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We build a tight-binding Hamiltonian describing Co/Ni over graphene, contemplating ATOP (a Co/Ni atom
on top of each carbon atom of one graphene sublattice) and HCP (one Co/Ni atom per graphene plaquette)
configurations. For the ATOP configuration the orbitals involved, for the Co/Ni, are the dz2−r2 , which most
strongly couples to one graphene sublattice and the dxz, dyz orbitals that couple directly to the second sublattice
site. Such configuration is diagonal in pseudospin and spin space, yielding electron doping of the graphene
and antiferromagnetic ordering in the primitive cell in agreement with DFT calculations. The second, HCP,
configuration is symmetric in the graphene sublattices and only involves coupling to the dxz, dyz orbitals.
The register of the lattices in this case allows for a new coupling between nearest-neighbor sites, generating
nondiagonal terms in the pseudospin space and novel spin-kinetic couplings mimicking a spin-orbit coupling
generated by a magnetic coupling. The resulting proximity effect in this case yields ferromagnetic order in the
graphene substrate. We derive the band structure in the vicinity of the K points for both configurations, the Bloch
wave functions and their spin polarization.

DOI: 10.1103/PhysRevB.94.235407

I. INTRODUCTION

Graphene-like two-dimensional structures have captured
the imagination of experimentalists for practical applications
because of the high hole/electron densities (1013 cm−2 much
larger than GaAs electron gas) achieved by gating [1] at a
small fraction of the cost and complexity of producing a
two-dimensional electron gas with well-known semiconduc-
tor technologies. One can also build semiconductors from
graphene by breaking the sublattice A/B symmetry, in systems
such as boron nitride [2], generating a gap (∼5 eV) at the K

point with a quadratic dispersion. Because it is undesirable
to introduce substitutional impurities to modify graphene’s
properties, due to the rapid degradation of electron mobilities,
one can resort to proximity effects [3] in order for graphene
to inherit potentially useful couplings and properties such
as a strong spin-orbit coupling [4], magnetism [5], and
even chirality [6]. Deposited transition metals such as Co
and Ni have matching lattice constants and a few layers
easily form on graphene with a large perpendicular magnetic
anisotropy [7]. Such magnetic layers can be used to introduce
new effective couplings between graphene pz orbitals, thus
inducing a strong Rashba-type coupling, inherited from the
Co/Ni overlayer, and also an electron spin polarization with
perturbative modifications of the electron mobility.

In this article we consider tight-binding modeling of Co/Ni
on planar graphene in two configurations. As found by DFT
calculations [8], the lowest-energy configuration corresponds
to one sublattice site of the graphene atop a Co/Ni atom
while the neighboring sublattice atom is in a Co/Ni HCP site.
For this configuration, Ref. [8] has shown that the graphene
inherits an antiferromagnetic order due mostly to the sublattice
asymmetry of the coupling between pz orbitals of carbon
and Co. This type of order lends itself to enhanced RKKY
interactions between Co islands on graphene [9], that can be
tuned to be either ferro or antiferro by gate control.

The second configuration we consider corresponds to a
global lattice shift from the previous one where all graphene
carbon sites fall at HCP sites of the Co/Ni layer. Referring
to the detailed DFT study of Ref. [8] we will first derive the
tight-binding model for the first configuration by describing
the orbital overlaps and chemical potentials. We then use
such parametrization to estimate the corresponding ones from
the second configuration. While the first configuration yields
antiferro order on graphene, the second configuration is
symmetric between A/B sublattices and yields ferromagnetic
order in the graphene plane.

The summary of this paper is as follows. In Sec. II we
describe the two different registers we consider for the tight-
binding model. Focusing first on the ATOP configuration we
identify the most salient overlaps involved between the carbon
2pz orbitals and the 3d orbitals of Co/Ni (considering only
nearest-neighbor overlaps), and derive using the band folding
scheme, the effective Hamiltonian for π electrons of graphene
in the presence of the magnetic overlayer. Next, we shift the
lattice register and consider the HCP configuration, where now
the configuration is such that nondiagonal pseudospin terms
arise, coupling A and B sublattices. In Sec. III we obtain the
Bloch Hamiltonians for both configurations and determine the
band structure and wave functions for the bulk samples. The
new HCP configuration displays a nontrivial ferromagnetic
ordering and a spin-dependent kinetic term proportional to the
spin-splitting energy of the Co/Ni covering. Finally, we discuss
spin-related properties of the new Hamiltonians for biased and
equilibrium current setups.

