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Abstract. Jumping Emerging Patterns (JEP) are patterns that only
occur in objects of a single class, a minimal JEP is a JEP where none of
its proper subsets is a JEP. In this paper, an efficient method to mine the
whole set of the minimal JEPs is detailed and fully proven. Moreover,
our method has a larger scope since it is able to compute the essential
JEPs and the top-k minimal JEPs. We also extract minimal JEPs where
the absence of attributes is stated, and we show that this leads to the
discovery of new valuable pieces of information. A performance study is
reported to evaluate our approach and the practical efficiency of minimal
JEPs in the design of rules to express correlations is shown.

Keywords: pattern mining, emerging patterns, minimal jumping emerg-
ing patterns, ruled-based classification

1 Introduction

Contrast set mining is a well established data mining area [14] which aims at
discovering conjunctions of attributes and values that differ meaningfully in their
distributions across groups. This area gathers many techniques such as subgroup
discovery [17] and emerging patterns [2]. Because of their discriminative power,
contrast sets are highly useful in supervised tasks to solve real world problems
in many domains [1, 7, 12].

Let us consider a dataset of objects partitioned into several classes, each
object being described by binary attributes. Initially introduced in [2], emerg-
ing patterns (EPs) are patterns whose frequency strongly varies between two
datasets. A Jumping Emerging Pattern (JEP) is an EP which has the notable
property to occur only in a single class. JEPs are greatly valuable to obtain
highly accurate rule-based classifiers [8, 9]. They are used in many domains like
chemistry [12], knowledge discovery from a database of images [7], predicting
or understanding diseases [3], or DNA sequences [1]. A minimal JEP designates
a JEP where none of its proper subsets is a JEP. Minimal JEPs are of great
interest because they capture the vital information that cannot be skipped to
characterize a class. Using more attributes may not help and even add noise in
a classification purpose. Mining minimal JEPs is a challenging task because it is



a time consuming process. Current methods require either a frequency thresh-
old [4] or a given number of expected patterns [16]. On the contrary, one of the
results of this paper is to be able to compute the whole set of minimal JEPs.

The contribution of this paper can be summarized as follows. First, we intro-
duce an efficient method to obtain all minimal JEPs. A key idea of our method
is to introduce an alternative definition of a minimal JEP which stems from
the differences between pairs of objects, each of a different class. A backtrack
algorithm for computing all minimal JEPs is detailed and the related proofs are
provided. Our method does not require either a frequency threshold or a number
of patterns to extract. It provides a general approach and its scope encompasses
the essential JEPs [4] (i.e., JEPs satisfying a given minimal frequency thresh-
old) and the k most supported minimal JEPs [16] which constitute the state
of the art in this field. Second, taking into account the absence of attributes
may provide interesting pieces of knowledge to build more accurate classifiers
as experimentally shown by Terlecki and Walczak [15]. We address this issue.
Our method integrates the absence of attributes in the process by adding their
negation. It produces the whole set of minimal JEPs both with the present and
absent attributes. Practical results advocate in favor of this addition of negated
attributes in the description of the objects. Third, the results of an experimental
study are given. We analyze the computation of the minimal JEPs, including the
absence of attributes and comparisons with essential JEPs and top-k minimal
JEPs. Finally, we experimentally assess the quality of minimal JEPs, essential
JEPs and top-k minimal JEPs as correlations between a pattern and a class.

Section 2 gives the preliminaries. The description of our method is provided
in Section 3. Section 4 presents the experiments. We review related work in
Section 5 and we round up with conclusions and perspectives in Section 6.

2 Preliminaries

Let G be a dataset, a multiset consisting of n elements, an element of G is named
an object. The description of an object is given by a set of attributes, an attribute
being an atomic proposition which may hold or not for an object. The finite set
of all the attributes occurring in G is denoted by M. In the remainder of this
text, for the sake of simplicity, the word ”object” is also used to designate the
description of an object.

