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Abstract— This work consider the problem of supply 

planning optimization of imperfect production systems with 

stochastic lead times and quality control. A model for supply 

planning of the production system and three quality control 

policies are analyzed. Experimental results highlights the 

economic advantage of integrating quality control planning at 

the early phase of supply planning optimization of production 

systems.  

Keywords—Imperfect production systems; Uncertainty; 

Linear chain production process; Quality control. 

I.  Introduction and related publications 

The growing need for more flexible and responsive 
production systems leads to several new approaches aiming to 
endow the production systems of the future with a certain 
intelligence, agility and resilience. In this context, one of the 
most important challenges to deal with is uncertainty and its 
impact on the performances of the system. In fact, uncertainty 
causes to manufacturers several difficulties in planning 
production, in regulating inventory, and in meeting demand [1]. 

In the following, the serial supply chain structures with 
stochastic lead times are reviewed. We present the case of 
deterministic demand for one and multilevel serial supply 
chains. Then, we focus on some relevant works related to 
production planning integrating quality control.  

The simulation study presented by Whybark and Williams 
[2] was among the first to suggest that safety lead times may 
perform better than safety stocks in a multi-level linear 
production-inventory system when the production and 
replenishment times are stochastic.  

A few years later, Weeks [3] proposed a one-stage model 
where it is assumed a deterministic demand, a stochastic 
processing time and tardiness and holding costs. This problem 
has been proved to be equivalent to the standard “Newsboy” 
formulation. 

Another analytical approach is proposed by Yano [4] to 
model serial production systems in order to optimize the planned 
lead times. In this model, which is based on a Lot-for-Lot (L4L) 
policy, it is assumed that procurement and processing times are 
stochastic and demand is deterministic. The objective function 
is composed of the holding and tardiness costs. A procedure is 
developed to generate solutions for two-stage systems. The same 
author extended this model to three-stage systems in [5]. In this 

model, a replenishment cost is introduced each time a given 
component is available after a planned intermediary due date. 
The performance indicator to be minimized is the sum of the 
following costs: i) the expected holding and tardiness costs at 
each stage, and ii) the expected tardiness cost for the finished 
product. The author underlined the difficulty to model a system 
composed of more than three stages. It is only after many year 
that Elhafsi [6] overcome this barrier by proposing an analytical 
model based on recursivity. The convexity of the objective 
function is proved and a dynamic programming based heuristic 
is proposed to find approximate solutions of good quality in an 
acceptable computer processing time. 

In inventory control process, Kim et al. [7] consider one 
product, a known fixed demand and an Erlang-distributed lead 
times. The performance indicator is the expected total cost, 
which is composed of ordering, holding and tardiness costs. 
Based on the analytical formulation, the authors propose an 
approximate solution and compare it to optimal ones for the case 
where the prior information on the lead time distribution is 
available, and another case where no information exists. The 
results show the effectiveness and the robustness of this 
approach and how costs could be reduced under uncertain lead 
times. Two years later, Kim et al. [8] studied the same problem 
and analysed the bullwhip effect which is encountered when 
both demand and lead times are stochastic. An analytical method 
is used to prove that prior information on lead times variability 
could be very helpful to control the bullwhip effect in a multi-
stage supply chain. 

Apparently, the literature contains few publications 
considering linear chain supply planning with discrete lead 
times. The most of existing studies investigates the lead time 
uncertainty for one item or assembly systems. Readers can refer 
to [9], [10] and [11] where more complete literature reviews are 
provided concerning supply planning dealing with uncertainty 
on lead times. For other sources of uncertainty (demand, 
capacity, cost, etc.) readers can refer to the surveys of Aloulou 
et al. [12] and Díaz-Madroñero et al. [13]. 

In the last few decades, there has been a growing interest in 
integrating quality control in supply and production planning. In 
fact, the quality should be rigorously checked before delivering 
the finished product. In this way, the company ensures customer 
satisfaction and avoid excessive product returns. Nevertheless, 
it will be necessary to find a good compromise between the 
inspection costs and the cost of non-conformity. In this regard, 
Colledani and Tolio [14] investigate the interaction between 



quality control system and production system and show how 
they impact each other’s performances. They underline the 
necessity of jointly considering quality and logistics 
requirements while designing a production system. 