II. ATOP AND HCP CONFIGURATIONS
AND BAND FOLDING

Our system consists of a monolayer of Co atoms adsorbed
on graphene. A bilayer of Co was shown to be stable [8] sus-
taining a strong anisotropy with magnetization per atom close
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FIG. 1. Schematic picture of the configurations of a Co mono-
layer adsorbed on graphene. (Left) ATOP configuration: Co atoms
are directly over the atoms of sublattice A and atoms of the sublattice
B are in the hcp sites. (Right) HCP configuration: atoms of the
sublattices A and B are at hcp sites. In both cases the magnetic order
of cobalt, as well as the resulting magnetic order of the sublattices A
and B, is indicated.

to the bulk values. For the model derived here, we only take into
account graphene interactions with the first adsorbed layer.
We consider two registries for the positions of the Co atoms
with respect to graphene atoms belonging to the sublattices A
and B, which are shown in Fig. 1. In the configuration of Fig.
1 (left) (ATOP configuration), the C atoms of the sublattice A
are directly under the Co atoms, while atoms of sublattice B
are at the HCP sites of the cobalt lattice. In the configuration
of Fig. 1 (right) (HCP configuration), both sublattice atoms
are at HCP sites of Co. In the model computations, the
first-neighbor approximation is used. We will consider

FIG. 2. Positions of the Co first neighbor around A (left) and B
(right), for the ATOP configuration. The orbitals that intervene in the
overlaps of Co with A and B are drawn in each case.

that Co is magnetized in the positive ẑ direction (see Fig. 1).
The intrinsic spin-orbit interaction (SOI) and the Rashba
coupling will not be addressed here since further overlaps
will be involved beyond the d orbitals of the Co. Nevertheless,
in the absence of magnetism, the SOI is the only coupling
generating spin effects and should be taken into account for
interface metals such as Pb [10] and Au [4] to assess, e.g., the
enhancement of topological properties of graphene. The SOI
due to changes in the hybridization of carbon in graphene as
a result of deformations of the surface due to corrugation or
hydrogenation [11] will be left to future work.

A. ATOP configuration

In the ATOP configuration, as shown in the left of Fig. 2,
the orbital pz of a C atom A, Apz, has greatest overlap
with the orbital dz2−r2 (in short dz2 ), of the Co layer. For the
neighboring B atom [see Fig. 2 (right)], the orbital pz, Bpz,
overlaps preferentially with the orbitals dxz and dyz of the
first-neighbor Co atoms (there are three Co atoms around each
B atom of graphene). The graphene-Co coupled Hamiltonian
for the ATOP configuration is the following:

HATOP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Apz Bpz dz2−r2 dxz dyz[
εp Vppπ

V ∗
ppπ εp

] [
Vpdz 0 0

0 n̂xṼpdπ n̂yṼpdπ

]
⎡⎢⎣−Vpdz 0

0 −n̂x Ṽpdπ

0 −n̂y Ṽpdπ

⎤⎥⎦
⎡⎢⎣εdz2 + δ1Sz 0 0

0 εdxz + δ2Sz 0

0 0 εdyz + δ2Sz

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

where the array consists of four subspaces. The upper left
subspace contains the bare pz-orbital site energies of graphene
εp, and the off-diagonal overlaps Vppπ , between A-B sites. The
upper right subspace contains the overlaps between the orbitals
Apz and Bpz with the orbitals dz2 , dxz, and dyz, which are Vpdz,
n̂x Ṽpdπ , and n̂y Ṽpdπ (computed below), respectively, where
n̂x, n̂y are the corresponding direction cosines in a Slater-

Koster construction [12,13]. Note that the lower left submatrix
is the negative of the upper right submatrix since 〈l′|H |l〉 =
(−1)l+l′ 〈l|H |l′〉 (see Ref. [13]), where l is the orbital angular
momentum quantum number (l = 1 for p and l = 2 for d

orbitals).
Finally, the lower right subspace contains, in the diagonal,

the energies of the coupled d orbitals, εz2 , εxz, and εyz. As we
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are considering that Co is magnetized in the ẑ direction, we
add to the d-orbital energies the Stoner exchange splittings
δ1 for the orbital dz2 and δ2 for the orbitals dxz and dyz. We
assume that dxz and dyz have the same exchange coupling. Sz

is the z component Pauli matrix.
The overlaps between orbitals pz, dxz, and dyz, are calcu-

lated using the relations [12,13]

〈Bpz|H1|dxz〉 =
√

3n2
znxVpdσ + nx

(
1 − 2n2

z

)
Vpdπ ,

〈Bpz|H1|dyz〉 =
√

3n2
znyVpdσ + ny

(
1 − 2n2

z

)
Vpdπ ,

(2)

where nx , ny , and nz are the direction cosines. Both overlaps
have a common factor that only depends on nz, Vpdσ , and Vpdπ .
In spherical coordinates nz = cos φ, where φ is the polar angle.
The first three neighbors, B, of the ATOP site share the same φ

angle. Replacing nx = cos θ sin φ and ny = sin θ sin φ, where
θ is the azimuthal angle in the graphene plane and defining

Ṽpdπ = sin φ[
√

3n2
zVpdσ + (

1 − 2n2
z

)
Vpdπ ], (3)

which is a common term for both overlaps, we have

〈Bpz|H1|dxz〉 = n̂x Ṽpdπ ,

〈Bpz|H1|dyz〉 = n̂y Ṽpdπ ,
(4)

where n̂x = cos θ and n̂y = sin θ .
The eigenvalue equation for Eq. (1) has the form(

