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The behaviour of clean and contaminated bubbles in solid-body rotating flows is
compared in terms of drag and lift forces. Both spherical and deformed bubbles are
considered. For that comparison, we have completed the data published in Rastello
et al. (J. Fluid Mech., vol. 624, 2009, pp. 159–178; J. Fluid Mech., vol. 682, 2011,
pp. 434–459) by a new series of measurements. When they are contaminated, bubbles
are subject to an additional lift force due to the spinning of their surfaces, while the
clean ones are not. A detailed description of this spinning motion is presented
and an expression for the Magnus-like lift it induces is given in the light of the
new information. The component of the lift induced by flow rotation depends on
the Rossby number Ro, contrary to the case of clean bubbles. Including the ‘spin’
induced lift component in the dynamical equations provides a better prediction of the
bubble’s trajectory in contaminated fluid. The presence of contaminants immobilizes
the rear part of the bubble and reduces significantly the deformation. The laws of
deformation according to the nature of the surface are presented. The way deformation
influences the drag and lift coefficients in pure and contaminated fluids is quantified
and discussed. Expressions for these various coefficients are proposed.

Key words: drops and bubbles

1. Introduction

The behaviour of bubbles or solid particles in a horizontal solid-body rotational flow
has recently been the object of study: van Nierop et al. (2007), Bluemink et al. (2008,
2010), Rastello et al. (2009), Rastello, Marié & Lance (2011). This flow situation is
doubly interesting. It is representative of regions with local vorticity encountered
in many practical applications, such as turbulence or mixing layers. Secondly,
buoyancy-driven bubbles or particles in this type of flow reach an equilibrium point,
from which it is possible to visualize them steadily and/or measure the coefficients of
the drag and lift forces. The determination of such forces is fundamental to achieve a
satisfactory description of bubble or particle dispersion in rotational flows and more
generally in non-homogeneous flows. In the case of bubbles, the main advantage of

† Email address for correspondence: marie.rastello@legi.cnrs.fr
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Clean versus contaminated bubbles in a solid-body rotating flow

the solid-body rotation is that, since the bubble is kept stationary, surface deformation
and contamination, which impact these forces, can be more easily investigated. The
boundary conditions to which the surrounding liquid is subjected depends on the
purity of the bubble surface (Magnaudet & Eames 2000). When the bubble is clean,
the liquid is subjected to a shear-free condition and is free to slip along the surface.
When the surface is contaminated, its rigidity is increased by Marangoni effects. The
shear-free boundary condition is no longer satisfied, so that the slip of the liquid
at the bubble surface can be reduced or even suppressed. The forces acting on the
bubble in both cases will obviously be different. Deformation also contributes to
change the flow characteristics around the bubble and so, modifies the forces (Moore
1959). If the surface is stiffened by contaminants, deformation may be delayed and/or
reduced.

Some of these issues have been addressed in our two previous papers Rastello
et al. (2009, 2011). We have measured the drag and lift coefficients on spherical
bubbles whose surfaces are successively contaminated (experiments in demineralized
water) and clean (experiments in silicon oils). The striking difference between the
two situations is that the bubble surface is spinning when contaminated and in doing
so, induces an excess lift force on the bubble, similar to the one seen with solid
particles (Bluemink et al. 2008). The excess lift force due to spinning was found to
be well approximated by a Magnus-like lift force calculated on the measured mean
spinning rates.

In this investigation, we have completed the data using demineralized water to
better characterize the effect of contamination. The spinning motion causing the
excess lift has been described in more detail. It is shown that when the bubble
is partly contaminated, the spinning rate is faster in the region where the wake
separates. On the other hand, when the bubble is fully contaminated, the spinning
rate is constant all around the bubble as would be the case for a solid surface.
This spinning motion does not take place when the surface is clean, as proved by
visualizations in silicon oil. Also, we have quantified how contamination influences
the deformation. It is found that the deformation of contaminated bubbles, for a given
Weber number, is weaker than for clean bubbles and that it cannot be described by the
expressions proposed in Rastello et al. (2011) or in Legendre, Zenit & Velez-Cordero
(2012) for bubbles in stagnant pure liquids. Finally, the drag and lift coefficients for
deformed contaminated bubbles, which have not yet been measured, are reported and
compared to the coefficients previously obtained for deformed clean bubbles (Rastello
et al. 2011). The results are presented in the form of a synthesis of clean versus
contaminated bubbles and organized as follows. Section 2 provides the principle of
the forces measurements, the parameter range investigated and the non-dimensional
numbers useful for the study. Section 3 deals with the surface behaviour: the flow
near the surface, the characterization of the spinning motion and the deformation.
Section 4 comes with a presentation and discussion of the influence of the surface
behaviour on the drag and lift forces. An expression for the excess lift is proposed in
the light of the new data. Experimental bubble trajectories are compared to computed
ones using lift and drag forces established in the present paper.

2. Brief description of the experimental procedure

This section summarizes the main features of the experimental procedure used in
this study. The reader is addressed to Rastello et al. (2009, 2011) for a complete
description of the facility, the fluids properties and of the flow field characteristics.
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M. Rastello, J.-L. Marié and M. Lance

FIGURE 1. The forces applied to a bubble at equilibrium at moderate to high Reynolds
numbers (Rastello et al. 2009). FB is the buoyancy force, FD the drag force, FL the lift
force. FA is the sum of the added mass and inertial forces. In this diagram, the angular
velocity ω and equilibrium angle θe are negative.

2.1. Principle of the forces’ measurements
The experiment is conducted in a cylindrical tank (Ø= 10 cm, L = 10 cm) rotating
around a horizontal axis. The tank is filled with demineralized water or silicon oils
with various viscosities (table 1). When the rotation of the flow is stationary, all the
forces acting on the bubble balance and the bubble comes to an equilibrium point
(see figure 1). For the bubbles considered in this study which have moderate to large
Reynolds numbers, this force balance is given by

FB +FA +FD +FL = 0, (2.1)

where FB is the buoyancy. FA is the sum of the added mass and the inertial forces.
The inertial force corresponds to the pressure gradient in the fluid and is also called
the pressure gradient force. FD is the drag force and FL the lift force. FB and FA are
known analytically, the lift CL and drag CD coefficients are deduced as

CL =
1
2

(
1+CA −

g sin θe

reω2

)
(2.2)

and

CD =
4
3

gd cos θe

r2
eω

2
, (2.3)

where g is the gravity acceleration, (re, θe) are the polar coordinates (r, θ ) of the
centre of the bubble at equilibrium, ω the rotation speed of the tank and d the
equivalent diameter of the bubble. CA is the added mass coefficient. Its value is
0.5 for spherical bubbles (Magnaudet & Eames 2000), while for oblate spheroidal
bubbles it depends on the aspect ratio χ (Lamb 1932). Thus, if one measures re

and θe, d and ω, the values of CL and CD can be readily calculated. To make these
measurements the bubble at equilibrium is illuminated from behind and imaged
with a Phantom V4.3 high speed camera positioned in front of the tank. Its polar
coordinates, equivalent diameter and shape are measured from sequences of 2000
images processed using in-house software under Matlab.
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Experiment Fluid Density Kinematic Morton Reynolds Rossby Weber
(kg m−3) viscosity (cSt) (Mo) (Re) (Ro) (We)