The work of Rosenblatt and Lee [15] studies the relationship 
and the economic impact of the interaction between production 
planning, quality of products and the deterioration of the 
production process. The considered production process has two 
possible states in which it generates different rates of defectives. 
The objective is to determine the economic production quantities 
of this kind of production process while minimizing the total 
annual cost. The optimal production run time is determined for 
two deterioration models and multi-state deterioration. 

Recently, Bettayeb et al. [16] proposed an integrated model 
for single item lot sizing and quality control planning. The 
objective is to minimize the total cost while ensuring a given 
level of outgoing quality. This cost is composed of holding, 
setup, production and inspection costs.  

In the field of supply planning and quality control few papers 
analyses the uncertainty of lead time and quality control. In this 
work, we propose a model of supply planning optimization of 
imperfect production systems with stochastic lead times and 
quality control. The rest of the paper is organized as follows. The 
problem description and the general assumptions are described 
in the second section. The third one details the analytical models 
corresponding to three different quality control policies and the 
optimization approach. Section 4 presents the experimental 
results, compares the economical performances of each model 
and analysis the effects of some parameters. The paper ends by 
giving the conclusion and the perspectives of this work.  

II. Problem description and assumptions 

The problem under consideration in this paper concerns the 
optimization of supply planning of an imperfect linear 
production process where the lead times of the production steps 
are stochastic. The objective is to evaluate the effect of quality 
issues on the total cost of such a system and analyze the 
opportunity of integrating quality control activities in the 
optimization model of the system.  

Before detailing the problem and the general assumptions, 
the following are the notations used in next sections. All costs 
are expressed in monetary unit and durations are expressed in 
time units. 

Parameters 

𝐶𝑃 Production cost  

𝑐𝑖 Unit inspection cost 

𝑐𝑛𝑐 Unit non-conformity cost 

𝐶𝑄 Quality cost: the sum of inspection and non-conformity 

costs 

𝑆𝑅 Sampling rate, i.e. proportion of products inspected 

𝑐ℎ Unit inventory holding cost per time unit 

𝑐𝑡 Unit tardiness penalty per time unit 

𝑇 Due date 

𝑞0 Proportion of non-conforming finished products 
generated by the whole production process. 

𝑚 Number of production operations (flowshop) 

𝐿𝑗 Lead time of operation 𝑗, ∀𝑗 ∈ {1,2, … , 𝑚} 𝐿𝑗 is a 

discrete random variable which varies between 𝑙𝑗 and 

𝑢𝑗 

 𝑡𝑖  Unit inspection duration 

𝐿 Total lead time, i.e.  𝐿 = ∑ 𝐿𝑗
𝑚
𝑗=1  

Decision variables  

𝑋 Order release date 

Functions 

𝐸⟦. ⟧ Expected value of ⟦. ⟧ 

𝐹𝑚(. ) Cumulative distribution function of 𝐿 

The considered production process is composed of 𝑚 
process operations (Fig. 1), which are consecutively executed to 
obtain the finished product 𝐹𝑃. Each process step 𝑗 has a random 
lead time duration 𝐿𝑗. The product starts to be processed at time 

𝑋 and the fished product is available at 𝑇𝑃𝐹 = 𝑋 + 𝐿, after 
accumulating the 𝑚 random lead times 𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑚. 
Note that  𝑇𝑃𝐹  is a random variable because of the randomness 
of the total lead time 𝐿.  

Apart from the processing cost (omitted here), and 
depending on the due date 𝑇 and the effective release date of the 
finished product, the generated production cost either equals the 
holding cost, if the product is finished before the due date, equals 
the tardiness penalty if it is available after the due date or equals 
zero if it is finished just in time. 

Fig. 1. Linear production process 

III. Analytical models and optimization approach 

This section contains three models each of them corresponds 
to a certain policy regarding the quality control. In the first case, 
only the non-conformity penalty is assumed and no quality 
control is performed. In the second case, the quality control is 
performed at the end of production process but only the lead 
times are taken into account in the supply and production 
planning. In the last case, the quality control and the lead time 
variability are both taken into account while optimizing the 
supply and production planning.  

A. Reference Policy (𝜋0): No quality control 

It corresponds to the case where no quality control is 
performed during the production process. However, for each 
non-conforming product delivered to the customer, the producer 
pays a non-conformity penalty. The total cost is composed of 
inventory holding cost, tardiness cost and non-conformity cost: 

 

...

...

...

...