Hγ T

T † Hχ

)(
γ

χ

)
= E

(
γ

χ

)
, (5)

with

Hγ =
(

0 Vppπ

V ∗
ppπ 0

)
; T =

(
Vpdz 0 0

0 n̂x Ṽpdπ n̂yṼpdπ

)
,

Hχ =

⎛⎜⎝(εdz2 + δ1Sz) − εp 0 0

0 (εdxz + δ2Sz) − εp 0

0 0 (εdyz + δ2Sz) − εp

⎞⎟⎠,

where we have taken the energy of the orbital pz of graphene
as the reference of zero energy, subtracting εp to the diagonals
of Hγ and Hχ . The wave-function subspaces γ = (ψApz

,ψBpz
)

and χ = (ψz2−r2 ,ψxz,ψyz) are coupled by T . Eliminating the
wave-function subspace of the Co overlayer (χ ) one arrives at

[Hγ + T (E − Hχ )−1T †]γ = Eγ, (6)

where we have folded all the information about the couplings
and the Co Hamiltonian into a graphene effective coupling
between A and B sublattices and renormalized the site
energies. To linear order in E and lowest order in the coupling
T , we can expand the inverse operator so that we obtain[

Hγ − T H−1
χ T †]γ ≈ ESγ, (7)

where S = 1 + T H−2
χ T †. Now one defines � = S1/2γ , a

function that is normalized |�|2 ≈ γ †γ + χ †χ to the same

order as the new effective Hamiltonian (following Ref. [14]).
The final expression is then

S−1/2
[
Hγ − T H−1

χ T †]S−1/2� ≈ E�. (8)

The effective Hamiltonian for graphene accounting for its
interactions with Co is

Heff = S−1/2
[
Hγ − T H−1

χ T †]S−1/2. (9)

The inverse of the matrix Hχ is then

H−1
χ =

⎛⎜⎜⎝
− (εp−εd )+δ1Sz

(εp−εd )2−δ2
1

0 0

0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

0

0 0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

⎞⎟⎟⎠,

(10)
so the product T H−1

χ T † is expanded as

T H−1
χ T † =

(
Vpdz 0 0

0 n̂mxṼpdπ n̂myṼpdπ

)⎛⎜⎜⎝
− (εp−εd )+δ1Sz

(εp−εd )2−δ2
1

0 0

0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

0

0 0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

⎞⎟⎟⎠
⎛⎜⎝−Vpdz 0

0 −n̂mxṼpdπ

0 −n̂myṼpdπ

⎞⎟⎠,

where we have included the subindex m to the cosine directors
nmx , nmy to indicate that for each of the three Co atoms
surrounding a B-type atom on graphene (see Fig. 2), we have
a different overlap. The product becomes the simple diagonal
expression

T H−1
χ T †=

⎛⎝ (εp−εd )+δ1Sz

(εp−εd )2−δ2
1
V 2

pdz 0

0 (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

[
n̂2

mx+n̂2
my

]
⎞⎠.

(11)

The Hamiltonian for the ATOP configuration is obtained
substituting Eq. (11) into Eq. (9), approximating S ∼ 1 and
performing the sum

∑3
m=1[n2

mx + n2
my] = 3, which accounts

for the contribution to the site energy due to hops of electrons
that go from B to Co and return back to B (see Ref. [15]). The
effective Hamiltonian is then

HATOP ≈ Hγ −
⎛⎝ (εp−εd )+δ1Sz

(εp−εd )2−δ2
1
V 2

pdz 0

0 3 (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

⎞⎠.

(12)
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In second quantized form, the Hamiltonian for the full Brillouin zone can be written as

HATOP = −
∑
〈ij〉

γ0a
†
i bj − (εp − εd ) + δ1Sz

(εp − εd )2 − δ2
1

V 2
pdz

∑
i

a
†
i ai − 3

(εp − εd ) + δ2Sz

(εp − εd )2 − δ2
2

Ṽ 2
pdπ

∑
j

b
†
j bj , (13)

where γ0 = −Vppπ is the regular off-diagonal kinetic term in graphene and ai and bj are the annihilation operators in the sites
A and B graphene sublattices.

B. HCP configuration

For the lattice symmetric or HCP configuration, the orbital dz2 does not intervene as in the previous case due to the relative
positions of the Co and graphene atoms, as all graphene sites now see the Co/Ni as the B sites in the ATOP configuration. The
overlap matrix is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Apz Bpz dz2−r2 dxz dyz[
εp Vppπ

V ∗
ppπ εp

] [
0 n̂x Ṽpdπ n̂yṼpdπ

0 n̂x Ṽpdπ n̂yṼpdπ

]
⎡⎢⎣ 0 0

−n̂x Ṽpdπ −n̂x Ṽpdπ

−n̂y Ṽpdπ −n̂y Ṽpdπ

⎤⎥⎦
⎡⎢⎣εdz2 + δ1Sz 0 0

0 εdxz + δ2Sz 0

0 0 εdyz + δ2Sz

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

In this case A and B see the same environment of three Co atoms at the same distance, as can be seen in Fig. 3. Both graphene
sites interact with them through the orbitals dxz and dyz.

