turns. The simplified state representation of equation (2) is
shown in Fig. 1.

✓r

✓ca

(xr, yr)

x

y

Figure 1: Simplified state representation

2.2. Transition model

In a lattice-based graph planner, the transition between the nodes is a dis-
crete action chosen within a fixed-set of possible actions called motion primi-
tives. Motion primitives allow the decomposition of complex motion generation

4

Figure 2: Different forms of graph search methods. From left to right: Von Neumann neigh-
borhood 1st & 2nd expand, Moore neighborhood 1st & 2nd expand, example of primitives set
1st & 2nd expand

(a) omnidirectional primitives
set

(b) heavy load primitives set

Figure 3: A right turn executed by the robot (blue) pushing the cart (green) to the goal (red
arrow) with both sets of primitives.

in robotics and it is very likely that such arrangement of atomic motions are
also used by humans and animals [6, 9]. An important feature of the lattice
representation is that each of those connections is a feasible path, in contrast
to other commonly used forms of graph search, including Von Neumann neigh-
borhood or Moore neighborhood. An example of the first two expands of these
graph search methods is shown at Fig. 2. This makes it really suitable for
highly constrained systems, such as a robot moving a cart.

Because the cart can carry different loads, multiple sets of primitives are
needed depending on the load weight. Without load, the robot is holonomic
and can move in any direction. A subset of movements composed of forward,
backward, diagonal, rotate in place and turn while moving forward is used to
reduce planning time while focusing on forward movements. With a heavy load
though, moving sideways and rotating in place becomes really difficult because of
the increased friction. For this reason, when the weight becomes too important,
the robot’s rotation occurs around a pivot point situated between the two table
legs touching the ground (see pivot point 2 in Fig. 11). Thus, changing the
feasible primitives is necessary for the lattice representation to remain coherent.
An example of right turns for the omnidirectional and the heavy load sets of
primitives are presented in Fig. 3.

5

2.3. Automatic selection of primitive sets

In order to determine which set of primitives is the most appropriate to be
used, an estimation of the load weight is necessary. The easiest solution to
automatically determine this value is by laying multiple pressure sensors on the
table surface. However, this solution is impractical and requires adding external
hardware to the robot. Instead, path following trials are performed by the robot
upon startup. Indeed, since the friction creates a pivot point at high weight,
the proper motions of the robot are hindered. For instance, if a command to
turn in place, walk sideways or turn the table is sent, it won’t be possible for
the robot to correctly execute it. As a result, the error between the internally
computed motion of the robot and the visually perceived one would increase
proportionally to the load weight.

Depending on the robot, table and load, multiple basic motion candidates
can be used and need to be evaluated.

• Walking forward in the sagittal plane (X direction), because greater loads
should cause proportionally more feet slippage.

• Walking in the lateral direction (Y direction), because greater loads should
cause the robot to proportionally turn around the wheels pivot instead of
walking straight.

• Turning in place, because greater loads should proportionally reduce the an-
gular rotation.

Then, in order to be able to use this movement error, it is necessary to have
at least one threshold to separate the categories. For the time being, there are
only two categories; the first with zero to low weight that does not impair too
much the movement and the second with a heavy load that highly restricts the
possible motions. Therefore, we have the following two hypotheses:

1. Hypothesis H0: the carried load weight is low and the most appropriate
primitive set is omnidirectional primitives.

2. Hypothesis H1: the carried load weight is heavy and the most appropriate
primitive set is heavy load primitives.

Let us suppose that the probability distribution functions of H0 and H1 are
PrH0

and PrH1
respectively. A threshold x, that minimizes the probability of

false detection of the correct hypothesis, can be defined as the point at which
PrH0

and PrH1
are equal

PrH0
(X = x) = PrH1

(X = x) (3)

Where X is a random variable. An example of the application of this method
is given in Fig. 4.

Using this method, it is easy to find N-1 threshold in the case of N primitive
sets. However, since every distribution gets closer to each other and start to
overlap as N increases, the probability of false detection also increases.

6

0 5 10 15 20
0

1

2

3

4
·10�2

P
ro

b
ab

il
it
y

d
en

si
ty

Figure 4: Thresholds selection in the case of three normal probability distribution functions

2.4. Path Cost Function

The cost function of a transition from state s to s0 is based on the time to
execute that transition and is computed as follows:

g(s, s0) =

(p
(�xr)2+(�yr)2

ṙ+ ⇥DF if �xr 6= 0 or �yr 6= 0

�✓r

✓̇+
⇥DF otherwise

(4)

where �xr, �yr and �✓r are the di↵erences between the xr, yr and ✓r, which
are the coordinates of the robot’s pelvis joint, between states s and s0, DF is
a di�culty factor associated with each primitives, ṙ+ is the maximal robot
linear velocity and ✓̇+ is the maximal angular velocity for turning in place. The
Euclidean distance between both states is computed and then divided by the
maximum velocity of the robot in the direction of the movement to give the
approximate time to execute the primitive. Since the robot usually slows down
when approaching obstacles to avoid collisions, transitions that pass close to
obstacles have higher costs.

For both instances, the time cost estimate is then multiplied by the DF
associated with each primitive. This DF is used to prioritize or penalize certain
motions or directions, which result in a smoother and a more natural looking
trajectory. For instance, turning in place then moving forward takes a longer
time than moving in diagonal. However, on a long distance, the former reduces
the trajectory footprint and is therefore more natural looking while reducing
the chances of drifts caused by the table movements. For those reasons, moving
sideway has a higher DF than turning and moving forward. In sum, for small
distances, the time cost takes over the DF, however for long distance, it is more
likely that turning in place and moving forward would be preferred, examples of
DF values are given in Table 1. Note that our experiments with the Nao robot

7

x1 x2

Figure 4: Thresholds selection in the case of three normal probability distribution functions

2.4. Path Cost Function

The cost function of a transition from state s to s′ is based on the time to
execute that transition and is computed as follows:

g(s, s′) =

{√
(∆xr)2+(∆yr)2

ṙ+ ×DF if ∆xr 6= 0 or ∆yr 6= 0

∆θr
θ̇+
×DF otherwise

(4)

where ∆xr, ∆yr and ∆θr are the differences between the xr, yr and θr,
which are the coordinates of the robot’s pelvis joint, between states s and s′,
DF is a difficulty factor associated with each primitive, ṙ+ is the maximal robot
linear velocity and θ̇+ is the maximal angular velocity for turning in place. The
Euclidean distance between both states is computed and then divided by the
maximum velocity of the robot in the direction of the movement to give the
approximate time to execute the primitive. Since the robot usually slows down
when approaching obstacles to avoid collisions, transitions that pass close to
obstacles have higher costs.