𝑇𝐶0(𝑋, 𝐿) = 𝐶𝑃
0 + 𝐶𝑄

0 (1) 

Where 𝐶𝑃
0 is equal to the sum of 𝐶𝐻 the inventory holding 

cost and 𝐶𝑇 the tardiness cost: 

 If the finished products are available before 𝑇, it will 
be stored. The corresponding inventory holding cost 
𝐶𝐻  is equal to: 

𝐶𝐻 = 𝑐ℎ × (𝑇 − 𝑚𝑖𝑛(𝑇; 𝑋 + 𝐿)) (2) 

 There will be a stockout of the finished products if they 
are delivered after the due date 𝑇. Then tardiness cost 
𝐶𝑇 is equal to: 

𝐶𝑇 = 𝑐𝑡 × (𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿) − 𝑇) (3) 

And the non-conformity penalty 𝐶𝑄
0 is equal to 𝑞0 × 𝑐𝑛𝑐. 

The total cost 𝑇𝐶0(𝑋, 𝐿) is a discrete random variable 
because of the randomness of the lead times 𝐿𝑗. Each of the latter 

varies between 𝑙𝑗 and 𝑢𝑗, so the total cost has a finite number of 

possible values. 

Fig. 2. Quality control policies 

Proprety 1. The expression of the expected value of the total cost, 
denoted by 𝐸⟦𝑇𝐶0(𝑋, 𝐿)⟧, is given bellow: 

𝐸⟦𝑇𝐶0(𝑋, 𝐿)⟧ = 𝑐ℎ × (𝑇 − ∑ (1 − 𝐹𝑚(𝑠 − 𝑋))

0≤𝑠≤𝑇−1

) 

+𝑐𝑡 × ∑(1 − 𝐹𝑚(𝑠 − 𝑋))

𝑠≥𝑇

+ 𝑞0 × 𝑐𝑛𝑐 (4) 

Proof. From expressions (1), (2) and (3), we have: 

𝐸⟦𝑇𝐶0(𝑋, 𝐿)⟧ = 𝐸⟦𝐶𝑃
0(𝑋, 𝐿)⟧ + 𝑞0 × 𝑐𝑛𝑐 

= 𝑐ℎ × (𝑇 − 𝐸⟦𝑚𝑖𝑛(𝑇; 𝑋 + 𝐿)⟧) 

+𝑐𝑡 × (𝐸⟦𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿)⟧ − 𝑇)  + 𝑞0 × 𝑐𝑛𝑐  

Let 𝛤 a positive discrete random variable (with a finite 
range). Its expected value can be expressed as follows: 

𝐸⟦Γ⟧ = ∑(1 − 𝑃𝑟⟦𝛤 ≤ 𝑠⟧)

𝑠≥0

= ∑(1 − 𝐹𝛤(𝑠))

𝑠≥0

 (5) 

Knowing that 𝑋 + 𝐿 does not depend on 𝑇, and using 
expression (5), we get: 

𝐸⟦𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿)⟧ = ∑(1 − 𝑃𝑟⟦𝑇 ≤ 𝑠⟧ × 𝑃𝑟⟦𝑋 + 𝐿 ≤ 𝑠⟧)

𝑠≥0

 

Moreover, knowing that 𝑃𝑟⟦𝑇 ≤ 𝑠⟧ = 0 for all 0 ≤ 𝑠 < 𝑇, 
then: 

𝐸⟦𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿)⟧ = 𝑇 + ∑(1 − 𝑃𝑟⟦𝑋 + 𝐿 ≤ 𝑠⟧)

𝑠≥𝑇

   

                                    = 𝑇 + ∑(1 − 𝐹𝑚(𝑠 − 𝑋))

𝑠≥𝑇

 

(6) 

Where 𝐹𝑚 is the cumulative distribution function of the total 
lead time 𝐿, which defined as bellow: 

 For 𝛼 = 0: 

 𝐹𝑚(𝑠 − 𝑋) = 𝑃𝑟⟦𝑋 + 𝐿𝑚 ≤ 𝑠⟧ 

 For 1 ≤ 𝛼 ≤ 𝑚 − 1; 𝑚′ = 𝑚 − 𝛼 : 

𝐹𝑚′(𝑠 − 𝑋) = ∑ 𝑃𝑟⟦𝐿𝑚′ = 𝑢𝛼⟧ × 𝐹𝑚′+1(𝑣𝛼 − 𝑋)
𝑢𝛼+𝑣𝛼=𝑠
𝑢𝛼+𝑣𝛼∈ℤ

 

In the same way, we can easily deduce that: 

𝐸⟦𝑚𝑖𝑛(𝑇; 𝑋 + 𝐿)⟧ = ∑ (1 − 𝐹𝑚(𝑠 − 𝑋))

0≤𝑠≤𝑇−1

∎ (7) 

The expected total cost (4) is the objective function. It is a 
non-linear function which should be minimized. An exact 
method based on Newsboy formula is used to solve this problem 
in polynomial time. 