The product T H−1
χ T † is now

T H−1
χ T † =

(
0 n̂lx Ṽpdπ n̂ly Ṽpdπ

0 n̂lmxṼpdπ n̂lmyṼpdπ

)⎛⎜⎜⎝
− (εp−εd )+δ1Sz

(εp−εd )2−δ2
1

0 0

0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

0

0 0 − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2

⎞⎟⎟⎠
⎛⎜⎝ 0 0

−n̂lx Ṽpdπ −n̂lmxṼpdπ

−n̂ly Ṽpdπ −n̂lmyṼpdπ

⎞⎟⎠,

where, as before, n̂l denote direction cosines in the plane that go from the site A to the Co l = 1,2,3 (A-Co direction) and n̂lm are
direction cosines in the plane that go from the site B to the Co l = 1,2,3 (B-Co direction) (see Fig. 4). Performing the product
we have:

T H−1
χ T † =

⎛⎜⎝
(εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

[
n̂2

lx + n̂2
ly

] (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

[
n̂lx n̂lmx + n̂ly n̂lmy

]
(εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ [n̂lx n̂lmx + n̂ly n̂lmy] (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

[
n̂2

lmx + n̂2
lmy

]
⎞⎟⎠. (15)

FIG. 3. Positions of the Co first neighbor around A (left) and B (right), for the HCP configuration. The orbitals that intervene in the overlaps
of Co with A and B are drawn in each case.
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FIG. 4. Positions of the Co and B carbon atoms around a
carbon atom A, in the HCP configuration of Co/graphene. l = 1,2,3
represents the Co surrounding A, and m = 1,2,3 represents the hops
from A to B.

The Hamiltonian for the symmetric configuration is ob-
tained substituting Eq. (15) into Eq. (9), and that

∑3
l=1[n2

lx +
n2

ly] = 3, which accounts for the contribution to the site energy
of hops of electrons that go from A to Co and return back
to A.

∑3
m,l=1[n2

lmx + n2
lmy] = 3 given that nlmx = cos θ ′ and

nlmy = sin θ ′, where θ ′ is the azimuthal angle for the overlap
between site B and the Co orbitals. The latter sum accounts
for the contribution to the site energy of hops of electrons that
go from B to Co and return back to B.

Finally, we have the somewhat more complicated summa-
tion

∑3
m,l=1[n̂lx n̂lmx + n̂ly n̂lmy], which is performed in detail

in Appendix A. The Hamiltonian for this configuration is
then

HHCP ≈ Hγ −
⎛⎝3 (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ − (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

− (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ 3 (εp−εd )+δ2Sz

(εp−εd )2−δ2
2
Ṽ 2

pdπ

⎞⎠.

(16)

The complete HCP Hamiltonian, in terms of the creation
and annihilation operators in the sites A and B of graphene,

ai and bj , is given by

HHCP =
(

−γ0 + (εp − εd ) + δ2Sz

(εp − εd )2 − δ2
2

Ṽ 2
pdπ

) ∑
〈ij〉

a
†
i bj

− 3
(εp − εd ) + δ2Sz

(εp − εd )2 − δ2
2

Ṽ 2
pdπ

⎛⎝∑
i

a
†
i ai +

∑
j

b
†
j bj

⎞⎠.

(17)

III. BAND STRUCTURE AND MAGNETIC ORDER OF THE
COBALT/GRAPHENE SYSTEM

We now derive the Hamiltonians in reciprocal space in
order to determine the band structures of graphene modified
by adsorbed and polarized Co/Ni in both ATOP and HCP con-
figurations. The Bloch Hamiltonian is derived by computing
the following matrix elements in pseudospin space

HAA(k) = 1

N

N∑
l=1

N∑
j=1

eik·(RAj −RAl )〈φAl|H |φAj 〉 = HBB(k),

(18)

where N is the number of unit cells, k is the Bloch wave vector
and we take (RAj − RAl) = 0 since we do not consider second-
neighbor interactions (only j = l terms). The off-diagonal
terms in pseudospin space are

HAB(k) = 1

N

N∑
l=1

N∑
j=1

eik·(RBj −RAl )〈φAl|H |φBj 〉 = H
†
BA(k),

(19)

where (RBj − RAl) = �m is restricted to nearest neighbors
with m = 1,2,3 and �1 = (0,a/

√
3) �2 = (a/2,−a/2

√
3),

�3 = (−a/2,−a/2
√

3) (see Fig. 1).
For matrix element HAA, we consider couplings that

connect A to a Co/Ni orbital and then return to same A site
(corrections to the site energy see Ref. [15]). In HAB, we
consider couplings that connect A to Co/Ni sites and then
go to one of the three B atoms that are nearest neighbors
(corrections to the nearest-neighbor matrix elements). In the
following we will compute these matrix elements and derive
the resulting band structure in the vicinity of the K points.