For both instances, the time cost estimate is then multiplied by the DF
associated with each primitive. This DF is used to prioritize or penalize certain
motions or directions, which result in a smoother and a more natural-looking
trajectory. For instance, turning in place then moving forward takes a longer
time than moving in diagonal. However, on a long distance, the former reduces
the trajectory footprint and is therefore more natural-looking while reducing
the chances of drifts caused by the table movements. For those reasons, moving
sideways has a higher DF than turning and moving forward. In sum, for small
distances, the time cost takes over the DF, however, for long distance, it is more
likely that turning in place and moving forward would be preferred, examples of
DF values are given in Table 1. Note that our experiments with the Nao robot

7

showed that the admissible angles for turn in place motion are in the interval
[−π3 , π3] with a sampling of 0.196 rad for the omnidirectional set and in [−π8 , π8]
with a sampling of 0.098 rad for the heavy set.

Omnidirectional set Heavy set

Forward 1 1

Turn in place by angle θ (in rad) 1+ 3∗|θ|
π

1+ 8∗|θ|
π

Backward 3 N/A

Sideways 2 N/A

Diagonal 1 N/A

Table 1: The DF factor for different motion classes of each set.

2.5. Search Algorithm

A* is one of the most popular search algorithms to find an optimal solution
path using a cost function. In addition to the path cost function, a heuristic
bias the search towards the most promising states. Even though A* is optimal
when it finds a solution, that solution may, however, not always exists or cannot
be found within a reasonable time. The Anytime Repairing A* (ARA*) planner
focuses on delivering a suboptimal solution as fast as possible; this solution is
then optimized iteratively to obtain the optimal solution within a predefined
limited time. Also, the states are expanded in the opposite way, from goal to
start, so that the heuristic costs remain valid after replanning and do not need
to be recomputed. Since the algorithm is a time constrained sub-optimal A*, it
also guarantees completeness. The cost function takes the form of:

f(s, s′) = g(s, s′) ∗max(Costcells(s, s
′)) + εh, ε >= 1 (5)

where g(s, s′) is the path cost of equation (4), h the heuristics that uses a grid
of 2D distance cost computed with a Dijkstra search from the goal to the start
states and

Costcells(s, s
′) =

1 free space

2 to 99 inflation

∞ obstacles

(6)

a vector containing the cost of every cell between s and s′. The search is biased
towards states that are closer to the goal and return a solution that is, at worst,
ε times the cost of the optimal solution providing user defined bounds on the
sub-optimality of the solution.

3. Controlling the robot and cart-like object

3.1. Object Stability and the Hand Stabilization

Since the cart is fully controlled by the robot’s hands, it is possible to reduce
the lateral swing created by the humanoid walk. In addition, the load stability

8

is improved by restraining the propagation of these oscillations to the table.
At low speed, a humanoid robot has no other choice rather than to move the
horizontal projection of its Center of Mass (CoM) from one support (foot) to
the other in order to keep its Zero Moment Point (ZMP) within the support
polygon and stay in balance. This lateral motion causes the entire upper body
of the robot to oscillate laterally at an amplitude proportional to the distance
between the center of feet, which in turn causes the side of the cart, which is held
by the robot, to move by the same amplitude. It is usually unsafe to transport
a load that continuously swing from one side to another and could even damage
to the transported objects or the surroundings.

One way to compensate this instability without changing the walking gait
and feet position is to use the robot’s arms. To this end, the hands are kept at
a fixed position with respect to the fixed frame of support foot; this position is
determined at the initial starting position of the robot while holding the table
and corresponds to the transformation between both feet and both hands. While
moving, the transformation of the hands w.r.t. the fixed foot is used. Those
transformations will be the input of the whole-body control scheme described
in the following section.

3.2. Whole-body Control Scheme

Once a collision-free trajectory is found by the ARA* algorithm, a set of
footprints are defined along the trajectory as it is shown in Fig. 5. The second
step is to define a dynamically stable trajectory by defining an appropriate
ZMP trajectory [15]. A trajectory of the CoM of the robot is then obtained
using the preview control algorithm proposed in [15]. This algorithm has been
widely used by researchers in humanoid robotics, it is simple to implement,
yet efficient and yields a smooth CoM trajectory by minimizing the CoM jerk
trajectory. The foot trajectories are obtained by spline interpolation between
the footprints and the hand trajectories and orientations are defined in order to
minimize the walking swing effect as well as follow the cart orientation.

To obtain the humanoid robot’s joint trajectories, a whole-body control
scheme with prioritized tasks is formulated as follows:

min
q̇

q̇TQq̇

subject to

First priority

Jc q̇ = ṙc
Jlf q̇ = ṙlf
Jrf q̇ = ṙrf

Second priority

{
Jlh q̇ = ṙlh
Jrh q̇ = ṙrh

Joint velocity limits ˆ̇q− ≤ q̇ ≤ ˆ̇q+

(7)

where q̇ ∈ Rn is the joint velocity vector, Q is a positive semi-definite matrix,
Jc ∈ R3×n, Jlf ∈ R6×n, Jrf ∈ R6×n, Jlh ∈ R6×n, Jrh ∈ R6×n are the jacobian

9

Initial position and
orientation

Final position and
orientation

footprints
obstacle

obstacle

obstacle

obstacle

hands trajectories

ZMP trajectory

Figure 5: Overview of the motion planning procedure

matrices of CoM, left foot, right foot, left hand and right hand respectively.
ṙc, ṙlf , ṙrf , ṙlh, ṙrh are the linear and angular velocity of CoM, left foot, right
foot, left hand and right hand respectively.