Exp1a Demin. water
(DW-1)

1000 1 2.5× 10−11 4–280 5–35 0–0.7

Exp2a Silicon oil 1
(SO-1)

965 100 1.1× 10−1 0.1–5 1.6–4.3 0–2.7

Exp2a ,b Silicon oil 2
(SO-2)

950 20 2.0× 10−4 0.7–39 2.2–7.8 0–6.4

Exp2a Silicon oil 3
(SO-3)

910 5 8.3× 10−7 6.4–88 3.2–7.5 0–4

Exp2a Silicon oil 4
(SO-4)

818 1 1.1× 10−9 14–294 6.1–26.1 0–3.3

Exp2a Silicon oil 5
(SO-5)

761 0.65 2.2× 10−10 56–364 7.5–21.5 0.2–2.8

Exp3a Demin. water
(DW-2)

1000 1 2.5× 10−11 297–695 6–15 0.7–2.1

TABLE 1. Fluid properties – parameter ranges.
aExp1: Rastello et al. (2009), Exp2: Rastello et al. (2011), Exp3: present experiments.

bTen (SO-2) experiments have been performed in the present set of experiments to
visualize the wake of the bubbles together with the non-rotation of the bubble’s surface.

2.2. Parameter range – non-dimensional numbers – water quality
The non-dimensional numbers chosen to describe the flow are those already
used. These are the Reynolds number Re = |v − U|d/ν and the Rossby number
Ro= |v−U|/ωd (equal to the inverse of the local shear rate S) for spherical bubbles.
When the bubble is deformed, the Morton number Mo = gν4ρ3/σ 3 and the Weber
number We=ρ|v−U|2d/σ are added. ρ stands for the liquid density, ν the kinematic
viscosity and σ the surface tension. When the bubble is at equilibrium, its velocity is
v= 0 and the liquid velocity it sees is U=ωre, so that the non-dimensional numbers
simplify to Re= ωred/ν, Ro= re/d, We= ρω2r2

e d/σ . The ranges of non-dimensional
numbers investigated in the new set of experiments are reported in table 1, completed
by a phase diagram (Ro, Re) for water measurements (see figure 2). The rotation
rate for the tank is varied from 6 rad s−1 to 16 rad s−1, while the equivalent bubble
diameter ranges from 1.75 mm to 3.3 mm. The water used for the new set of
experiments DW-2 is demineralized water similar to the one previously used in
DW-1. It is characterized by a resistivity of 0.3 M� cm. This resistivity is between
that of the ultra-purified water of Duineveld (1995) (18 M� cm) and that of tap
water (3 k� cm). Because of practical constraints (bubble injection, temperature
measurements), it was extremely difficult to keep this water clean, which means it
contains contaminants. These contaminants are mainly solid impurities and/or traces
of tensio-actives.

3. Comparison between clean and contaminated bubbles: surface behaviour
3.1. Flow near the surface

To see how contaminants modify the flow near the bubble surface, the visualizations
in demineralized water reported in Rastello et al. (2009) have been completed by
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FIGURE 2. Phase diagram (Re, Ro) in experiments DW-1 and DW-2; spinning
measurements: @: 6 6 Ro < 10, +: Ro > 10; force measurements: E: 6 6 Ro < 10, ×:
Ro > 10.

visualizations in silicon oils. The flow around the bubble has been visualized using the
same technique, that is by seeding the fluid with very small fluorescent microspheres
(size= 3 µm). These microspheres, manufactured by Duke Scientific Corporation, are
made of polystyrene which has a density of 1.05 g cm−3. They are internally dyed,
which prevents dye leaching into aqueous media. Particles are illuminated with a laser
sheet and imaged with a camera. The best results in terms of uniform seeding have
been obtained in SO-2. Two typical examples of bubbles and their wakes in this oil
are given in figure 3(a,b). The first is for Re≈ 15, χ ≈ 1.2, the second for Re≈ 30,
χ ≈ 2. Even in case (b) where χ is high, the streamlines of the rotation flow deform
rather symmetrically around the bubble and the wake remains attached. This is what
is expected for clean bubbles if we refer to the Re–χ phase diagram of Blanco &
Magnaudet (1995) established for uniform flows. No particle in rotation around the
surface is detected in the frames taken at successive instants (figure 4). In contrast, the
wake behind the bubble in demineralized water is separated (figure 3c,d), which attests
to the presence of contaminants on the surface (Clift, Grace & Weber 1978). The
fluorescent particles stuck to the surface are spinning (figures 5–6). It is reasonable
to assume that they rotate with the same velocity as that of the fluid at the surface,
as imposed by the boundary conditions on the contaminated surface of the bubble.
We can assimilate their motion to the rotation of the surface and speak of a spinning
surface.

3.2. Characterization of the spinning motion
The last set of experiments in water DW-2 show that, in fact, two spinning regimes
can be observed. This will depend on the concentration of fluorescent particles
introduced in water.

3.2.1. ‘Partly contaminated’ or ‘naturally contaminated’ surface
When only a few fluorescent particles are added, these simply behave as tracers

which tag both the fluid motion and surface spinning (figure 3c). They do not change
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Clean versus contaminated bubbles in a solid-body rotating flow

(a) (b) (c) (d )

FIGURE 3. Clean surface: (SO-2) present investigation, (a) Re ≈ 15, χ ≈ 1.2; (b) Re ≈
30, χ ≈ 2. Contaminated surface: (DW-1 and DW-2), (c) surface partly covered by
contaminants, Re≈ 120; (d) surface saturated by contaminants, Re≈ 118.

FIGURE 4. Clean surface (SO-2) – present investigation: no spinning is detected, Re≈ 10.
Time between two successive images is 10 ms.

notably the surface contamination prevailing before their introduction, and hence also
the forces acting on the bubbles. The seeding concentrations corresponding to this
situation are typically 15–30 × 10−6 µg l−1. In that case, referred to as a ‘partly
contaminated’ or ‘naturally contaminated’ surface, surface spinning is non-uniform,
as already outlined in Rastello et al. (2009). This non-uniformity of the spinning can
be noticed by looking at the evolution of the angular space between the arrows on
the sequence of images in figure 5. In the rear region, where the wake of the bubble
is separated, the particles stuck on the surface first accelerate and then decelerate,
while in the front region near the incoming flow, they are spinning more slowly and
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FIGURE 5. ‘Partly contaminated’ surface (DW-1 and DW-2): time interval between two
images is 20 ms. The particles stuck on the surface are spinning, Re≈ 50. The arrows are
included to help follow some of these particles. On the last image, the visually estimated
edges of the wake are shown by the dashed lines. Sign+ designates the rear region of the
bubble where particles at the surface have a speed greater than ω, while sign= corresponds
to the front region where the particles have a constant speed ω.