Proposition 1. The method based on Newsboy formula presented 
in [17] gives the optimal order release date of the reference case 
𝑋0

∗: 

𝐹𝑚(𝑇 − 𝑋0
∗ − 1 ) ≤

𝑐𝑡

𝑐ℎ + 𝑐𝑡

≤ 𝐹𝑚(𝑇 − 𝑋0
∗ ) (8) 

Where 𝐹𝑚(. ) is the cumulative distribution function of the 

total lead time 𝐿. 

B. Policy 1 (𝜋1): Separated afterwards quality control 

planning 

In this case, we suppose that the quality inspection is done 
just after the production process. A proportion of finished 
products is randomly sampled and inspected. The non-
conforming products detected by inspection are repaired with 
no-extra cost. 

The total cost is composed of production and quality costs, 

denoted by 𝐶𝑃
1 and 𝐶𝑄

1, respectively. 

𝑇𝐶1(𝑋, 𝐿, 𝑆𝑅) = 𝐶𝑃
1 + 𝐶𝑄

1 (9) 

 

a) Without Quality control performed by the produced (policy 𝜋0) 

 

b) With quality control performed by the producer (Policies 𝜋1and 𝜋2 ) 

...

...

Customer

Producer

S?...

...

OK?
Customer

Producer



Note that, in this case, 𝐶𝑃
1 is the real production cost. It is 

equal to 𝐶𝑃
0∗ − ∆ℎ + Δ𝑡, where: 

 𝐶𝑃
0∗ is the optimal planned production cost associated to 

optimal order release date 𝑋0
∗, 

 ∆ℎ is the holding cost reduction corresponding to the time 
the product is being inspected : 

∆ℎ= 𝑐ℎ × 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐼; 𝑇 − 𝑋 − 𝐿); 0) (10) 

Where 𝐼 = 𝑖𝑢 × 𝑆𝑅 corresponds to the total duration of 
inspection that corresponds to the quality control strategy 
in place. 

 Δ𝑡 is the tardiness cost increase due to the product 
inspection : 

Δ𝑡 = 𝑐𝑡 × (𝐼 − 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐼; 𝑇 − 𝑋 − 𝐿); 0)) (11) 

The quality cost 𝐶𝑄
1 is composed of the cost of inspection and 

the penalty paid by the producer to the customer for non-
conforming units: 

𝐶𝑄
1 = 𝑞0 × (1 − 𝑆𝑅) × 𝑐𝑛𝑐 + 𝑆𝑅 × 𝑐𝑖  

As in the previous case, the total cost is also a random discrete 
random variable with a finite range. The expected cost is derived 
by the following property. 

Proprety 2. The expression of the expected value of the total cost, 
denoted 𝐸⟦𝑇𝐶1(𝑋0

∗, 𝐿, 𝑆𝑅)⟧, is given bellow: 

𝐸⟦𝑇𝐶1(𝑋0
∗, 𝐿, 𝑆𝑅)⟧ = 𝐸⟦𝑇𝐶0(𝑋0

∗, 𝐿)⟧ 

− [(𝑐ℎ + 𝑐𝑡) × ∑ 𝐹𝑚(𝑇 − 𝑠 − 1 − 𝑋0
∗)

𝑠≤𝐼−1

− 𝑐𝑡 × 𝐼] 

−𝑆𝑅 × (𝑐𝑛𝑐 × 𝑞0 − 𝑐𝑖) 

Proof. From expression (4) and (7), 𝐸⟦𝑇𝐶0(𝑋0
∗, 𝐿)⟧ can be 

easily calculated. From expressions (10) and (11), we can easily 
deduce that: 

𝐸⟦∆ℎ − Δ𝑡⟧ = ∑ 𝐹𝑚(𝑇 − 𝑠 − 1 − 𝑋0
∗)

𝑠≤𝐼− 1

∎ 

C. Policy 2 (𝜋2): Integrated production and quality control 

planning 

In this case, we suppose that the quality control is planned in 
advance. It is made after the production process. A proportion of 
finished products is randomly sampled and inspected. The non-
conforming products detected by inspection are repaired with 
no-extra cost. 