A pattern denominates a set of attributes, an element of the power set M,
denoted P(M). A pattern is included in the object g if p is a subset of the
description of g: p ⊆ g. The extent of a pattern p in G, denoted p′G , corresponds
to the set of the objects that include p: p′G = {g ∈ G : p ⊆ g}. A pattern is
supported if it is included in at least one object of the dataset. Moreover, we
define a relation, I, on G × P(M) as follows: for any object g and any pattern
p, gIp ⇐⇒ p ⊆ g.

Usual data mining methods only consider the presence of attributes. With
binary descriptions, the absence of an attribute can be explicitly denoted by
adding the negation of this attribute in order to build patterns conveying this



Table 1. A dataset of 6 objects

Objects
Attributes

1 ¬1 2 ¬2 3 ¬3 4 ¬4

G+
g1 x x x x
g2 x x x x

G−
g3 x x x x
g4 x x x x
g5 x x x x
g6 x x x x

Table 2. Differences from the dataset in
Table 1

g3 g4 g5 g6

g1 1,3,¬2 1,¬2 1 ¬2,4
g2 3,¬4 ¬4 2,¬4 ¬1

D•j 1,3,¬2,¬4 1,¬2,¬4 1,2,¬4 ¬1,¬2,4

information. We integrate this idea in this paper by adding the negation of
absent attributes and thus the description of an object always mentions every
attribute either positively or negatively. In other words, M explicitly contains
the negation of any of its attributes, the symbol ¬ is used to denote the negation
of an attribute (cf. Table 1 as an example).

Minimal Jumping Emerging Pattern. We now suppose that the dataset G is
partitioned into two subsets G+ and G−, every subset of such a partition is
usually named a class of the dataset. We call an object of G+ a positive object
and an object of G− a negative object. We say that a supported pattern p is a
JEP if it is never included in any negative object: p′G 6= ∅ and p′G ⊆ G+.

A JEP is minimal if it does not contain another JEP as a proper subset.
The set of the minimal JEPs is a subset of the set of the JEPs which groups all
the most general JEPs. As a JEP contains at least one minimal JEP, when an
object includes a JEP then it includes a minimal JEP.

Table 1 displays a dataset of 6 objects partitioned in two datasets: G+ =
{g1, g2} and G− = {g3, g4, g5, g6}. The pattern p = {1,¬2} is a JEP as p′G+ =

{g1} and p′G− = ∅ and {1} and {¬2} are not JEPs, p is thus a minimal JEP.

3 Contribution

Section 3.1 introduces the key notion of a difference between two objects, it
provides a new definition of a minimal JEP. The latter is the support of our al-
gorithm for extracting minimal JEPs which is detailed and proven in Section 3.2.

3.1 A relation between the minimal JEPs and the differences
between objects

Let G be a dataset partitioned into two subsets G+ and G−. The difference
between an object i and an object j groups the attributes of i that are not
satisfied by j: Di,j = i \ j = {m ∈ M : i I m and ¬j I m}. When one focuses
on a negative object j, the gathering of the differences for a negative object j
corresponds to the union of the differences between i and j, for any positive
object i: D•j = ∪i∈G+Di,j . In Table 2, the gathering of the differences for the
negative object 4 is D•4 = D1,4 ∪ D2,4 = {1,¬2} ∪ {¬4} = {1,¬2,¬4}.

The following lemma is a direct consequence of the definition of the gathering
of the differences for a negative object.



Lemma 1. Let j be a negative object and p be a pattern. If D•j ∩ p 6= ∅ then p
is not included in j : ¬(j I p).

It follows that, if a supported pattern p intersects with every gathering of the
differences for a negative object and, thanks to Lemma 1, p cannot be included
in any negative object, thus p is a JEP. We now reason by contraposition and
we suppose that a supported pattern p does not intersect with the gathering of
the differences for one negative object j0: D•j0 ∩ p = ∅ . If p is supported by a
positive object i0, as D•j0 ∩ p = ∅ implies Di0,j0 ∩ p = ∅, then p is supported by
j0. Thus p cannot be a JEP.