FIGURE 6. ‘Fully contaminated’ surface (DW-2): the time interval between two images
is 20 ms. The particles stuck on the surface are spinning with a constant speed as they
would if they were stuck on a solid sphere, Ωb= 1.4ω, Re≈ 130. The arrows are included
to help follow a hole in the ‘crust’ of fluorescent particles around the bubble. The same
white line running inside the bubble links the position on the previous image to the current
one.

regularly. We deduce from this that these particles are not in solid-body rotation
as the surface of a solid sphere would be (Bluemink et al. 2008). Their behaviour
looks like something in between the shear-free and no-slip condition. It suggests,
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Clean versus contaminated bubbles in a solid-body rotating flow

in agreement with Bel-Fdhila & Duineveld (1996), McLaughlin (1996), Cuenot,
Magnaudet & Spennato (1997), that contaminants accumulate on a spherical cap
facing the separated wake, while they are absent from the forehead. The non-uniform
surface rotation has been quantified here by tracking individual particles at the surface
and by measuring their angular time positions and velocities. The spinning angles are
referenced as shown in the sketch in figure 7. Approximately 40 sequences of partly
contaminated spinning bubbles (DW-1 and DW-2) have been processed using in-house
software for image processing and tracking. All exhibit the same trend illustrated in
figure 8(a). On the front part of the bubble (0 > θ > θm − θl or θm + θl 6 θ 6 2π), the
angular velocity Ωb(front) is constant. Its value for the various bubbles is plotted as a
function of Re in figure 9(a). One can see that no particular Re dependency is visible.
The angular velocities in this region are close to ω within ±15 % standard deviation,
so Ωb(front) can be reasonably approximated to ω. On the rear part (−θl 6 θ − θm 6 θl),
Ωb increases, passes through a maximum Ωm for θm and decreases back to ω (see
figure 9b). The data are all well modelled by an equation of the form:

Ωb =Ωb(rear) =Ωm ×

[
1−

(
θ − θm

1.89

)2
]

for θ − θm ∈ [−θl θl], (3.1)

Ωb =Ωb(front) =ω for 0 > θ > θm − θl or θm + θl 6 θ 6 2π, (3.2)

where θl is the opening angle such that Ωb(θm ± θl) = ω. θl is of the same order
of magnitude as the separation angle θs (angle at which the wake detaches from
the bubble) that can be visually estimated from the images. This is illustrated in
figure 7, where a bubble is shown with the angles θm and θl obtained in that case.
One can check on this example that θm − θl and θm + θl indeed coincide well with
θs. Unfortunately, we were not able to have this qualitative result turned into a more
quantitative one. The reason is that in the range of Re investigated (Re > 50), θs
is always greater than 75◦, making its accurate estimation rather difficult. These
separation angles are much higher than those observed at the same Re on solid
spheres in uniform flow (Johnson & Patel 1999). The abrupt peak of vorticity at the
edge of the contaminated cap (McLaughlin 1996; Cuenot et al. 1997), joined to the
spinning motion (Giacobello, Ooi & Balanchandar 2009) may explain these higher
angles. The maximum spinning rate takes place for θm on average of the order of
202◦ with a standard deviation of 13◦. No clear dependence on Re or Ro is exhibited.

From (3.1) and the definition of θl it follows that:

ω=Ωm ×

[
1−

(
θl

1.89

)2
]

(3.3)

meaning that the maximum spin rate depends both on ω and θl. The evidence for
this is given in figure 9(b) where the spin rates measured for the various bubbles
are plotted in non-dimensional form. All of the data collapse onto a single curve, in
agreement with (3.1). The mean spin rate Ωb over a revolution is therefore higher
than the rotation rate ω and according to (3.1) and (3.3) the ratio can be expressed
by:

Ωb

ω
= 1+

2θl
3

3π(1.892 − θ 2
l )
. (3.4)

The ratio measured for each bubble in the two series of experiments DW-1 and DW-
2 are plotted versus Re in figure 10. Below 100, it increases significantly with Re,
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FIGURE 7. Definition of θ , θl and θm. θm is the angle at which the angular velocity of
the spinning surface is maximum in the case of partly contaminated bubbles. θl is defined
such that Ωb(θm ± θl)=ω. Dotted line: vertical axis.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
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 0.3

0.4

 0.6

 0.5

t (s) t (s)

(a) (b)

FIGURE 8. (a) Typical time evolution of the angular position of particles stuck on the
‘partly contaminated’ bubble surface (ω = 13.6 rad s−1, Re ≈ 112, Ro ≈ 9.3); θm is the
angle where the angular velocity is maximum, θm± θl the limit angles where Ωb goes from
ω to 6= ω or vice versa; solid lines have a slope equal to ω. (b) Time evolution of the
angular position (θb) divided by the angular velocity of the tank (ω) for particles stuck on
the bubble for a ‘fully contaminated’ surface for ten different experiments (1006Re6250,
10 rad s−1 6ω6 17 rad s−1, 6 6 Ro 6 11). Solid line has a slope 1.4.

in a way rather comparable to the one computed by Bluemink et al. (2008) for a
torque-free solid sphere in solid-body rotation. The numerical results are for constant
Ro equal to 10 (S = 0.1), a value close to our experimental Ro in that range of Re:
(7 6 Ro 6 13, Ro= 8.5). The similarity of behaviour was used to reformulate the lift
coefficient for these contaminated bubbles (appendix B). Above 100 the increase slows
down, and the data DW-2 clearly show that the ratio asymptotically tends to a constant
value of approximately 1.6 for high Reynolds numbers. Ro is then slightly lower: (66
Ro 6 8, Ro = 7). Low Reynolds numbers exhibit a spinning rate tending towards ω,
which is the limit expected for a solid sphere in Stokes flow. The behaviour of the
mean spinning rate with Re is well approximated by:

Ωb

ω
= 1.6− 0.6 exp(−0.011 Re). (3.5)
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FIGURE 9. (a) Spinning rate of the surface in the front region (outside the wake) divided
by the rotation rate of the tank versus Re number. ∗: Spherical bubbles (χ 6 1.1), E:
deformed bubbles (χ > 1.1). Average value: 1 is represented by a solid line. (b) Spinning
rate of the surface in the rear region (inside the wake) divided by the maximum spinning
rate of the surface Ωm versus θ − θm. One curve stands for one bubble. The longest one
is the mean curve given by (3.1).

50 100 150 200 250 300 350 4000 450 500
1.0

1.1

1.5

1.6

1.2

1.3

1.4

2.0

1.7

1.8

1.9

Re

FIGURE 10. Mean spinning rate divided by tank velocity versus Re number. ‘Partly
contaminated’ surface: ∗, spherical bubbles (χ 6 1.1, 7 6 Ro 6 13);E, deformed bubbles
(χ > 1.1, 6 6 Ro 6 8) (DW-1 and DW-2). ‘Fully contaminated’ surface: f, dye-saturated
bubbles (DW-2). Dashed line: mean value of the spinning rate for the dye-saturated
bubbles. Spinning sphere: A, numerical results (Bluemink et al. (2008), Ro = 10) and
dotted-dashed line, their fit: 1+ 0.0045 Re (Bluemink et al. 2010).