The total cost is composed of production and quality costs, 

denoted by 𝐶𝑃
2 and 𝐶𝑄

2, respectively. 

𝑇𝐶2(𝑋, 𝐿, 𝑆𝑅) = 𝐶𝑃
2 + 𝐶𝑄

2 (12) 

Where: 

𝐶𝑃
2 = [𝑐ℎ × (𝑇 − 𝑚𝑖𝑛(𝑇; 𝑋 + 𝐿 + 𝐼)) + 𝑐𝑡

× (𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿 + 𝐼) − 𝑇)] 

𝐶𝑄
2 = 𝑞0 × (1 − 𝑆𝑅) × 𝑐𝑛𝑐 + 𝑆𝑅 × 𝑐𝑖 

The total cost 𝑇𝐶2(𝑋, 𝐿, 𝑆𝑅) is a discrete random variable 
because of the randomness of lead times 𝐿𝑗. Each of the latter 

varies between 𝑙𝑗 and 𝑢𝑗. Therefore, this total cost has a finite 

number of possible values. Thus, the mathematical expectation 
of cost can be determined. 

Proprety 1. The expression of the expected value of the total cost, 
noted 𝐸⟦𝑇𝐶0(𝑋, 𝐿)⟧, is given bellow: 

𝐸⟦𝑇𝐶2(𝑋, 𝐿, 𝑆𝑅)⟧ =  𝑐ℎ × (𝑇 − ∑ (1 − 𝐹𝑚(𝑠 − 𝑋 − 𝐼 ))

0≤𝑠≤𝑇−1

) + 𝑐𝑡

× ∑(1 − 𝐹𝑚(𝑠 − 𝑋 − 𝐼 ))

𝑠≥𝑇

 

+𝑞0 × (1 − 𝑆𝑅) × 𝑐𝑛𝑐 + 𝑆𝑅 × 𝑐𝑖 (13) 

Proof. From expressions (6), (7) and (10), we can deduce: 

𝐸⟦𝑚𝑎𝑥(𝑇; 𝑋 + 𝐿 + 𝐼)⟧ = 𝑇 + ∑(1 − 𝐹𝑚(𝑠 − 𝑋 − 𝐼))

𝑠≥𝑇

 

And 

𝐸⟦𝑚𝑖𝑛(𝑇; 𝑋 + 𝐿)⟧ = ∑ (1 − 𝐹𝑚(𝑠 − 𝑋 − 𝐼))

0≤𝑠≤𝑇−1

∎ 

Proposition 2. The method based on Newsboy formula presented 
in [17] gives the optimal order release date of the reference case 
𝑋2

∗: 

𝐹𝑚(𝑇 − 𝑋2
∗ − 1 − 𝐼 ) ≤

𝑐𝑡

𝑐ℎ + 𝑐𝑡

≤ 𝐹𝑚(𝑇 − 𝑋2
∗ − 𝐼) (14) 

Where 𝐹𝑚(. ) is the cumulative distribution function of the 

total lead time 𝐿. 

IV. Numerical example and discussion 

The proposed cases described in Section 3 have been coded in 

C++. The experiments are carried on computer with 2.32 GHz 

Intel core i7 and 8 GB of RAM memory. 

A. Experiments setting 

The experiments are based on an example of a linear production 

system with three production steps, i.e. 𝑚 = 3. The due date 𝑇 

is equal to 20 and the lead time of each process step is a discrete 

random variable uniformly distributed over the range of 

integers from 1 to 5, i.e. Pr(𝐿𝑗 = 𝑙) = 0.2 ∀𝑗 = 1,2,3 ∀𝑙 =

1,2, … , 5. It is assumed that the system is operating in a steady 

state, generating a constant proportion of non-conforming 

finished products 𝑞0 = 0.05. The unit holding cost 𝑐ℎ is equal 

to the monetary unit and the other cost parameters experimented 

are given in Table 1. 