ˆ̇q− and ˆ̇q+ are generalized joint velocity limits defined as follows:

ˆ̇q+
j =

q̇+
j

(q+
j −qj)−ρs
ρi−ρs if q+

j − qj ≤ ρi

q̇+
j otherwise

ˆ̇q−j =

q̇−j
(qj−q−j)−ρs

ρi−ρs if qj − q−j ≤ ρi

q̇−j otherwise

(8)

where ˆ̇qj is the j element of the vector ˆ̇q, qj is the value of joint j, q+
j and q−j

10

are the upper and lower limits for the joint j, ρi and ρs are user-defined positive
constants, ρi and ρs are usually called the influence and security distances re-
spectively. It can be easily proven that the equality constraints in (8), not only
yield a motion within the humanoid’s velocity limits, but also the joint limits
are respected as well with a safety margin equals to ρs:

q−j + ρs ≤ qj ≤ q+
j − ρs

Eq. (8) provides a compact and efficient way to deal with both of velocity and
joint limits, it has been originally proposed in [16].

The optimization problem (7) can be transformed into a standard Quadratic
Programming (QP) problem as follows:

min
q̇,w

q̇TQq̇ + wTQww

subject to

J1 q̇ = ṙ1

J2 q̇ = ṙ2 + w

ˆ̇q− ≤q̇ ≤ ˆ̇q+

(9)

where:

• w is a slack variable that is introduced to ensure the priority feature of
(7).

• Qw ∈ R12×12 is a user-defined positive-definite matrix. In order to respect
the task priority, the following condition should be satisfied: ‖Qw‖ � ‖Q‖
(in practice, we usually use Qw = 10n ×Q, where n could be 3, 4 or 5).

• J1 =

Jc
Jlf
Jrf

 and J2 =

[
Jlh
Jrh

]

• ṙ1 =

ṙc
ṙlf
ṙrf

 and ṙ2 =

[
ṙlh
ṙrh

]

The QP problem (9) can be solved in real time using an appropriate QP
solver such as uQuadProg solver [17] or qpOASES solver [5]. Note that the
above formulation supposes that the first priority kinematics task is always
feasible, this is mainly true in our case. However, in a general case, a second
slack variable should be added to the first priority constraints [3]. The output
of the above QP problem, q̇, is integrated to obtain q and then used as the
desired reference for the robot’s joints.

11

4. Simultaneous Localization and Mapping (SLAM)

To move in a cluttered environment, a robust and precise sensing input is pri-
mordial to determine the position of obstacles, detect collisions and to plan valid
long term and short term paths. Also, odometry drift must be constantly veri-
fied and corrected by an accurate localization mechanism to ensure the planned
path is closely followed. The human-size humanoid robots, such as HRP-2 or
the humanoid robots which participated in DARPA Challenge, are able to build
a 3D map on the fly using their very sophisticated proprioceptive and extero-
ceptive sensors. However, the Nao robot has only two cameras in its head for
sensing and localization. A first approach would be using those cameras, how-
ever, this has proven to be a very difficult task [33] [28]. Indeed, as explained
previously, a humanoid robot swings laterally while walking, this effect coupled
with low-resolution cameras leads to pictures of poor quality. Furthermore, the
field of view of the Nao is greatly obstructed by the large table and load. As
a result, it is hard to precisely determine the position of the environment and
obstacles with respect to the robot while only relying on the Nao’s cameras.

4.1. Real-Time Appearance-Based Mapping (RTAB-Map)

Another approach would be adding a depth camera on the top of Nao’s head
for mapping [24]. To achieve this, an open-source library named RTAB-Map [20,
21] has been used. RTAB-Map is a RGB-D Graph SLAM library that uses a bag-
of-word technique for loop closure detection. A memory management system
limits the quantity of information loaded in memory to ensure the constant
satisfaction of large environment real time constraints. RTAB-Map also provides
a robust odometry system based on visual information. It can create 3D maps of
the environment as well as constructing a 2D occupancy grid map by projecting
the obstacles on the ground plane. Even though our system can use probabilistic
grids, the library only provides deterministic occupancy grids at the moment.
The library also supports large maps with paths of kilometers long, multi-session
mapping and localization.

4.2. Filtering out the Cart

Since the cart is in the field of view of the camera, it needs to be filtered
out in order to construct a valid occupancy grid or it will constantly be treated
as an obstacle. The easiest solution is to simply ignore the part of the image
where the cart is located. However, filtering a fixed cart position does not take
into account the arms that can turn the table and the oscillation of the camera
with respect to the table as shown in Fig. 6. Moreover, removing the entire
zone where the cart might be located will result in ignoring the majority of the
image and leads to poor performances. An efficient solution is to label all 3D
points lying on planes parallel to the ground as free space.

Without filtering, that means when segmentation is true in Algorithm 1, only
the ground is extracted and considered as free space, all the rest are obstacles.
By taking into account that the vast majority of obstacles are bounded by edges
that are not parallel to the ground, it is possible to filter out all flat surfaces

12

Algorithm 1 GetObstacles

flatSurfaces ← normalFiltering(groundNormalAngle)
if (segmentation == true) then

cluteredSurfaces ← extractClusters(flatSurfaces)
ground ← getBiggestCluster
for all cluster ∈ clusteredSurfaces do
if cluster.centroid is close to ground.centroid then

ground += cluster
end if

end for
else

ground ← flatSurfaces
end if
obstacles ← extractClusters(!ground)

with a normal parallel to the ground normal. This allows the robot to filter the
cart no matter its position and orientation, thus using the points on its sides
for localization and mapping.

The edges of obstacles generate walls around them that prevent motions to
be planned over the obstacles. Noe that boxes, tables, desks and chairs with
a non-zero width and their legs will all be easily detected. Only very thin
surfaces with no distinguishable width and visible legs will be wrongly ignored.
We believe, however, that this type of objects is not representative of typical
obstacles. This filtering technique also reduces the required calculations to
search for the ground by the vision library, since the clustering of flat surfaces
is bypassed.

4.3. Odometry fusion

A problem that occurs when using the visual odometry produced by RTAB-
Map is that it can be unreliable at times and lose track of the position for
multiple reasons such as, but not limited to, lack of detected features in the
observed environment, rapid movements of the camera or intense oscillations.
When this occurs, the library suggested solution is to go back to where the
tracking was lost. This solution is not always possible, however, even when it is
possible, this is generally not an efficient and desired behavior. For this reason,
a fusion of the visual odometry, the robot’s internal odometry and the error
between those reference frames is used to improve the overall odometry.