The increase in Ωb/ω is related to the enlargement of the separated wake with Re and
the spinning acceleration linked to it. As a consequence, the maximum spinning rate
increases as Re increases (see figure 11a). A good fit to the data is achieved with:

Ωm

ω
= 1+ 0.15 Re0.55. (3.6)
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FIGURE 11. (a) Maximum spinning rate divided by the rotation rate of the tank versus Re
number. ∗: Spherical bubbles (χ 6 1.1, 7 6 Ro 6 13),E: deformed bubbles (χ > 1.1, 6 6
Ro6 8). Solid line is given by (3.6). (b) Opening angle θl versus Re number. ∗: Spherical
bubbles (χ 6 1.1, 7 6 Ro 6 13),E: deformed bubbles (χ > 1.1, 6 6 Ro 6 8). Dashed line
is given by 1.89. Solid line is (3.7).

This fit is consistent with the fact that for Re→ 0, the wake is non-existent and the
contamination uniform, and that a constant spinning rate, equal to the Stokes limit, is
therefore expected. However it is not clear whether Ωm will increase further much for
Re > 400. There is a strong probability that the spinning behaviour will be modified
at very high Re, as the bubble would be highly deformed. Some saturation and even
a decrease might then take place. Combining (3.3) and (3.6) we get:

θl = 1.89
[

0.15 Re0.55

1+ 0.15 Re0.55

]1/2

, (3.7)

which fits quite well with the θl values obtained from our measurements (see
figure 11b). This shows that the modelling of the spinning rate based on the above
observations is overall consistent. For the aforementioned reasons, it is obvious that
the limit θl = 108◦ (1.89 rad) for Re infinite is purely theoretical. Nothing indicates
that it can be reached as Re→∞ and the bubbles highly deform.

3.2.2. Fully contaminated surface
Forcing contamination of water by increasing substantially the number of fluorescent

particles changes the interface conditions. In this case, the particles still tag the flow
motion but also act as additional contaminants which saturate the surface (figure 3d).
This results directly from their hydrophobic character. They thus diffuse on the
overall surface, making a kind of crust around it and solidifying it completely, as
a solid sphere’s surface would be. Practically this occurs for seeding concentrations
above 60–75 × 10−6 µg l−1. We have therefore investigated this situation to see the
consequences for the spinning motion. Figures 6 and 8(b) show that the surface
behaviour is completely different. Whatever the Re or Ro number (100 < Re < 250,
6 < Ro < 11) no acceleration of the surface is observed and surface spinning is
thus constant with a velocity 1.4 times the tank’s rotation rate. No obvious Re
or Ro dependencies have been observed so far. This value of 1.4 agrees with the
experimental spinning rates obtained by Bluemink et al. (2010) in this range of Re
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Clean versus contaminated bubbles in a solid-body rotating flow

50 100 150 200 250 3000

500

600

700

100

200

300

400
Re

FIGURE 12. Correlation between Re, We, Mo; u: silicon oils (SO-1 to SO-5); @: ultra-
purified water (Duineveld 1995);E: demineralized water (DW-2); dashed line: (3.8); dotted
line: (3.9).

and at low shear (S< 0.15) for solid spheres (see figure 19e of this reference). These
spinning rates are almost constant with Re, on average lower than 1.5, as is the case
for our fully contaminated bubbles.

It is worth noting that all the deformation and forces measurements in water (DW-1
and DW-2) which are reported and discussed hereafter, have been performed without
adding any fluorescent dye. The surface is therefore ‘partly’ contaminated, but for
simplicity we then will speak of the contaminated surface (bubble) in comparison with
a clean surface (bubble).

3.3. Deformation
In silicon oils (clean surface), the Reynolds numbers of deformed bubbles are well
correlated in terms of We, Mo by the relationship (Rastello et al. 2011)

Re= 2.05 We2/3Mo−1/5 (3.8)

Legendre et al. (2012) recently showed that this relation also works satisfactorily for
deformed bubbles freely rising in pure stagnant liquids. Their data base, taken from
the literature and their own experiments, shows that (3.8) is valid over a wide range
of Mo ([2.5× 10−11

− 1.7× 100
]), including the case of pure water. This is illustrated

in figure 12 where the reference measurements of Duineveld (1995) in ultra-purified
water are plotted against (3.8), together with our data in silicon oils. In contrast, the
data in the contaminated environment (DW-2) plotted on the same figure exhibit a
different trend. They can be fit by the same correlation in We2/3Mo−1/5 but with a
proportionality factor of 3

Re= 3 We2/3Mo−1/5. (3.9)

The change in prefactor is consistent with the drag differences existing between the
pure and contaminated situations (§ 4.1). Indeed, this kind of correlation is closely
linked to the drag law (Moore 1965, p. 762), hence to the range of Re number
considered and to interface conditions. This is why the data somewhat deviate from
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FIGURE 13. Aspect ratio versus We number. Silicon oils:f: (SO-4);q: (SO-3);p: (SO-2);
u: (SO-1). Water: E: contaminated water (DW-2); @: ultra-purified water (Duineveld
1995); dotted line: (3.10); dashed line: (3.11); solid line: (3.13) for the various Mo; dashed
dotted line: (3.14).

(3.8) and (3.9) at high Re (Re> 500). The variations of the aspect ratio as a function
of We are plotted in figure 13 for sets SO-1 to SO-4 and DW-2. SO-5, whose
behaviour is close to SO-4, was not shown for clarity. Data are compared to the
expression derived from potential flow theory by Moore (1965) for We numbers of
the order of unity and its expansion at small We (We� 1), respectively:

We(χ)= 4χ−4/3(χ 3
+ χ − 2)[χ 2 sec−1(χ)− (χ 2

− 1)1/2]2(χ 2
− 1)−3, (3.10)

χ = 1+ 9
64 We+O(We2). (3.11)

As noted in Rastello et al. (2011), data in silicon oils are in between these two
expressions for χ in the range 1.25–2.4, the discrepancy with these expressions
increasing with We. A better fit of the measured aspect ratios over the range
χ ∈ [1; 2.4], We ∈ [0; 6] is obtained when correcting (3.11) as

χ = 1+ 9
64 We+ 3

250 We2
+O(We3). (3.12)

One reason advanced to explain this discrepancy, was the loss of the fore–aft
symmetry of the bubble as χ increases and its consequence for the wake. However,
the recent observations of Legendre et al. (2012) suggest that this behaviour arises
from viscosity effects, which explain that the deformation decreases monotonically
when the Morton number Mo increases. The expression they propose to describe this
effect is written as

χ =
1

1− 9
64 We(1+ 0.2 Mo1/10We)−1

. (3.13)