Table 1. Experimented values for each parameter 

Parameter Range 

𝐿𝑗 [1, 5] 

𝜌𝑡 = 𝑐𝑡/𝑐ℎ    {0.1, 1, 10, 100,1000} 

𝜌𝑖 = 𝑐𝑖/𝑐ℎ   {0.1, 1, 10, 100,1000} 

𝜌𝑛𝑐 = 𝑐𝑛𝑐/𝑐ℎ   {0.1, 1, 10, 100,1000} 



𝑆𝑅   {0, 0.2, 0.4, … , 1} 

B. Results and discussions 

The preliminary results presented in this section aim to 

analyze the effect of integrating quality control in the early 

stage of supply and production planning. To do so, the 

following notion are introduced: 

 The gap between policy 𝜋1 and policy 𝜋3  

𝐺𝐴𝑃1 (%) =  100 ×
𝐸𝑇𝐶1 −  𝐸𝑇𝐶3

𝐸𝑇𝐶1
 

 The gap between policy 𝜋2 and policy 𝜋3  

𝐺𝐴𝑃2 (%) =  100 ×
𝐸𝑇𝐶2 −  𝐸𝑇𝐶3

𝐸𝑇𝐶2
 

Figure 3 shows the variation of 𝐺𝐴𝑃1 as function of the cost 
of non-conformity for different values of sampling rate and for 
three values of the inspection cost. It can be seen that when the 
inspection cost is low compared to the holding cost (𝜌𝑖 = 0.1), 
𝐺𝐴𝑃1 is positive whatever is the cost of non-conformity. 
Moreover, when the latter increases, this gap increases more 
significantly with the sample rate. However, when the inspection 
cost is equal to the holding cost (𝜌𝑖 = 1), there exists a certain 
value of non-conformity cost below which the policy 2 becomes 
more profitable. From Figure 3 c) we can conclude that there 
exists a certain value of inspection cost beyond which Policy 3 
is always dominated by Policy 2. 

 

Fig. 3. Impact of the inspection cost on the Gap between 𝐸𝑇𝐶3and 𝐸𝑇𝐶1 

 

Fig. 4. Gap between 𝐸𝑇𝐶2and 𝐸𝑇𝐶1for some combinations of cost parameters  

 

    

 a)  𝜌𝑖 = 0.1    b) 𝜌𝑖 = 1         c) 𝜌𝑖 = 10 

-20%

0%

20%

40%

60%

80%

100%

0 1 10 100

SR

GAP1 vs 

SR = 0 0.2 0.4 0.6 0.8 1

-40%

-20%

0%

20%

40%

60%

80%

100%

0 1 10 100

SR

GAP1 vs 

SR = 0 0.2 0.4 0.6 0.8 1

-200%

-150%

-100%

-50%

0%

50%

100%

0 1 10 100 1000

SR

GAP1 vs 

SR = 0 0.2 0.4 0.6 0.8 1

    

 a)  𝜌𝑡 = 0.1 and 𝜌𝑖 = 0.1   b) 𝜌𝑡 = 0.1 and 𝜌𝑖 = 1        c) 𝜌𝑡 = 0.1 and 𝜌𝑖 = 100 

   

 g) 𝜌𝑡 = 100 and 𝜌𝑖 = 0.1   h) 𝜌𝑡 = 100 and 𝜌𝑖 = 1         i) 𝜌𝑡 = 100 and 𝜌𝑖 = 100 

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR

rnc = 0.1

1

10

100

1000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

G
A

P
2

SR



Figure 4 compares the performances of Policy 2 and Policy 
3 by analyzing the gap between them. It proves that integrating 
quality control in supply and production planning reduces 
significantly the expected total cost whatever is the number of 
inspected products. We note that when inspection cost is much 
higher than the tardiness cost (Figure 4 c)), the policies are 
equivalent.  

V. Conclusion 

In this work, we are interested in supply and production 

planning under uncertainty of lead times and quality control. A 

model for supply planning of the production system and three 

quality control policies are analyzed. Experimental results 

highlights the economic advantage of integrating quality 

control planning at the early phase of supply planning 

optimization of production systems. 

This exploratory study confirms the opportunity to extend 

this model by integrating maintenance activities and 

considering other kinds of production systems such as assembly 

systems where the finished products are assembled from several 

components. 

Further, the second objective is to extend this model and 
different proposed technics to multi-period planning, in 
particular, calculate planned lead times when such a company 
deals with quality control, uncertainties of production and 
supply lead times.  
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