Since the camera is rigidly linked to the robot by a transformation T cv , we
can write T ov = T cv ∗ T oc , where T ov , T

o
c are the homogeneous transformation

matrix between the map frame and, respectively, the robot frame as computed
by the visual odometry and the camera frame. The previous equation can be
rewritten to include the encoders-based robot odometry T or , that does not take

13

Figure 6: The position of the cart as seen by the robot. In transparency, the position of the
cart when being turned at maximum angle. The images of this paper are best seen in its color
version.

into account slipping, drift and other real world errors

T ov = T cv ∗ T oc ∗ T or −1 ∗ T or
= T rv ∗ T or ,

(10)

where T rv is the error between the encoders odometry and the visual odometry.
Since this equation only holds while the visual odometry is valid, the last valid
T rv at time t = tlost is used when a loss occurs at tlost,

T ov (t) =

{
T rv (t) ∗ T or (t) if T cv exists,

T rv (tlost) ∗ T or (t) otherwise.
(11)

This approach consistently provides smooth odometry. Even when the visual
information is abruptly discontinued, it continues to generate sufficiently accu-
rate localization data until an adequate image or a reset command is processed
by the SLAM library and the visual odometry is restored.

4.4. Dynamic collision avoidance

A collision might occur if an obstacle has been moved or a drift from the
planned trajectory happened. To check for collision, the robot and cart foot-
prints are projected on the ground. Then, the velocity and the direction are
used to interpolate the displacement and potential collisions. When a collision
is foreseen, a replanning is necessary as shown in Fig. 7. Even though, at first
glance, the support polygon appears to be increased by adding the cart, the
robot’s support polygon is always defined by the contact between the feet and
the ground. This is because the robot’s arms are not fully bent, therefore the
robot could fall forward or backward.

14

Initial position and
orientation

Final position and
orientation

obstacle

obstacle

obstacle

obstacle

Deformed trajectory

Collision

tc

Figure 7: Replanning in case of collision detection: tc is the instant at which a collision is
foreseen, the new collision-free trajectory is in dashed-blue line, the deformed trajectory is in
red line.

The new collision-free trajectory is found by the ARA* algorithm from the
goal to the point at which the collision has been predicted. If the potential
collision is due to the drift, the Dijkstra grid does not need to be recalculated,
therefore greatly accelerating the replanning. As the walking pattern trajectory
for a humanoid robot cannot be changed instantly, a time interval Tc is required
to change the planned footprints. In the implementation of ZMP preview con-
trol, a finite time horizon of 2 steps is used to compute the CoM trajectory.
Therefore, if a collision is foreseen at the instant tc, the new collision-free tra-
jectory provided by the ARA* algorithm is deformed to keep the next two
footprints unchanged as shown in Fig. 7, the robot will, however, stop if the
deformed trajectory is in collision.

15

5. Results

Experiments were conducted on a Nao humanoid robot (Fig. 8), manufac-
tured by Aldebaran Robotics [7]. Its dimensions are 573mm of height, 311mm
of width and 275mm of depth for a total weight of 5.2kg. The two arms as well
as both legs have each 5 DOF, while the head has 2 DOF and the pelvis and
hands have 1 DOF each. In addition to the above-mentioned 25 DOF, the Nao
possesses two cameras, four sonars, four force sensitive resistors under each foot,
two speakers and four microphones. An IMU provides odometry data and 36
magnetic rotary encoders give joint angle information with a precision of 0.1◦.
On top of its head, we added an Asus Xtion Pro Live consumer-level depth
camera.

Figure 8: The Nao robot holding the cart-like object and a load

The cart-like object, shown in Fig. 8, is a mini table 600mm long by 300mm
wide. On one side, the two legs are 300mm high and are set on omnidirectional
40mm by 20mm ball wheels. On the other side, the two legs are half the length
so that the Nao robot can fully support its side of the table.

5.1. Increase in Carrying Capacity

The primary objective of our approach is to increase the maximum payload
carried by a humanoid robot, without destabilizing it, while maintaining suffi-
cient flexibility and agility. For that purpose, an experiment aimed at measuring
the maximum carrying capacity of the Nao robot without any modifications has
been carried out. Nao is placed in the same pose as in Fig. 8, then a small
board (333g) is attached to both hands and is used to support various amount
of calibration weights. Even with low weight, the robot rapidly falls down or
has difficulties to follow planned trajectories. At an additional 300g weight,
however, Nao falls within the first steps every run, which was determined to be
its maximum carrying capacity.

With the introduction of the cart, two sets of motion primitives are available,
the omnidirectional and the heavy load sets. The former generally yields shorter
and faster paths than the latter, but as their names suggest, the heavy load set

16

allows an increased maximum load capacity. The load at which the friction
becomes too high to consider the omnidirectional set is 700g. Starting from a
load of 700g and up to 7,000g, excluding the cart weight of 1,370g, the heavy
set must be used since Nao is only able to move forward and rotate around the
wheels pivot. In reality, the robot could push higher load, however, the wood
structure of our cart cannot support more than a total of 8,370g at which its
structural integrity is compromised. We are, however, confident that the robot
could push a higher load without that constraint. To summarize, the maximum
carrying capacity of the Nao robot alone is 633g and by using the cart, it is
7,000g, which is 11 times its normal capacity.

5.2. Automatic primitive sets selection

(a) Starting pose without load (b) Ending pose without load

(c) Starting pose with load (d) Ending pose with load

Figure 9: Robot starting and ending poses for the automatic load estimation trial using
turning in place motion.

In order to verify our approach of sensorless automatic selection of the most
appropriate primitive set, we executed a series of 20 startups without load and
20 startups with a load of 2.3 kg. Multiple movement commands have been
evaluated for 10 seconds per test. These movements are, walking forward in the
sagittal plane (X axis), walking in the lateral direction (Y axis) and turning in

17

place. The latter is shown in Fig. 9 to illustrate the difference between the end
poses with and without load.

It can be observed from Table 2 and Fig. 10 that turning in place by π
2 rad

yields the most distinctive results. By approximating the probability density of
distribution functions, in the case of turning in place, by normal distributions,
a threshold x = 2.645 rad is obtained using (3).

Note that turning in place by π
2 rad does not belong to either omnidirectional

or heavy primitive sets, it is only used as a test motion in order to select the
appropriate primitive set. The turning in place angle ranges are given in Section
2.4.

To validate the above-mentioned threshold, we conducted another series of
10 startups, and every test finished with a successful choice of the appropriate
primitives set.