For χ in the range 1.25–2.4, deformations in SO-1 to SO-4 follow the Morton
dependency within measurement uncertainty, thus validating this argument. As Mo
decreases, deformation increases for a given value of We and tends to the behaviour
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Clean versus contaminated bubbles in a solid-body rotating flow

characterizing deformation in water (Mo→ 0 in (3.13)). This is the case for SO-4
(Mo = 1.1 × 10−9) which lies close to the measurements in ultra-purified water by
Duineveld (1995) (Mo= 2.5× 10−11). It is to be noted that below 1.2, deformations
are systematically lower than the various models, even in water. Referring to the
results of Legendre et al. (2012), the behaviour characterizing deformation in water
describes a number of water data in the literature covering different types of bubble
trajectories and where the degree of surface cleanness is not always controlled. This
led the authors to conclude that surface contamination and the bubble trajectory
have little influence on deformation compared to viscosity. Our measurements in
demineralized water (DW-2) somewhat contradict this result since they stand below
the measurements in the silicon oil with the highest viscosity (SO-4, Mo= 1.1× 10−4).
However this behaviour is not unexpected. The spin measurements (§ 3.2.1) seem
to indicate that contaminants collect at the back of the bubble which contribute
to immobilize and rigidify this part of the surface. Many studies (Bel-Fdhila &
Duineveld 1996; Cuenot et al. 1997; Magnaudet & Eames 2000) show in that case
that the pressure about the bubble equator steeply increases close to that on a
solid sphere. The pressure difference with the front stagnation is therefore reduced
compared with a clean bubble, thus reducing deformation. In addition, since drag
increases (§ 4.1) the relative velocity, hence the front pressure at equilibrium position,
decreases compared to that of a clean bubble. The rotation of the surface in DW-2
(§ 3.2) may also be suspected to have an influence, but insofar as the drag is very
close to that of non-rotating contaminated bubbles, we are not convinced that the
influence is significant. The shape factor of these bubbles remain 61.2 and over that
range evolves as

χ = 1+ 3
32 We+O(We2). (3.14)

Besides lower deformation, departure from the spherical shape is delayed compared
to Duineveld (1995). This appears clearly in figure 14 where χ is plotted as a
function of Re. Taking χ > 1.1, the onset of deformation starts around Re= 370 for
contaminated bubbles against Re= 250 in pure water. This corresponds to We numbers
of the order of 1.1 in both cases. To complete this investigation, a few measurements
have been performed when surface is saturated with fluorescent dye (figure 3d). No
obvious difference with the ‘partly contaminated’ situation was exhibited. This is not
surprising since bubbles are in the range of Re (6700) where deformation remains
moderate. The difference between a fully or partly rigid surface is more likely to
play a role for much bigger bubbles. These bubbles are difficult to study in this
kind of flow because they are less stable, due to important oscillations around their
equilibrium position coupled to shape oscillations.

4. Comparison between clean and contaminated bubbles: forces
4.1. Drag forces

The drag coefficients CD of spherical and deformed bubbles in the various fluids
are plotted as a function of Re in figure 15. Clearly, the measurements for spherical
bubbles in silicon oils (SO-1 to SO-5) are well described by the empirical drag law
proposed by Mei, Klausner & Lawrence (1994) for clean bubbles in uniform flows

CDu(clean) =
16
Re

[
1+

[
8

Re
+

1
2

(
1+

3.315
Re1/2

)]−1
]

(4.1)
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FIGURE 14. Aspect ratio (χ ) versus Re.E: demineralized water (DW-2);@: ultra-purified
water (Duineveld 1995); dotted line: onset of deformation χ = 1.1.
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FIGURE 15. Normalized drag coefficients CD versus Re−1. Silicon oils:u: (SO-1);p: (SO-
2); q: (SO-3); f: (SO-4); ×: (SO-5); dashed line: (4.1), solid line: (4.4). Contaminated
water:E: (DW-1 and DW-2); +: Haberman & Morton (1953)’s drag results; dotted line:
(4.2); dashed-dotted line: (A 1) and (A 3).

and those in demineralized water (DW-1) by the drag law of Schiller & Naumann
(1933) for solid spheres.

CDu(solid) =
24
Re
[1+ 0.15 Re0.687

]. (4.2)

Subscript u stands for uniform flow. Since the data DW-1 fall on the curve that
describes solid spheres, bubbles are typically in the regime where their surfaces are
highly contaminated and the terminal velocity is independent of the contaminants
concentration (Clift et al. 1978). For bubbles freely rising in stagnant liquids, this
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FIGURE 16. Drag coefficients versus Ro.E: (DW-1); solid line: CD/CDu(solid)= 1+ 3/Ro2;
dashed line: CD/CDu(solid) = 1+ 0.77 Ro−1 (Bluemink et al. 2010).

occurs when nearly the rear half of the bubble surface is covered by surfactants, and
the shear stress and the pressure are dramatically increased at the leading edge of the
spherical cap angle thus formed (Bel-Fdhila & Duineveld 1996; Cuenot et al. 1997).
The numerical studies of theses last authors are for Re = 100. They clearly show
(p. 49) that CD reaches the sphere value for θcap around 60◦–70◦. Referring to § 3.2,
this is also what likely happens here. The important result is that the spinning and
the flow rotation have a very limited impact on the drag prevailing in the uniform
flow situation. This behaviour is in agreement with the simulations of freely rotating
spheres in uniform (Bagchi & Balachandar 2002) and rotating flow (Bluemink et al.
2010). The influence of the flow rotation alone can be estimated only in silicon oils
where no spinning takes place. However, a precise estimation is difficult because,
whatever the fluids, Re and Ro cannot be varied independently in the experiment
(Rastello et al. 2011). Low Ro (high shear rates S) corresponds to low or moderate
Reynolds numbers, while high Ro is associated with moderate and high Reynolds
numbers. Given this difficulty, it was shown that, for silicon oils, drag measurements
vary as

CD =CDu(clean)

(
1+

0.3
Ro5/2

)
(4.3)

in the range 2 6 Ro 6 22, confirming that the effect of the flow rotation remains
weak, of the order of 5 % for Ro= 2 (S= 0.5). This Ro= S−1 dependence is weaker
than that in 0.55S2 found by Legendre & Magnaudet (1998) for linear shear flows.
A similar estimation for water (DW-1) yields a dependence roughly in 3/Ro2 up
to Ro = 5, comparable to 0.77 Ro−1 found for spinning spheres by Bluemink et al.
(2010) (figure 16). This means that the effect is once again limited, less than 10 %
for Ro = 6. But, as mentioned above, it does not have the same meaning since it
includes also spinning. In addition, the range Ro< 6, which corresponds to a bubble
equilibrium position close to the centre of the tank, cannot be investigated unlike in
silicon oils. The reason is that the wake is separated and its asymmetry is much larger
for rotating bubbles (figure 3a,c). Hence, it disturbs the rotating flow incoming on the
bubble (Rastello et al. 2009) and measurements in such a situation are rejected. The
range of Ro is thus too restricted to estimate the dependence properly. The criteria
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used to reject biased measurements have been extensively discussed in the above
reference. This was established from particle image velocimetry (PIV) measurements,
flow visualizations and the power spectrum of the bubble displacements. It was
checked that for Ro > 6–7, the wake becomes extinct in approximately one half of
a full cylinder revolution and thus does not impinge on the bubble. In the range of
Re investigated, the criteria proposed by Bluemink et al. (2010) to estimate the wake
extinction (equation (3.12), p. 15) are satisfied. For Ro below 6, the wake is generally
deflected toward the cylinder axis by the pressure gradient and strongly disturbs the
rotational flow. The signature is a 2ω peak on the power spectrum and measurements
are then rejected.