A. ATOP Bands

Using Eqs. (18) and (19), and evaluating in the vicinity of the K points Kξ = ξ [(4π/3a),0], the continuum Hamiltonian in
reciprocal space for the ATOP configuration can be shown to be

HATOP(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− (εp−εd )+δ1

(εp−εd )2−δ2
1
V 2

pdz v(ξpx − ipy) 0 0

v(ξpx + ipy) − (εp−εd )−δ1

(εp−εd )2−δ2
1
V 2

pdz 0 0

0 0 −3 (εp−εd )+δ2

(εp−εd )2−δ2
2
Ṽ 2

pdπ v(ξpx − ipy)

0 0 v(ξpx + ipy) −3 (εp−εd )−δ2

(εp−εd )2−δ2
2
Ṽ 2

pdπ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (20)
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With a more compact parametrization

HATOP(k) =

⎛⎜⎜⎜⎜⎝
μ − h0z − hz0

2 − hzz

2 v(ξpx − ipy) 0 0

v(ξpx + ipy) μ − h0z + hz0

2 + hzz

2 0 0

0 0 μ + h0z − hz0

2 + hzz

2 v(ξpx − ipy)

0 0 v(ξpx + ipy) μ + h0z + hz0

2 − hzz

2

⎞⎟⎟⎟⎟⎠, (21)

where μ = −0.622 eV, h0z = 0.195 eV, hz0 = −0.214 eV, and hzz = −0.766 eV, are coefficients determined by ab initio
calculations, in the vicinity of the K points, in Ref. [8]. Comparing Eqs. (20) and (21), we can make the identification:

− V 2
pdz(εp − εd )

(εp − εd )2 − δ2
1

= μ − h0z,
δ1V

2
pdz

(εp − εd )2 − δ2
1

= (hz0 + hzz)

2
,

−3
Ṽ 2

pdπ (εp − εd )

(εp − εd )2 − δ2
2

= μ + h0z, 3
δ2Ṽ

2
pdπ

(εp − εd )2 − δ2
2

= (hz0 − hzz)

2
. (22)

The identification allows us to determine the coefficients of the Hamiltonian for configurations ATOP and later estimate the
parameters of model HCP. In the Appendix we explicitly write the coefficients h0z,hz0,hzz, and μ in terms of the Slater-Koster
coefficients.

In Eq. (20) v = √
3aγ0/(2�), with −γ0 = Vppπ =

−3.033 eV. Diagonalization of the Hamiltonian in Eq. (21)
gives the valence and conduction bands

εv(k) = 1
2

(
2μ − szhz0 −

√
(2h0z + szhzz)2 + 4v2�2|k|2),

εc(k) = 1
2

(
2μ − szhz0 +

√
(2h0z + szhzz)2 + 4v2�2|k|2).

(23)

where sz = ±1 corresponding to the two spin eigenvalues. As a
consequence of the A-B asymmetry due to the ATOP geometry,

FIG. 5. Band structure in the vicinity of the Dirac point for a monolayer of Co over graphene in the ATOP configuration (center left) and the
HCP configuration (center right). The Fermi level (zero of energy) is indicated in both plots with a continuous line. In both cases the graphene
layer is n doped [17]. The eigenvectors corresponding to each band are indicated for both configurations. k0x is the adimensional wave vector
in the x̂ direction. In this plot py = 0, px = �kx − �Kξ , and ξ = +1. The behavior of the total magnetization of graphene 〈Sz〉T , given by the
contribution of all bands, as a function of the wave vector kx = k0x(4π/3a), for the ATOP configuration (top left) and the HCP configuration
(top right). The shaded regions (blue) indicate the zones in which the spin polarization is different from zero.

there is a mass term mv = (2h0z + szhzz)/2v that will generate
spin-dependent gaps [16,17] and a quadratic dispersion (see
Fig. 5). Depending on the material overlaps we can have a light
spin-up holes and heavier spin-down holes. On the other hand,
for the conduction band it is the up-spin electrons that are
lighter in relation to their down-spin counterparts. Something
that would be more difficult to assess form DFT studies, that is
clear from the analytical picture, is that an interplay between
pseudospin and spin-active components of the Hamiltonian
controls the spin-dependent effective masses, which may have
a high contrast making one spin species much more mobile
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than the other. Thus, the ATOP configuration modifies the
linear dispersion in a qualitative way changing the dispersion
and mobility of the pristine graphene layer.

For k = 0, this Hamiltonian HATOP(k) is diagonal in the
basis ⎛⎜⎜⎜⎝

A↑
A↓
B↑
B↓

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎠. (24)

Under this condition, we can write:

HATOP(k = 0) = μ1σ1s − h0zσz1s

−hz0

2
1σ Sz − hzz

2
σzSz, (25)

where 1s and 1σ are the identity matrices in the spin and
pseudospin space respectively.

Looking at Eq. (25), we can easily recognize the effect of
each term on the energy of the system. The first term represents
a global energy shift, which is given by the chemical potential
μ = −0.622 eV. The negative sign indicates that electrons
are transferred from Co to graphene. This electron transfer is
depicted in Fig. 5 (left), where the bare graphene bands are
shifted by μ.