X axis Y axis Rotate in place

No load

Linear error (m) 0.172 0.127 0.146
Linear error (std) 0.013 0.024 0.043

Angular error (rad) 0.091 0.073 2.103
Angular error (std) 0.042 0.038 0.124

2.3kg load

Linear error (m) 0.176 0.146 0.085
Linear error (std) 0.018 0.016 0.031

Angular error (rad) 0.072 0.223 3.022
Angular error (std) 0.041 0.052 0.078

Table 2: Linear and angular errors, with and without a load, for all three basic motion
candidates (std stands for standard deviation)

5.3. Articulating the arms

In the case of omnidirectional set, the hands and arms are strong enough to
articulate the cart while turning to obtain smooth trajectories. The maximum
angle at which our robot can turn the cart is 30 degrees, as illustrated in Fig.
11. Over that limit, one hand is colliding with the torso while the other lies
outside of the robot workspace.

While walking in a straight line of 1 m, the Nao robot is affected by significant
linear and angular drift. The amount of drift differs depending on whether the
robot is walking alone, is using the cart or if there is a load on the cart. This
information is summarized in Table 3. Without any corrections, this error
would lead the robot to constantly diverge from the planned trajectories. The
odometry fusion technique explained in Section 4.3 is therefore used to reduce
the natural drift of the robot odometry alone.

While pushing heavy load, the robot cannot, however, rotate in place or
move laterally to cancel any drift errors that accumulate over time; a quick

18

0 0.1 0.2
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(a) Walking forward in the sagittal plane

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(b) Walking in the lateral direction

2 2.5 3
0

0.1

0.2

0.3

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(c) Turning in place by ⇡
2

rad

Figure 10: Normalized histograms of the trials angular errors

No With Cart &
Cart Cart Load

Angular drift (�) 12.67 12.75 9.33

Linear drift (cm) 22.03 3.85 11.47

Table 3: Drift a↵ecting a Nao robot while walking in a straight line of 1 m

replanning is therefore executed when the robot diverges too much from the
planned trajectory.

As shown in Fig. 12(a), without any hand position correction, the lateral
swing causes large oscillations that are transmitted to the table and the load. To
prevent this problem, the hands are controlled to follow stable trajectories using
the whole-body control scheme explained in Section 3.2. However, as it can be
seen in Fig. 12(b), the error is not completely canceled, this is mainly because:
I) the hand trajectory are second priority tasks, II) Nao has only 5 DOF in
each arm, III) the backlash of Nao motors, IV) the time response of the motors.

19

(a) Walking forward in the sagittal plane

0 0.1 0.2
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(a) Walking forward in the sagittal plane

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(b) Walking in the lateral direction

2 2.5 3
0

0.1

0.2

0.3

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(c) Turning in place by ⇡
2

rad

Figure 10: Normalized histograms of the trials angular errors

No With Cart &
Cart Cart Load

Angular drift (�) 12.67 12.75 9.33

Linear drift (cm) 22.03 3.85 11.47

Table 3: Drift a↵ecting a Nao robot while walking in a straight line of 1 m

replanning is therefore executed when the robot diverges too much from the
planned trajectory.

As shown in Fig. 12(a), without any hand position correction, the lateral
swing causes large oscillations that are transmitted to the table and the load. To
prevent this problem, the hands are controlled to follow stable trajectories using
the whole-body control scheme explained in Section 3.2. However, as it can be
seen in Fig. 12(b), the error is not completely canceled, this is mainly because:
I) the hand trajectory are second priority tasks, II) Nao has only 5 DOF in
each arm, III) the backlash of Nao motors, IV) the time response of the motors.

19

(b) Walking in the lateral direction

0 0.1 0.2
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(a) Walking forward in the sagittal plane

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(b) Walking in the lateral direction

2 2.5 3
0

0.1

0.2

0.3

Error (rad)

N
o
rm

a
li
z
e
d

h
is

to
g
ra

m
fr

e
q
u
e
n
c
y Table Table + load

(c) Turning in place by ⇡
2

rad

Figure 10: Normalized histograms of the trials angular errors

No With Cart &
Cart Cart Load

Angular drift (�) 12.67 12.75 9.33

Linear drift (cm) 22.03 3.85 11.47

Table 3: Drift a↵ecting a Nao robot while walking in a straight line of 1 m

replanning is therefore executed when the robot diverges too much from the
planned trajectory.

As shown in Fig. 12(a), without any hand position correction, the lateral
swing causes large oscillations that are transmitted to the table and the load. To
prevent this problem, the hands are controlled to follow stable trajectories using
the whole-body control scheme explained in Section 3.2. However, as it can be
seen in Fig. 12(b), the error is not completely canceled, this is mainly because:
I) the hand trajectory are second priority tasks, II) Nao has only 5 DOF in
each arm, III) the backlash of Nao motors, IV) the time response of the motors.

19

(c) Turning in place by π
2

rad

Figure 10: Normalized histograms of the trials angular errors

No With Cart &
Cart Cart Load

Angular drift (◦) 12.67 12.75 9.33

Linear drift (cm) 22.03 3.85 11.47

Table 3: Drift affecting a Nao robot while walking in a straight line of 1 m

replanning is therefore executed when the robot diverges too much from the
planned trajectory.

As shown in Fig. 12(a), without any hand position correction, the lateral
swing causes large oscillations that are transmitted to the table and the load. To
prevent this problem, the hands are controlled to follow stable trajectories using
the whole-body control scheme explained in Section 3.2. However, as it can be
seen in Fig. 12(b), the error is not completely canceled, this is mainly because:
I) the hand trajectory are second priority tasks, II) Nao has only 5 DOF in
each arm, III) the backlash of Nao motors, IV) the time response of the motors.
To minimize the impact of the backlash and the motor-time response, a PID
(Proportional-Integral-Derivative) controller has been implemented in the arms

19

Figure 11: The arms posture while turning the cart at maximum angle (30 degrees)

joint trajectory tracking controllers. Since the PID role is local by minimizing
the error between the desired and the executed positions, it does not interfere
with the formulation and the performance of the whole-body control scheme.
To verify the efficiency of the hands control on swing reduction, it has firstly
been tested on a simulated Nao robot.