Concerning the deformed bubbles, the results indicate that the drag on clean bubbles
increases as the surface departs from a spherical shape, and that the Re value of the
departure onset and the magnitude of the increase depends on Mo. This Re value, for
a given Mo, can be calculated by (3.8) and (3.12) or (3.13). The origins of the drag
increase were discussed in Rastello et al. (2011). The analytic drag law that predicts
well the experimental trends in the range χ < 2 was shown to be

CD(clean)(χ) =
16
Re

[
1+ 8

15(χ − 1)+ 0.015(3G(χ)− 2)Re
1+ 0.015 Re

+

[
8

Re
+

1
2

(
1+

3.315H(χ)G(χ)
Re1/2

)]−1
]
, (4.4)

where G and H are geometrical factors calculated by Moore (1965). This law,
represented in figure 15, is a modification of (4.1) to account for the deformation and
which retrieves Moore’s drag law at large Reynolds numbers and the asymptotic drag
law of Taylor & Acrivos (1964) when Re and χ are small. Aoyama et al. (2016,
2017) recently showed that it provides good predictions of the terminal velocitiy
for clean ellipsoidal bubbles in infinite stagnant liquids. In contaminated water, the
drag also increases as the bubbles start to deform and it is worth noting that the
measurements are close to the terminal drag coefficients measured by Haberman
& Morton (1953) for freely rising bubbles in contaminated water. As for spherical
bubbles, this shows that the flow rotation and the bubble spinning do not much
influence drag coefficients. Contrary to clean bubbles, the wakes for contaminated
bubbles separate at low Re and no theoretical solutions are available for the drag.
An alternative for engineering applications is to use the correlation proposed by Loth
(2008) for freely rising bubbles in contaminated water (appendix A), and plotted in
figure 15.

4.2. Lift forces
Figure 17 shows the lift coefficients measured in (SO2–SO5) as a function of the Re
number. The most viscous (SO1-Re 6 5) was not plotted for clarity. The solid line
represents the correlation that we proposed to fit the lift coefficients of spherical clean
bubbles calculated by Magnaudet & Legendre (1998) in the range 5 6 Re 6 1000. Its
expression is given by

CL(clean) = 0.5+ 4
(

1−
6

5 Re1/6

)
exp(−Re1/6). (4.5)
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FIGURE 17. Lift coefficients versus Re. Silicon oils:p: (SO-2);q: (SO-3);f: (SO-4); ×:
(SO-5); solid line: (4.5); dashed line: (4.6).

Whatever the Mo, the measurements fall onto (4.5) as long as the bubbles remain
spherical and deviate more or less as deformation starts. As for drag, the Re value
of the deviation onset and the magnitude of the increase depends on Mo. This Re
value can be calculated from the same equations. As seen in figure 17, the relationship
(Rastello et al. 2011)

CL(clean)(χ)=CL(clean)(χ = 1)+ 0.8(χ − 1)− 1.3
(χ − 1)3/2

1+ 0.004 Re3/2
(4.6)

well reproduces the lift increases for SO-3 to SO-5. The second term in (4.6)
expresses the increase of CL with the aspect ratio when Re tends to infinite. It is
close to the theoretical solution obtained for ellipsoidal bubbles in a weak inviscid
shear flow by Naciri (1992), who showed that this solution closely follows the
evolution of the added mass coefficient. The last term is an Re-dependent viscous
pressure correction which is suggested by the simulations by Adoua (2007), Adoua,
Legendre & Magnaudet (2009) for oblate bubbles in a weakly viscous linear shear
flow, and whose numerator was modified to provide the best fit for our data. Referring
to these authors, this correction is linked to the asymmetric distribution of pressure
at the surface of the bubble which results from the top–bottom asymmetry of the
boundary layer generated at the bubble surface by the inhomogeneity of the base flow.
For higher viscosity (SO-2), the increase followed by the decrease is also predicted
by (4.6) but with a very slight shift with the experimental results. No Ro dependence
for the lift coefficient was noted, in agreement with the simulations of Magnaudet &
Legendre (1998).

This is not the case for lift coefficients in contaminated water (DW-1 and DW-2)
plotted in figure 18. In these experiments, bubbles can be considered as spherical up
to Re≈ 400 (figure 14) and deformation remains small even at Re= 700 (χ 6 1.2). In
the range 80 6 Re 6 250 and 6 6 Ro, we observe that lift coefficients at high Ro are
significantly higher than those at low Ro, suggesting that they vary inversely to the
shear S. Moreover, they are much higher than the lift coefficients measured when the
surface is clean, for a given value of Re. This was attributed to the fact that surface
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1.0

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

100 200 300 400 500 600 700

Re

FIGURE 18. Lift coefficients versus Re. Contaminated water (DW-1 and DW-2):E: 6 6
Ro < 10; +: Ro > 10; dashed line: (4.5); dashed-dotted line: (4.8); solid line: (4.9) for
6 6 Ro< 10; dotted line: (4.9) for Ro > 10.

is spinning and in doing so, induces an additional lift on the contaminated bubbles,
similar to a Magnus force (Rastello et al. 2009). Referring to the work of Bagchi &
Balachandar (2002), we made the assumption that the effects of rotation and of spin
for the lift, could be linearly superimposed for intermediate Re and that the total lift
coefficient for a spinning bubble could be expressed as

CL(Re, Ro, Ωb)=CL(Re, Ro, Ωb = 0)+CL(Re, Ro= 0, Ωb), (4.7)

where CL(Re,Ro,Ωb= 0) is the lift coefficient induced by the flow rotation for a non-
spinning bubble, and CL(Re,Ro= 0,Ωb) the Magnus-like lift coefficient for a spinning
bubble in a non-rotating flow. As simulations on contaminated bubbles in rotating flow
were missing, the first coefficient was determined by using Magnaudet & Legendre’s
(1998) expression for a clean bubble in a rotating flow (50 < Re 6 1000), while the
second coefficient was estimated from our experimental average spinning rates Ωb by
using the expression found by Bagchi & Balachandar (2002) for a spinning sphere in
a linear shear flow. Summing the two yielded an equation of the form

CL =
1
2
(1+CA)− 0.25+ 1.2 Re−1/3

− 6.5 Re−1
+ 0.55×

3Ωb

8ω
(4.8)

in reasonably good agreement with the data (dashed-dotted line in figure 18). However,
this modelling is to be reconsidered in the light of our additional data in water and the
simulations and experiments of Bluemink et al. (2008, 2010) available for spinning
and non-spinning spheres in a rotational flow. The details of this revision are given in
appendix B. By their simulations, these authors showed that the addition of the effects
pointed out by Bagchi & Balachandar (2002) in shear flow still works in rotating
flow. They deduced from their results (numerical and experimental) the expressions at
low and high Re of the lift coefficient induced by the rotational flow (equations (B 2),
(B 3)) on non-spinning spheres. We found that our lift data minus the Magnus-like
contribution calculated from our new mean spinning rate measurements follow these
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expressions satisfactorily and increase with Ro (decrease with S) with the same
dependency of 1–1.45Ro−1 (B 6). We therefore replaced the first coefficient in (4.7)
by a single expression that agrees with (B 2) and (B 3). The total lift coefficient for
contaminated bubbles thus obtained now reads:

CL(cont.) = [−0.26(1.45− Re1/2) exp(−0.08 Re1/2)](1− 1.45 Ro−1)+
3
16
Ωb

ω
. (4.9)

As attested to in figure 18, equation (4.9) provides a good prediction of the data
for 5 6 Re 6 700 and Ro > 6. It is to be noted that the value 0.55 of Bagchi &
Balachandar (2002) for the Magnus-like lift term in (4.8) was changed into 0.5, to
be consistent with Bluemink et al. (2008, 2010). All these results tend to prove that
lift for spinning bubbles and for spinning spheres behave rather similarly. They also
indicate that the small deformations of bubbles at high Re do not have a substantial
effect on the behaviour of the lift coefficient in comparison to spheres.