The second term is a sublattice antisymmetric site energy,
h0z = 0.195 eV. The site energy, in this case, decreases in
sublattice A and increases in B, indicating that the sublattice
A is more strongly influenced by Co than B (see Figs. 1 and 2),
due to the pz-dz2 overlap of sublattice A.

The third term is a sublattice symmetric spin-dependent
coupling between Co and graphene. This term gives the
spin coupling averaged over sublattices A and B. We have
hz0/2 = −0.107 eV, making the states A↓ and B↓ ener-
getically favorable. As we have chosen the reference spin
magnetization of the Co to be up-spin, therefore, the sublattice
averaged magnetic order of graphene is antiferromagnetic
(AFM) (with respect to Co).

Finally, the fourth term corresponds to a sublattice antisym-
metric kinetic exchange coupling between Co and graphene
spins. We have hzz/2 = −0.383 eV, which as can be seen in
Eq. (25), makes the states A↓ and B↑ energetically favorable,
indicating that sublattice A is AFM while sublattice B is FM
with respect to Co spin magnetization.

Although the previous simple tight-binding model seems
quite good, there are nevertheless some inconsistencies due to
the truncation of higher-order terms involving more complex
couplings. We have used a separate spin splitting parameter
δ2 to describe the coupling to dxz,dyz bands. For there to
be a up-spin magnetization, the average δ over all d orbitals
of the Co, should be negative. This is consistent with the
top-right relation [Eq. (22)] between DFT parameters [8]
and tight-binding parameters. Nevertheless, the bottom-right
equation implies a positive δ value since (εp − εd )2 > δ2

2, from
an estimation using Hartree-Fock orbital energies [18] and δ2

from Ref. [8]. This cannot be corrected by including dxy and
dx2−y2 since these contributions add up with the same sign. In
the DFT calculation, the ratio between δ1 ∼ −2.76 eV and
δ2 ∼ −1.083 eV is almost a factor of three but both have
consistently a negative sign, i.e., up (majority) spin is lower
energy than down (minority) spin. All the rest of the parameters
of the tight binding have consistent values to DFT.

B. HCP bands

The continuum Hamiltonian in the vicinity of the K points for the HCP configuration is

HHCP(k) =

⎛⎜⎜⎜⎜⎝
−3 ε+δ2

ε2−δ2
2
Ṽ 2

pdπ 0 − v
γ0

(−γ0 + ε+δ2

ε2−δ2
2
Ṽ 2

pdπ

)
p∗ 0

0 −3 ε−δ2

ε2−δ2
2
Ṽ 2

pdπ 0 − v
γ0

(−γ0 + ε−δ2

ε2−δ2
2
Ṽ 2

pdπ

)
p∗

− v
γ0

(−γ0 + ε+δ2

ε2−δ2
2
Ṽ 2

pdπ

)
p 0 −3 ε+δ2

ε2−δ2
2
Ṽ 2

pdπ 0

0 − v
γ0

(−γ0 + ε−δ2

ε2−δ2
2
Ṽ 2

pdπ

)
p 0 −3 ε−δ2

ε2−δ2
2
Ṽ 2

pdπ

⎞⎟⎟⎟⎟⎠,

(26)

where p = ξpx + ipy , p∗ = ξpx − ipy , and ε = εp − εd . This Hamiltonian can be written as:

HHCP(k) =

⎛⎜⎜⎜⎝
−μ′ − h′

z0 0 − v
γ0

(−γ0 − h′
0x − h′

zx)p∗ 0

0 −μ′ + h′
z0 0 − v

γ0
(−γ0 − h′

0x + h′
zx)p∗

− v
γ0

(−γ0 − h′
0x − h′

zx)p 0 −μ′ − h′
z0 0

0 − v
γ0

(−γ0 − h′
0x + h′

zx)p 0 −μ′ + h′
z0

⎞⎟⎟⎟⎠.

(27)

In order to estimate the coefficients μ′, h′
z0, h′

0x , and h′
zx , of this Hamiltonian, we refer to the coupling of the B site in the ATOP

configuration, which was parameterized by DFT. Comparing equations (22), (26), and (27) we arrive at the values

μ′ = −(μ + h0z) = 0.427 eV, h′
0x = −μ′

3
= −0.142 eV,

h′
z0 = hz0 − hzz

2
= 0.276 eV, h′

zx = −h′
z0

3
= −0.092 eV. (28)
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Diagonalization of the Hamiltonian HHCP(k) gives the eigenvalues

εv(k) = −μ′ + szh
′
z0 + v�

γ0
(−γ0 − h′

0x + szh
′
zx)|k|,

εc(k) = −μ′ + szh
′
z0 − v�

γ0
(−γ0 − h′

0x + szh
′
zx)|k|.