Without any corrections, the average peak-to-peak position movement of the
hands is 47.6 mm. However, with the whole body control, the hand distance
from desired position has been reduced to 16.4 mm, reducing the hand error
by 65.5%. By adding the PID controller with coefficients Kp = 2, Ki = 0.01
and Kd = -0.015, the error has been reduced further to 76.1% for an average
peak-to-peak movement of 11.4 mm. As a result, significantly less oscillations
are transmitted to the table, leading to a safer and enhanced carrying ability
and load stability.

The same tests were then conducted on the real robot. The results of the
simulated and real-world test are summarized in Table 4. It can be seen that
the results are quite similar, thus the proposed technique significantly increases
the load stability.

Without No With
Corrections PID PID

Simulated
Peak-to-peak movement (mm) 47.6 16.4 11.4

Improvement (%) 0 65.5 76.1

Real world
Peak-to-peak movement (mm) 56.0 23.3 15.6

Improvement (%) 0 58.5 72.1

Table 4: Simulated and real world hands corrections improvements

20

(a) No hands correction (b) Position control correction

(c) Position control and PID correction

Figure 12: Influence of hand corrections on table oscillations.

5.4. Navigating in a cluttered environment

To test the system as a whole and to validate the proposed algorithms, we
conducted three series of 5 experiments. In each experiment, the robot starting
and goal positions were chosen in a way that the robot had to navigate through
a field of objects on the ground. Every one of them served as obstacles that must
be avoided by the robot and the cart. They were placed to form various feasible
paths and force tight turns in order to take advantage of the additional degree
of freedom (the rotation of the cart θca). The three series were composed of the
same experiments containing the same initial configuration of the obstacles in
the environment and using the same initial and goal positions and orientations,
but with different transported objects.

Fig. 13 shows the start and end positions for each type of experiment. In this
figure, the obstacles are in black, while the red areas around them are inflation
zones where the cost is higher than free space to prevent the robot from passing
too close to obstacles. These zones are used as a security buffer and the center
of the robot and the cart should avoid, if possible, planning to pass inside it.
The cyan zone is a lethal zone, because if the center of the cart or the robot
enters it, it means that an edge is in collision with an obstacle.

21

Figure 13: Map of the starting and ending positions with obstacles, lethal and security inflation
zones around them, the Nao and cart footprints and goal position/orientation.

The first series consists of the Nao robot alone, without a cart or load. It
chose the omnidirectional primitives set to navigate through the obstacles. The
second one was conducted with the Nao holding the cart, which significantly
increased the navigation footprints. These tests also chose the omnidirectional
set to build the plan. For the third and final series, the robot is pushing the cart
with an additional load of 2,300g, in this case the heavy load set of primitives
have been chosen to allow the robot to properly plan a trajectory in the cluttered
environment.

The ARA* planner initial ε = 3 means that the suboptimal solution cannot
be worse than 3 times the cost of the optimal solution. A time limit of 10
seconds was chosen and within that time, the planner converged to the optimal
solution every run (ε successfully decreased to 1). For each generated path, we
measured the total time to execute the trajectory, the trajectory length, the
initial solution time, the optimal solution time, the initial expanded nodes and
the final expanded nodes. These results are summarized in Table 5.

Even though all trajectory lengths are very similar, the time needed to com-
plete the trajectory is greater with the cart than without it, and even greater
with a load. This is explained by the friction on the cart wheels causing slippage
as the robot tries to move and slowing its movements down. Every step in a
direction results in a slippage in the opposite direction, thus progressing less
distance with each step. This also holds true while rotating in place. Increas-
ing the load weight amplifies this effect of slippage, slowing the Nao down even
more. This leads to a reduced speed of 31% compared to the empty cart and

22

No With Cart &
Cart Cart Load

Total time (s) 61.04 85.82 137.28
Total time std (s) 4.91 9.46 17.76

Trajectory length (m) 2.27 2.21 3.01
Trajectory length std (m) 0.08 0.26 0.29

Goal position accuracy (m) 0.021 0.035 0.043

Goal position accuracy std (m) 0.014 0.018 0.029

Goal orientation accuracy (rad) 0.053 0.081 0.107

Goal orientation accuracy std (rad) 0.032 0.059 0.062

Average velocity (m/s) 0.0373 0.0264 0.0214

Initial solution time (ε = 3) (ms) 2 7 19
Initial solution time std (ms) 4 8 28

Optimal solution time (ε = 1) (ms) 173 181 214
Optimal solution time std (ms) 157 186 171

Initial node expansions 58.0 223.0 1829.6
Initial node expansions std 52.2 363.6 2103.3

Total node expansions 5711 6424 16532
Total node expansions std 7374 8648 16427

Table 5: Experimental statistics

42% speed reduction with the additional 2.3 kg load.
Although the primitives with the robot alone and with the cart are the same,

it is hard to find a path as optimal with it. Some places might not be accessible
or Nao might need more time to clear obstacles before turning because the cart
is in the way. However, since the average length is about the same though,
moving with the table does not impair much of the robot ability to travel the
cluttered environment swiftly.

The weight primitives trajectory length is, however, higher in comparison,
about 29% higher than the Nao alone. This is primarily due to the change of
primitives. Moreover, some motions such as moving sideways or in diagonal
become impossible. Also, turning in place by θ rad versus turning around a
pivot placed r = 0.60m away increased the trajectory by at least L = θr every
time the robot makes a turn.

Table 5 also shows the impact of the load on the accuracy of goal position and
orientation, and it is important to point out that a threshold on that accuracy
should be defined by the user, otherwise the robot will continue making small
movements and never stop.

Even though in our case the trajectories are quite small, the use of sub-
optimal solutions has proven to be significantly faster. Indeed, for our exper-
imental settings, it takes about 83, 28.7 and 11.1 times less states expansions
and is 99.3, 29.1 and 9.4 times faster to compute the first solution for ε = 3 as
opposed to the optimal solution for the robot alone, with an empty cart and
with a load respectively. This could be especially useful for real life large scale
distances and experiments where quick reactions and planning are necessary.

23

The output from the SLAM library is shown in Fig. 14. The localization
information is displayed as a continuous red line and the mapping information is
represented by the rest of the point cloud built incrementally. It can be observed
that mapping, while pushing the table, obstructs the ground and thus yields a
less practical and complete map of the environment. However, since it is possible
to use the side of the table for localization thanks to our filtering technique,
the localization data remained continuous and reliable for all the tests. It is
important to note that the ground in the testing room had sufficient textures
and patterns to produce reliable data using the SLAM library. When tested on
a plain ground, RTAB-Map could not, however, extract enough features to use
visual localization with only the obstacles.