4.3. Effect of the ‘spin’ induced lift on bubble trajectory
A few experiments were performed in releasing one bubble far from the centre of the
tank. This was achieved by detaching a bubble initially stuck on the wall cylinder
in stationary rotation by a small impact on the wall. In this case the bubble follows
a spiralling trajectory up to its final equilibrium position (re, θe), where all the forces
acting on it balance. Given our range of Re, the equation that is well suited to describe
this motion is (Magnaudet & Eames 2000)

ρVbCA
dv

dt
= −ρVbg+ ρVb(CA + 1)

DU
Dt

+ ρVbCL(U− v)× (∇×U)+
1
2
ρCDAb|U− v|(U− v). (4.10)

The notations are those already in use, with in addition, Vb the volume of the bubble
and Ab its projected area. The various forces on the right-hand side of (4.10) are the
buoyancy: FB, the sum of the added mass and inertia: FA, the lift: FL and the drag:
FD, respectively. Figure 19(a,b) provides an example of trajectory obtained by solving
this equation using the Matlab solver ode113. The initial conditions are the diameter
of the bubble, its position and velocity, as determined at the initial instant of the
image sequence, and the initial velocity U of the undisturbed flow at the centre of the
bubble calculated from the rotation rate ω. Comparison of panels (a) and (b) clearly
indicates that the experimental bubble trajectory is not predicted very well when
omitting the Magnus-like contribution to the lift. It should be noted that simulations
were performed taking Ro constant and equal to 6 in (4.9) which is approximately
the average value for this bubble trajectory.

It was not possible to perform trajectories in silicon oil, since in the present device
it implies having the bubble stuck to the tank side walls while the flow is establishing
and then release it by knocking on the tank when the flow is in solid-body rotation.
Unfortunately, if bubbles stick easily to the side walls when water is inside, there is
no way to make them stick to the tank when in silicon oil. Thus, as soon as one
sets the tank in motion whatever the speed chosen and the way to reach it, a bubble
in silicon oil will begin to move as well while the solid-body rotation flow is not yet
established and will quietly reach its equilibrium position together with the flow being
organized.
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FIGURE 19. (a) Computed bubble trajectory without Magnus-like effect. u: Experiment
(d= 0.98 mm, ω= 14.7 rad s−1); solid line: (4.9) without the second term. (b) Computed
bubble trajectory with Magnus-like effect. u: Experiment same parameters; solid line:
(4.9). Centre of the tank: (X = 0, Y = 0).

5. Conclusion
This paper comes as a synthesis of our two previous papers Rastello et al. (2009,

2011). This synthesis includes new results that improve our understanding of bubble
behaviour in a solid-body rotation flow. For that, we have investigated the two
remaining points that our previous studies had not tackled. The first concerns forces
on deformed contaminated bubbles with Reynolds numbers up to 700. The second,
focuses on the surface visualization of clean bubbles.

It was first shown that while the surface is spinning for contaminated bubbles, clean
bubbles have a still surface. The wake behind the bubble is different as well: clean
bubbles have an unseparated wake with quite a small extension, while for the same
Reynolds numbers, the wake behind contaminated bubbles separates very rapidly and
gets a much bigger extension downstream. This wake’s extension disturbs the rotating
flow incoming on the bubble when its equilibrium position is close to the centre of
the tank (Rastello et al. 2009). Thereby, the low Rossby Ro< 6 or high shear S> 0.2
range corresponding to this situation cannot be investigated in water. No restriction of
this kind happens with clean bubbles.

The spinning motion of contaminated bubbles’ surface outlined in Rastello et al.
(2009) has been studied in detail. Two spinning regimes can in fact be observed. In
situations where bubbles are ‘partly contaminated’ or ‘naturally contaminated’, the
contaminants accumulate in the rear part of the bubble (the region of the separated
wake). The consequence is that their spinning rate is not constant. It is constant and
equal to the rotation rate of the tank in the front region (outside the wake). But it
increases, passes through a maximum for some angle θm and then decreases in the rear
region (inside the wake). The acceleration/deceleration motion can be modelled by a
‘square’ similarity law with two parameters: the angle θl delimiting the two regions
and the rotation rate of the tank. Both angles θl and θm scale as Re0.55. The mean
spinning rate for the surface obtained in Rastello et al. (2009) has been reformulated
in the light of these new data. In the situation where bubble contamination is forced
by adding particles to the water, their surfaces are saturated by contaminants. In that
case, called the ‘fully contaminated’ bubble, their spinning rate is constant and equal
to 1.4 times the rotation rate of the tank. All the results on contaminated bubbles
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obtained for Re up to 150 are consistent with the results reported by Bluemink et al.
(2008, 2010) for spheres in the same kind of flow.

Compared to clean bubbles, the deformation of contaminated bubbles remains
extremely limited. A shape factor, at maximum equal to 1.2, is measured for Re as
high as 700, while it is of the order of 2 in ultra-purified water (Duineveld 1995).
This shows that the accumulation of contaminants in the rear part of the bubble
strongly reduces its ability to deform. The shape factor of these bubbles linearly
increases with the Weber number as (3/32)We, which is lower than the theory at
small We of Moore (1965). Clean bubbles in silicon oils at low viscosity have a
clean-water-like behaviour. For more viscous oils, the deformation for a given We
decreases with the Morton number Mo, following well the relation proposed by
Legendre et al. (2012). This relation better accounts for the deformations than the
one we had proposed in Rastello et al. (2011).

The new results for the drag forces concern deformed contaminated bubbles. The
measurements are close to the terminal drag coefficients measured by Haberman &
Morton (1953) for freely rising bubbles in contaminated water. Whether the bubbles
are spherical or deformed, their spinning has very little influence on the drag force,
in agreement with the simulations of freely rotating spheres in uniform (Bagchi &
Balachandar 2002) and rotating flow (Bluemink et al. 2010). It was checked that
the drag correlation of Loth (2008), in between the drag law for the spherical case
(Schiller & Naumann 1933) and that of the spherical cap case (Joseph 2006), well
reproduced the data.