A JEP corresponds to a supported pattern which has at least one attribute
in every D•j , for j a negative object. Proposition 1 follows:

Proposition 1. A supported pattern p is a JEP if D•j ∩ p 6= ∅, ∀j ∈ G−

On the example, the JEP p = {1,¬2} intersects with every D•j (see Table
2): D•g3 ∩ p = {1,¬2},D•g4 ∩ p = {1,¬2} , D•g5 ∩ p = {1} and D•g6 ∩ p = {¬2}.

We now establish a relation between the gathering of the differences and the
minimal JEPs.

Proposition 2. A JEP p is a minimal JEP if, for every attribute a of p, ∃j ∈
G− such that p ∩ D•j = {a}.

On the example, the JEP p = {3, 1,¬2} is not a minimal JEP since it contains
the JEP {1,¬2}. Proposition 2 gives another point of view: since no intersection
between p and a D•j (for j a negative object) corresponds to {3}, the attribute
{3} does not play a necessary part in the discriminative power of p, thus p is
not a minimal JEP.

Proof (of Proposition 2). Let p be a JEP.
Suppose p is not minimal: there exists a JEP q, different from p, such that

q ( p. Consider an attribute a such that a ∈ p\q. As q is a JEP, Prop. 1 imposes
that ∀j ∈ G−, q ∩ D•j 6= ∅, it ensues that ∀j ∈ G−, p ∩ D•j 6= {a}. One now
can state that, if p is not minimal, then p contains one attribute a such that
∀j ∈ G−, p ∩ D•j 6= {a}.

Conversely, suppose there exists an attribute a in p such that ∀j ∈ G−, p ∩
D•j 6= {a}. As p is a JEP, Prop. 1 ensures that D•j ∩ p 6= ∅, ∀j ∈ G−. It follows
that, ∀j ∈ G−,D•j ∩ p \ {a} 6= ∅. By applying Prop. 1, p \ {a} is a JEP and p
cannot be minimal. ut

Prop. 2 states that a minimal JEP is a supported pattern that excludes all
the negative objects and where every attribute is necessary to exclude (at least
one) object. It follows:

Consequence of Prop. 2. Let p be a minimal JEP for the dataset G+ ∪ G− and
g− ∈ G−. If p is not a minimal JEP for the dataset G+ ∪ G− \ {g−} then there
exists a unique attribute a, a ∈ p, such that p\{a} is a minimal JEP for the
dataset G+ ∪ G− \{g−}.



3.2 Calculation of the minimal JEPs

We now introduce a structure designed to generate all the minimal JEPs for a
dataset: a rooted tree whose “valid” leaves are in a one-to-one correspondence
with the minimal JEPs. We suppose here that for ∀j ∈ G−, D•j 6= ∅, as it follows
from Prop. 1 that this condition is a necessity for the existence of at least one
minimal JEP. We also assume that an arbitrary order is given on the negative
objects: for two negative objects j and j′, j ≺ j′ if j is accounted before j′.

Rooted tree. A rooted tree (T, r) is a tree in which one node, the root r, is
distinguished. In a rooted tree, any node of degree one, unless it is the root, is
called a leaf. If {u, v} is an edge of a rooted tree such that u lies on the path
from the root to v, then v is a child of u. An ancestor of u is any node of the
path from the root to u. If u is an ancestor of v, then v is a descendant of u, and
we write u 6 v; if u 6= v, we write u < v.