(a) Localization (red line) and mapping
(point cloud) for the robot alone.

(b) Localization (red line) and mapping
(point cloud) for the robot with the ta-
ble.

Figure 14: Localization and mapping

Also, the friction on the wheels is not high enough to completely prevent
them from sliding and thus to act as a perfect pivot while pushing a heavy
load. This caused additional errors when turning and walking, and forcing a
replanning when the accumulated error became significant. For this reason,
with the heavy load, 3 replanning were needed on average, while no replanning
was necessary with or without the cart when no load was carried.

When an obstacle is moved, a replanning is essential to avoid collision. As
shown in Fig. 15, Fig. 16 and Fig. 17, a new path is recomputed before any
collisions occur and the Nao continues its way around. In all our experiments,
neither the Nao nor the cart has collided with any obstacle.

24

6. Conclusion and Future Work

In this paper, we proposed a system capable of carrying a heavy load on
an articulated cart while navigating in a cluttered environment; we also gave
practical insights into the implementation of the proposed approach on a real
humanoid robot. Our method uses two different sets of primitives to plan a
trajectory: a low to medium weight omnidirectional set and a more restrictive
heavy weight set. We also proposed a sensorless technique to test a difficult
movement during the startup and accurately determine the appropriate set of
primitive to be used, it is based on the error between the desired and the exe-
cuted commands.

When moving throughout the environment, a depth camera and a SLAM
library map the obstacles in real time and provide a visual odometry. This
information is then fused with the robot odometry to provide a consistent,
continuous and reliable odometry data. While mapping the environment, the
cart pushed by the robot is filtered and ignored by the library to prevent it from
being considered as a permanent obstacle. It would be possible to integrate the
SLAM, the 3D occupancy grid and the loop closure algorithms provided by
RTAB-Map with the memory efficient OctoMap [13] for planning and obstacle
detection. Another option could be considering the perception system proposed
in [4], that system continuously integrates stereo imagery to build a consistent
3D model of the terrain which is then used to plan the robot footsteps, however,
that would require upgrading the hardware of the Nao robot as it does not have
a stereo vision system. It is worth noting that since the project is mainly in
2D, for the moment, the integration of the environment 3D model was not
performed.

Moreover, by controlling the hands adequately using a whole-body control
scheme coupled with a PID, we were able to articulate the cart in tight turns
and to significantly reduce the lateral swing from propagating to the load. Fig.
15, Fig. 16 and Fig. 17 show snapshots of the Nao navigating with the different
possible configurations, i.e. without cart, with the cart only and with the cart
supporting a heavy load, while successfully avoiding moving obstacles.

In future works, in order to make this project completely autonomous, it
is necessary to implement it entirely on the Nao itself to be processed by its
internal CPU. The biggest challenge is the limited processing power of the plat-
form in comparison to other high-end humanoid robots that often have multiple
onboard computers. The possible solutions are either to change the computing
hardware to increase its processing power, or to modify the algorithms to be
computationally efficient and optimized for the current platform. The most de-
manding part of the system for the CPU, without a doubt, is the processing of
the vision based odometry. Using different parameters in the library to decrease
the precision and frequency of the mapping and localization would lead to im-
prove the performance regarding the computing power, but would necessarily
have a negative impact on the results.

Moreover, the friction on the wheels and the transported mass have not
been taken into account in the current study. An ongoing work focuses on the

25

integration of two techniques [10, 11] that we have recently developed into the
framework in order to consider the friction and transported load, we expect that
the new pattern generator will allow us to increase the transported load while
ensuring the robot equilibrium.

Furthermore, integrating a hierarchical quadratic programming scheme [3]
to solve the whole-body control problem will also be investigated.

Acknowledgment

This research is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) under the grant RGPIN-2012-419406.

Figure 15: Snapshots of the Nao navigating without the cart using omnidirectional primitives

Figure 16: Snapshots of the Nao navigating with the cart using omnidirectional primitives

26

Figure 17: Snapshots of the Nao navigating with the cart using heavy load primitives

7. References

[1] Aiyama, Y., Inaba, M., Inoue, H., 1993. Pivoting: A new method of gras-
pless manipulation of object by robot fingers. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. Vol. 1. pp. 136–143.

[2] Dubins, L. E., 1957. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents. American Journal of mathematics, 497–516.

[3] Escande, A., Mansard, N., Wieber, P.-B., Jun. 2014. Hierarchical quadratic
programming: Fast online humanoid-robot motion generation. The Inter-
national Journal of Robotics Research 33 (7), pp. 1006–1028.

[4] Fallon, M. F., Marion, P., Deits, R., Whelan, T., Antone, M., McDonald,
J., Tedrake, R., Nov 2015. Continuous humanoid locomotion over uneven
terrain using stereo fusion. In: 2015 IEEE-RAS 15th International Confer-
ence on Humanoid Robots (Humanoids). pp. 881–888.

[5] Ferreau, H., Kirches, C., Potschka, A., Bock, H., Diehl, M., 2014.
qpOASES: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation 6 (4), pp. 327363.

[6] Flash, T., Hochner, B., 2005. Motor primitives in vertebrates and inverte-
brates. Current opinion in neurobiology 15 (6), 660–666.

[7] Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafour-
cade, P., Marnier, B., Serre, J., Maisonnier, B., 2009. Mechatronic design
of NAO humanoid. In: IEEE International Conference on Robotics and
Automation. pp. 769–774.

[8] Harada, K., Kajita, S., Saito, H., Morisawa, M., Kanehiro, F., Fujiwara,
K., Kaneko, K., Hirukawa, H., 2005. A humanoid robot carrying a heavy
object. In: IEEE International Conference on Robotics and Automation.
pp. 1712–1717.

27

[9] Hart, C. B., Giszter, S. F., 2010. A neural basis for motor primitives in the
spinal cord. The Journal of Neuroscience 30 (4), 1322–1336.

[10] Hawley, L., Suleiman, W., 2016. External Force Observer for Medium-
sized Humanoid Robots. In: IEEE-RAS 16th International Conference on
Humanoid Robots. pp. 366–371.