The measurements at high Re confirm that lift coefficients for a contaminated bubble
are much higher than those for clean bubbles for a given value of Reynolds number.
This excess lift results from the spinning motion of the surface which takes place
when it is contaminated. It can be well modelled by a Magnus-like lift force. The
first modelling that we proposed in Rastello et al. (2009) has been revisited in the
light of our additional spinning rate measurements and of simulations and experiments
of Bluemink et al. (2008, 2010) available for spinning and non-spinning spheres in a
rotational flow. It varies as (3/16)(Ωb/ω),Ωb denoting the mean spinning rate of the
bubble. Subtracting the excess lift from the total lift yields the lift contribution of the
solid-body rotation flow. This lift contribution is close to that obtained by Bluemink
et al. (2008, 2010) for non-spinning spheres. Like them, we find that it increases with
Ro (decreases with S) following the same dependency in 1 − 1.45 Ro−1. All these
results tend to prove that lift for spinning bubbles and for spinning spheres behave
rather similarly. When surface is clean, the lift is caused only by the flow rotation
and does not depend on Ro. But it is significantly modified as bubbles deform.

Finally, we have included the ‘spin’ induced lift component in the dynamical
equation of motion to compute the trajectory of a contaminated bubble measured
experimentally. Results indicate that the trajectory is thus better predicted.

Appendix A. Drag correlation for deformed contaminated bubble

Loth (2008) proposed an empirical correlation by compiling a large data base
for freely rising contaminated bubbles with Re over the range 10–10 000. In this
correlation, CD for a given We, is expressed as a function of a normalized drag
increment 1C∗D in the form

CD(cont.)(We)=CD(We→ 0)+1C∗D(CD(We→∞)−CD(We→ 0)), (A 1)
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where CD(We→ 0) is given by the spherical case (4.2), whereas CD(We→∞) is
given by the spherical cap case (Joseph 2006) representing the situation with highest
deformation

CDsc =
8
3
+

14.24
Re

. (A 2)

The best fit to our data with a normalized drag increment 1C∗D in the form proposed
by Loth (2008) is obtained for a constant of 0.0055

1C∗D = tanh[0.0055(We Re0.2)1.6], (A 3)

which is slightly higher than the constant 0.0038 recommended by the author to
represent the average trend in various contaminated fluids but is consistent with the
tap water data of Haberman & Morton (1953), as can be seen in figure 15.

Appendix B. Reformulation of the lift coefficient for contaminated bubbles
The simulations of Bluemink et al. (2008, 2010) were performed with two different

methods: the direct numerical simulation method Physalis (Zhang & Prosperetti 2005)
and the finite-volume code Jadim (Magnaudet, Rivero & Fabre 1995), which both
give comparable results. They suggest that the linear uncoupling of the effects is well
satisfied in rotation flow for 5 6 Re 6 200 and S 6 0.1 (Ro > 10) with a Magnus-like
lift coefficient based on the calculated spin rate Ωs:

CLMagnus(Ωs)≈ 0.5
3
8
Ωs

ω
=

3
16
Ωs

ω
(B 1)

and that the lift coefficient for a non-spinning sphere increases in a logarithmic way
as

CL(5 6 Re 6 200, S 6 0.1, Ωs = 0)= 0.51 log10 Re− 0.22. (B 2)

Their experiments were performed with spinning spheres in various liquids, including
water. They show that, in most cases, an increase in S results in a decrease of the lift
coefficients for Re above 130, and has no substantial influence below, in agreement
with our bubble data (figure 18). In contrast, for Re above 200, the same experiments
suggest that the lift coefficient minus the contribution of the spin (B 1) decreases with
Re as

CL(Re> 274, S 6 0.4, Ωs)−CLMagnus =−0.40 log 10 Re+ 1.99. (B 3)

This equation represents a mean trend. It is a fit to the mean lift coefficients obtained
for a given liquid (Re) by averaging the values measured for various S between 0 and
0.4. It is derived on the assumption that for Re above 200, the contribution of the
spin to the lift coefficient can still be estimated by (B 1), as it is established for 5 6
Re 6 200. Since the contaminated bubbles in our experiments behave like spheres, in
particular concerning the drag, we assessed whether (B 2) and (B 3) provided a correct
estimation of CL(Re,Ro, Ωb= 0) in (4.7). This point has been checked by calculating
the quantity

1CL =CL(Re, Ro, Ωb)−CLMagnus(Ωb), (B 4)

where the Magnus-like contribution is calculated from the new fitting of our average
spin rates (3.5). We see in figure 20(a) that 1CL is in pretty good agreement with
(B 2) for Re < 200, but lower than the values expected from (B 3) for Re > 270. A
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FIGURE 20. (a) Lift coefficients minus Magnus-like contribution versus Re. Contaminated
water (DW-1 and DW-2):E: 6 6 Ro< 10; +: Ro > 10; dashed line: (B 2); dashed-dotted
line: (B 3); solid line: (B 5). (b) Lift coefficient minus Magnus-like contribution normalized
by (B 2) at low Re and (B 5) at high Re versus Ro; solid line: (B 6).

best fit in that range requires to change the additional constant and we modify the
equation as

CL(Re> 274, Ro > 6, Ωs = 0)=−0.40 log 10 Re+ 1.82. (B 5)

This constant typically corresponds to the lift coefficients of Bluemink et al. (2010)
which are measured in water at shear rates S around 0.2 (Ro = 5), against ≈0.1 in
our case. The deformation of bubbles being weak up to Re = 500, it can hardly be
invoked to explain such a difference. Dividing 1CL by (B 2) at low Re and (B 5) at
high Re shows that this ratio in average increases with Ro as

1CL

CLfit
=−1.45 Ro−1

+ 1.16, (B 6)

which is the increase rate found for spinning spheres in water by these authors. The
fact that 1CL/CLfit does not go to 1 as Ro−1

→ 0 results from the scaling by (B 2)
which does not totally fit our data at high Ro for Re below 200. As a proof, if we
normalize 1CL by 1–1.45 Ro−1, we find in figure 21 that the data for the various Ro
collapse rather well onto a single curve given by

1CL

1− 1.45 Ro−1
=−0.26(1.45− Re1/2) exp(−0.08 Re1/2). (B 7)

For the reason mentioned in § 4.1 no measurements were performed at Ro below
6, because the bubble’s wake then disturbs the basic solid rotation flow. We have
therefore no idea how (B 6) behaves at low Ro (high S). In the case of spheres, it
was found that the normalized lift ratio stops decreasing at approximately S = 0.4
and is approximately constant for larger S. This corresponds here to Ro ≈ 0.25.
Equation (B 7) is interesting because it matches the changes in the behaviour of the
lift coefficients existing between 5 6 Re 6 200 and Re > 274 satisfactorily. According
to Bluemink et al. (2010), these changes can be attributed to changes in the structure
of the wake behind the sphere. This statement is based on the fact that in uniform
flows the wake of a sphere becomes non-axisymmetric above Re≈ 212 and becomes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

62
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ol
or

ad
o 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
, o

n 
27

 O
ct

 2
01

7 
at

 1
5:

35
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 24

https://doi.org/10.1017/jfm.2017.624
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


M. Rastello, J.-L. Marié and M. Lance

1.0

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

100 200 300 400 500 600 700

Re

FIGURE 21. Lift coefficient minus Magnus-like contribution normalized by Ro dependency
versus Re.E: 6 6 Ro< 10; +: Ro > 10; solid line, (B 7).

unsteady for Re > 274 (Johnson & Patel 1999). It results from (B 7) that the lift
coefficient for contaminated bubbles can be reasonably well estimated by (4.9) (see
figure 18).
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