(29)

where sz are the eigenvalues of Sz and correspond to the two possible spin orientations. In contrast to the ATOP configuration,
here the dispersion is linear with a modified velocity ṽF = v(−γ0 − h′

0x + szh
′
zx)/γ0. Of course, corrections to velocities are one

order of magnitude smaller that the pristine graphene values [see Eqs. (28)].
One can diagonalize the Hamiltonian HHCP(k) in the basis⎛⎜⎜⎝

A↑
A↓
B↑
B↓

⎞⎟⎟⎠ = 1√
2

⎛⎜⎜⎝
0
1
0

ξeiξφk

⎞⎟⎟⎠,
1√
2

⎛⎜⎜⎝
1
0

ξeiξφk

0

⎞⎟⎟⎠,
1√
2

⎛⎜⎜⎝
0
1
0

−ξeiξφk

⎞⎟⎟⎠,
1√
2

⎛⎜⎜⎝
1
0

−ξeiξφk

0

⎞⎟⎟⎠, (30)

where φk = arctan(py/px). Given that in Eq. (26) we have other nondiagonal terms besides the bare graphene terms, and therefore
we have other k-dependent terms, we cannot make a useful analysis at k = 0 as in the ATOP case. The diagonal Hamiltonian for
k �= 0 close to Kξ is:

HHCP(k) = −μ′

⎛⎜⎜⎜⎜⎜⎝
A↑+B↑ A↓+B↓ A↑−B↑ A↓−B↓

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ + v�

γ0
|k|(h′

0x + γ0)

⎛⎜⎜⎜⎜⎜⎝
A↑+B↑ A↓+B↓ A↑−B↑ A↓−B↓

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠

−h′
z0

⎛⎜⎜⎜⎜⎜⎝
A↑+B↑ A↓+B↓ A↑−B↑ A↓−B↓

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ + v�

γ0
|k|h′

zx

⎛⎜⎜⎜⎜⎜⎝
A↑+B↑ A↓+B↓ A↑−B↑ A↓−B↓

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
= −μ′1σ1s + v�

γ0
|k|(h′

0x + γ0)̃σz1s − h′
z01σ Sz + v�

γ0
|k|h′

zx σ̃zSz, (31)

where σ̃z is the pseudospin matrix in the basis of Eq. (30).
Within this basis, the interpretation of the terms is not so
straightforward as for the ATOP configuration. However,
one can see that the first term also shifts the site energy,
with a chemical potential μ′ = 0.427 eV, that represents a
transfer of electrons from Co/Ni to graphene. We can see
this effect in Fig. 5 (right panels). For the second term we
have h′

0x = −0.142 eV, and looking at Eq. (31), we see that
the states A↑ − B↑ and A↓ − B↓ are equally favorable,
indicating symmetry between the sublattices A and B. This
is because in the sublattice symmetric configuration, both A
and B, are at the HCP sites of Co (Figs. 1 and 3).

The magnetic order of graphene, with respect to Co mag-
netic order, is determined by the eigenvalue of lowest energy
and its corresponding eigenvector in Eq. (31). Given that h′

z0 =
0.276 eV and h′

zx = −0.092 eV, this state corresponds to
|A↑ − B↑〉. Using this state, with ky = 0 and ξ = 1, we have

〈Sz〉 = 〈A↑−B↑|1σ Sz|A↑−B↑〉

= 1

2

(
1 0 −1 0

)⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

1
0

−1
0

⎞⎟⎟⎠=1,

(32)

so every band has a full spin polarization in either of the two
spin orientations as depicted in right-hand panel of Fig. 5.

The coupling of the spin and kinetic energy [see last term
in Eq. (31)] induces a striking behavior, which mimics a spin-
orbit coupling induced by the bias current and the magnetism
of the Co. In the sense of equilibrium/persistent currents [19],
at k = 0 all bands have occupation below the Fermi energy,
thus the spin polarization is zero at both K points. As kx

increases, e.g., in the positive direction, (see Fig. 5 top-right
panel) one of the bands emerges above the Fermi level and we
have a net polarization, which is up spin. A range of kx values
preserves this polarization until a second band emerges from
the Fermi sea, then the polarization returns to zero. The same
behavior occurs in the opposite kx direction. This behavior
is also borne out from the ATOP configuration but within a
smaller wave-vector range (see Fig. 5 top-left panel) in the
vicinity of the K point. Note that this term is not derived
from the atomic SOI (as is the case for both the intrinsic
and Rashba interactions) but is purely parameterized by the
spin-splitting energy of the Co and the wave-vector deviation
from the K point. As can be seen from Eqs. (22) and (28), if the
spin-splitting energy δ1,2 vanishes, this term does not appear.

Following the lowest-energy occupied states, the system is
ferromagnetic in the vicinity of k = 0. At the K point we have
degenerate bands with the same spin orientation as the Co
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layer, nevertheless, driving a current by means of an external
electric field in the graphene plane, one can tune the kx vector
so that two oppositely oriented bands are the lowest occupied
bands, making the magnetization ground state zero. So we
have magnetic state switching controlled by the charge current
on the graphene layer.

Various scenarios of interest can be explored by using,
as proposed in Ref. [8], a Cu surface so as to sandwich the
graphene layer between Co and Cu. The Cu surface will serve
to control the Fermi level and access differently polarized
magnetization states as a function of gate voltage and charge
current.