[11] Hawley, L., Suleiman, W., 2017 (Accepted). Control Strategy and Imple-
mentation for a Humanoid Robot Pushing a Heavy Load on a Rolling
Cart. In: IEEE International Conference on Intelligent Robots and Sys-
tems (IROS).

[12] Hirata, Y., Kosuge, K., 2000. Distributed robot helpers handling a single
object in cooperation with a human. In: IEEE International Conference on
Robotics and Automation. Vol. 1. pp. 458–463.

[13] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., Burgard, W.,
April 2013. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots 34 (3), 189–206.

[14] Inamura, T., Okada, K., Tokutsu, S., Hatao, N., Inaba, M., Inoue, H.,
2009. HRP-2W: A humanoid platform for research on support behavior in
daily life environments. Robotics and Autonomous Systems 57 (2), 145 –
154.

[15] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H., 2003. Biped Walking Pattern Generation by using Preview
Control of Zero-Moment Point. In: Proc. IEEE International Conference
on Robotics and Automation. Taipei, Taiwan, pp. 1620–1626.

[16] Kanehiro, F., Lamiraux, F., Kanoun, O., Yoshida, E., Laumond, J.-P., June
2008. A Local Collision Avoidance Method for Non-strictly Convex Objects.
In: 2008 Robotics: Science and Systems Conference. Zurich, Switzerland.

[17] Kanehiro, F., Morisawa, M., Suleiman, W., Kaneko, K., Yoshida, E., 2010.
Integrating geometric constraints into reactive leg motion generation. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 4069–4076.

[18] Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata,
M., Akachi, K., Isozumi, T., 2004. Humanoid Robot HRP-2. In: IEEE
International Conference on Robotics and Automation. pp. 1083–1090.

[19] Kube, C. R., Bonabeau, E., 2000. Cooperative transport by ants and
robots. Robotics and autonomous systems 30 (1), 85–101.

[20] Labbe, M., Michaud, F., 2014. Online global loop closure detection for
large-scale multi-session graph-based slam. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 2661–2666.

28

[21] Labbe, M., Michaud, F., 2014. Rtab-map project on ros.org.
URL http://wiki.ros.org/rtabmap

[22] Lawitzky, M., Mortl, A., Hirche, S., 2010. Load sharing in human-robot
cooperative manipulation. In: IEEE RO-MAN. pp. 185–191.

[23] Likhachev, M., Gordon, G. J., Thrun, S., 2003. ARA*: Anytime A* with
provable bounds on sub-optimality. In: Advances in Neural Information
Processing Systems. p. None.

[24] Maier, D., Hornung, A., Bennewitz, M., Nov 2012. Real-time navigation
in 3D environments based on depth camera data. In: 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids). pp. 692–697.

[25] Miyata, N., Ota, J., Aiyama, Y., Sasaki, J., Arai, T., 1997. Cooperative
transport system with regrasping car-like mobile robots. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. Vol. 3. pp.
1754–1761.

[26] Nozawa, S., Maki, T., Kojima, M., Kanzaki, S., Okada, K., Inaba, M.,
2008. Wheelchair support by a humanoid through integrating environment
recognition, whole-body control and human-interface behind the user. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 1558–1563.

[27] Ohmura, Y., Kuniyoshi, Y., 2007. Humanoid robot which can lift a 30kg
box by whole body contact and tactile feedback. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. pp. 1136–1141.

[28] Oßwald, S., Hornung, A., Bennewitz, M., 2010. Learning reliable and effi-
cient navigation with a humanoid. In: IEEE International Conference on
Robotics and Automation. pp. 2375–2380.

[29] Ota, J., Miyata, N., Arai, T., Yoshida, E., Kurabatashi, D., Sasaki, J.,
1995. Transferring and regrasping a large object by cooperation of multi-
ple mobile robots. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Vol. 3. pp. 543–548.

[30] Rioux, A., Suleiman, W., 2015. Humanoid navigation and heavy load trans-
portation in a cluttered environment. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. pp. 2180–2186.

[31] Scholz, J., Chitta, S., Marthi, B., Likhachev, M., 2011. Cart pushing with
a mobile manipulation system: Towards navigation with moveable objects.
In: IEEE International Conference on Robotics and Automation. pp. 6115–
6120.

[32] Shigemi, S., Kawaguchi, Y., Yoshiike, T., Kawabe, K., Ogawa, N., 2006.
Development of New ASIMO. Honda R and D Technical Review 18 (1).

29

[33] Stasse, O., Davison, A. J., Sellaouti, R., Yokoi, K., 2006. Real-time 3D
SLAM for humanoid robot considering pattern generator information. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 348–355.

[34] Stilman, M., Kuffner, J., December 2004. Navigation among movable obsta-
cles: Real-time reasoning in complex environments. In: IEEE International
Conference on Humanoid Robotics (Humanoids). Vol. 1. pp. 322 – 341.

[35] Suda, R., Kosuge, K., 2002. Handling of object by mobile robot helper in
cooperation with a human using visual information and force information.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vol. 2. pp. 1102–1107.

[36] Wang, Z., Admadabadi, M. N., Nakano, E., Takahashi, T., 1999. A multiple
robot system for cooperative object transportation with various require-
ments on task performing. In: IEEE International Conference on Robotics
and Automation. Vol. 2. pp. 1226–1233.

[37] Yamashita, A., Arai, T., Ota, J., Asama, H., 2003. Motion planning of
multiple mobile robots for cooperative manipulation and transportation.
IEEE Transactions on Robotics and Automation 19 (2), 223–237.

[38] Yoshida, E., Blazevic, P., Hugel, V., Yokoi, K., Harada, K., 2006. Pivoting
a large object: whole-body manipulation by a humanoid robot. Applied
Bionics and Biomechanics 3 (3), 227–235.

[39] Yoshida, E., Esteves, C., Belousov, I., Laumond, J.-P., Sakaguchi, T.,
Yokoi, K., 2008. Planning 3-d collision-free dynamic robotic motion through
iterative reshaping. IEEE Transactions on Robotics 24 (5), 1186–1198.

[40] Yoshida, E., Poirier, M., Laumond, J.-P., Kanoun, O., Lamiraux, F.,
Alami, R., Yokoi, K., 2010. Pivoting based manipulation by a humanoid
robot. Autonomous Robots 28 (1), 77–88.

30