A tree of the minimal JEPs. We create the tree (T, r) as a rooted tree in which
each node x, except the root r, holds two labels: an attribute, lattr(x) ∈M, and a
negative object lobj(x) ∈ G−. For a node x of (T, r), Br(x) gathers the attributes
that occur along the path from the root to x: Br(x) = {lattr(y), y 6 x};
Br(x) indicates the pattern considered at x. For any node x of T and any
attribute a, a ∈ Br(x), crit(a, x) gathers the negative objects already considered
at the level of x and whose exclusion is due to the sole presence of a in Br(x):
crit(a, x) = {j � lobj(x) : D•j ∩ Br(x) = {a}}.

Definition 1 (A tree of the minimal JEPs (ToMJEPs)). A rooted tree
(T, r) is a tree of the minimal JEPs for G if:

i) any node x, except the root r, holds two labels: an attribute label, lattr(x) ∈
M, and a negative object label, lobj(x) ∈ G−.

ii) if x is an internal node then:
a) the children of x hold the same negative object label: lobj(y) = min{j ∈
G− : D•j ∩ Br(x) = ∅},∀y a child of x,

b) every child of x holds a different attribute label,
c) the union of the attribute labels of the children y of x corresponds to
D•lobj(y).

iii) x is a leaf if it satisfies one of the following conditions:
a) ∃z � x such that crit(lattr(z), x) = ∅,
b) ∀j ∈ G−, D•j ∩ Br(x) 6= ∅.

A leaf which satisfies the criteria iii)a) is named dead-end leaf, otherwise it
is named a candidate leaf.

Figure 1 depicts a ToMJEPs for the dataset of Tables 1 and 2. The nodes
with a dashed line are the dead-end leaves, the nodes surrounded by a solid
line the candidate leaves. A candidate leaf surrounded by a bold plain line is
associated to a supported pattern: it represents a minimal JEP. For example, the
node x such that Br(x) = {1,¬2} is associated to a minimal JEP while the node



Fig. 1. Example of a tree for minimal JEPs

y such that Br(y) = {¬4,¬2} is associated to a pattern which is not supported
by the dataset. The node z such that Br(z) = {3,¬2} is a dead-end leaf: since
∀j ∈ { g3, g4}, {3,¬2}∩D•j 6= {3}, the attribute 3 does not fulfill the constraint
raised by Prop. 2, thus crit(3, z) = ∅.

We will now demonstrate that there is a one-to-one mapping between the
“supported” candidate leaves of a ToMJEPs and the minimal JEPs. The follow-
ing lemma is an immediate consequence of the definition of a ToMJEPs, together
with the application of Prop. 1 and 2.

Lemma 2. Let (T, r) be a ToMJEPs and x be a node of T , different from a dead-
end leaf. If there exists i ∈ G+ such that i I Br(x) then Br(x) is a minimal
JEP for the dataset G′ = G+ ∪ {j ≤ lobj(x)}.

Proof. By definition of a ToMJEPs, for a node x, we have Br(x)∩D•j 6= ∅,∀j ≤
l ≤ lobj(x). Thanks to Prop. 1, it follows that Br(x) is a JEP for G+ ∪ {j ≤
lobj(x)}.

If x is not a dead-end leaf, by definition of a ToMJEPs, we have ∀z ≤
x, crit(lattr(z), x) 6= ∅, thus ∀a ∈ Br(x), ∃j ∈ ∪{j ≤ lobj(x)} such that Br(x)∩
D•j = {a}. Prop. 2 ensures that Br(x) is a minimal JEP for the dataset
G+ ∪ {j ≤ lobj(x)}. ut

Lemma 3. Let (T, r) be a ToMJEPs. Let p be pattern. If p is a minimal JEP
for the dataset G+ ∪ G− then there exists a unique candidate leaf x such that
Br(x) = p.

Proof. The proof reasons inductively on G−. For a sake of simplicity, we denote
here the set of the negative objects as {1, . . . , k} with k = |G−| and ∀1 ≤ j ≤
k − 1, j ≺ j + 1.