IV. CONCLUSIONS

We have derived, within the perturbative tight-binding
approximation, the spectral signatures of two Co-graphene
registries, the ATOP (one Co atom atop of each A carbon atom)
configuration and the HCP (Co at the centers of the hexagonal
cells of graphene). Each registry produces a very different
spectrum: (i) The ATOP configuration generates a gap in
pristine graphene with spin-dependent electron heavy and light
effective masses for both the conduction and valence bands that
are tunable controlling orbital overlaps. As found by DFT, the
graphene layer becomes almost perfectly antiferromagnetic
with down-spin orientations at sublattice A and up-spin
favored orientation at sublattice B. (ii) The HCP configuration
preserves the linear dispersion of graphene, with a small modi-
fication of the fermi velocities. The resulting linear dispersions
shift in energy according to the spin orientation favoured on
the sublattices. For this configuration, ferromagnetic order is
preferred and it is parallel to the Co polarization. We have
suggested ways to manipulate the magnetic state of the surface
by applying a gate voltage (in the work function regime) and by
driving a current through the system. There is peculiar coupling
between spin and electron momentum induced by the magnetic
state of the Co. It amounts to a spin-orbit coupling induced by
the driving current. This feature is worth exploring in the future
for both its transport and topological implications in graphene
nanoribbons.

Using Co and Ni interchangeably in this work is a
good approximation as can be judged from detailed DFT
calculations [20]. Nevertheless, there are some quantitative
differences in the amount of charge transfer and the magnetic
moment on the graphene mainly induced by slight changes
in the bonding lengths both in the graphene and the interface
layer involved. For the ATOP configuration the charge transfers
per carbon atom are almost identical between Co and Ni, but
the induced magnetization can be two times higher for Ni for
small number of layers of the metal. Also the gap induced in the
ATOP configuration can be manipulated slightly by changing
the number of layers without changing the qualitative picture.
It remains to be seen what the corresponding effects are from
the HCP configuration.

ACKNOWLEDGMENTS

We thank R. Kiehl for proposing that we address this
problem. We acknowledge the hospitality of the Chemistry
department of ASU for hosting one of us (E.M.) during a

Fulbright Scholarship. B.B. and E.M. acknowledge support
from the project PICS-CNRS 2013-2015.

APPENDIX A: DIRECTION COSINE SUMS

The summation
∑3

m,l=1[n̂lx n̂lmx + n̂2
ly n̂lmy] is performed

as follows: Performing first the sum over l, i.e., over the
Co/Ni atoms l = 1,2,3 as can be seen in Fig. 4, n1x = 0,
because there is no overlap between A and Co in x̂ for
l = 1. The other terms are n1y = −1, n2y = n3y = 1/2, and
n2x = −√

3/2, n3x = √
3/2. Therefore

3∑
l=1

3∑
m=1

(n̂lx n̂lmx + n̂ly n̂lmy)

=
3∑

m=1

[
−n1my + n2my + n3my

2
+

√
3

2
(n3mx − n2mx)

]
.

(A1)

Now, performing the remaining sum, for m = 1 only the
cobalts l = 2 and l = 3 intervene, so n11y = 0, n21y = n31y =
1/2, and n21x = √

3/2, n31x = −√
3/2. Doing the sum for

m = 1 we have

m = 1 :

[
−0 + 1/2 + 1/2

2
+

√
3

2

(
−

√
3

2
−

√
3

2

)]
= −1.

For m = 2 only the Co/Ni l = 2 and l = 1 intervene, so n12y =
1/2, n22y = −1,n32y = 0, n22x = 0, and n32x = 0. Doing the
sum for m = 2 one obtains

m = 2 :

[
−1

2
+ −1 + 0

2
+

√
3

2
(0 − 0)

]
= −1.

Finally, for m = 3 the intervening Co/Ni are l = 1 and l = 3,
so n13y = 1/2, n23y = 0, n33y = −1, n23x = 0, and n33x = 0.
The sum for m = 3 is then

m = 3 :

[
−1

2
+ 0 − 1

2
+

√
3

2
(0 − 0)

]
= −1.

So in spite of the complicated combination of direction cosines,
all the matrix overlaps are equivalent.

APPENDIX B: PARAMETER VALUES OF THE
ATOP HAMILTONIAN

From Eq. (22), with ε = εp − εd , one obtains

μ = −ε

2

(
V 2

pdz

ε2 − δ2
1

+ 3
Ṽ 2

pdπ

ε2 − δ2
2

)
, (B1)

h0z = ε

2

(
V 2

pdz

ε2 − δ2
1

− 3
Ṽ 2

pdπ

ε2 − δ2
2

)
, (B2)

hz0 = δ1V
2
pdz

ε2 − δ2
1

+ 3
δ2Ṽ

2
pdπ

ε2 − δ2
2

, (B3)

hzz = δ1V
2
pdz

ε2 − δ2
1

− 3
δ2Ṽ

2
pdπ

ε2 − δ2
2

. (B4)
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