Definition 1 implies that the children of the root r deal with 1 (the first
negative object), we have D•1 = {lattr(x) : x is a child of r}. Moreover, as
by definition of a ToMJEPs, crit(lattr(x), x) 6= ∅, no child of r is a dead-end
leaf. Thus, associated to any pattern p which is a minimal JEP for the dataset
G+ ∪ {1}, there is a unique node x, different from a dead-end leaf such that
Br(x) = p.



Let us now suppose that, considering any minimal JEP p for G+ ∪ {1, . . . , l}
with l < k, there exists a unique node x, different from a dead-end leaf, such
that Br(x) = p. When we consider a pattern q, minimal JEP for the dataset
G+ ∪ {1, . . . , l, l + 1}, two cases arise:

– If q is a minimal JEP for G+ ∪ {1, . . . , l}, then, thanks to the induction
hypothesis, there exists a unique node xq such that Br(xq) = q.

– Otherwise, thanks to the consequence of Prop. 2, there exists one attribute
a such that D•l+1 ∩ q = {a} and D•j ∩ a 6= {a},∀j � l. Prop 2 ensures
that q \ {a} is minimal JEP for G+ ∪ {1, . . . , l}. Thanks to the induction
hypothesis, there exists a unique node x, different from a dead-end leaf, such
that Br(x) = q\{a}. By definition of a ToMJEPs, there exists a unique child
of x, such that Br(q) = x. As q is a minimal JEP, x is not a dead-end leaf.
ut

Prop. 3 is a consequence of Lemmas 2 and 3:

Proposition 3 (One-To-One correspondence). Let (T, r) be a ToMJEPs.
There is a one-to-one correspondence between the set of the candidate leaves x
such that Br(x) is a supported pattern and the set of the minimal JEPs.

Prop. 3 ensures that we can generate the minimal JEPs by simply performing
a depth first traversal of a ToMJEPs and output the candidate leaves such that
Br(x) is a supported pattern. Note that it is not necessary to compute and store
the entire ToMJEPs. A depth first traversal only requires to store the path from
the root to the node currently visited.

The sketch of implemention provided in Section 4.1 gives information about
the calculation of the extent, the calculation of the essential JEPs and the top-k
minimal JEPs that are inferred from a ToMJEPs.

4 Experimental evaluation

This section provides and comments results from a study conducted on 13 bench-
mark datasets. We investigate the computation of the JEPs according to running
time, setting a minimum frequency threshold. It also indicates the reliability of
correlation between a JEP and a class. In the following, a JEP denominates a
supported pattern with respect to any class.

4.1 Material and methods

The datasets. The study is conducted on 13 usual datasets described in Table 3.
All the datasets are available from the UCI Machine Learning repository [10].
We selected these datasets because they have been used, at least once, in an
experimental assessment of JEPs [3, 4, 16]. Non binary attributes were converted
into a binary valued format by applying a sanctioned method [6, 11] which is
available at Frans Coenen’s website1.
1 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/exmpleDNnotes.

html



Table 3. The datasets and their characteristics

Datasets Objects Attributes Classes Datasets Objects Attributes Classes
breast 699 20 2 mushroom 8124 90 2
congres 435 34 2 pima 768 38 2
ecoli 336 34 8 tic-tac-toe 958 29 2
glass 214 48 7 waveform 5000 101 3
heart 303 52 5 wine 178 68 3

hepatitis 155 56 2 zoo 101 42 7
iris 150 19 3

Implementation. Our algorithm partially explores a ToMJEPs in a depth first
manner, it outputs every candidate leaf whose associated pattern is a supported
one. We implemented two solutions to ensure to only output supported pat-
terns. The first one, called post-filtering solution, generates all the candidate
leaves and then checks whether their extent is empty or not. The second one,
named maintaining extent solution, integrates the computation of the extents
with the calculation of the child of an internal node of a ToMPJEPs. It enables
to backtrack as soon as the extent is empty.

Moreover, when a minimum frequency threshold is provided, the maintain-
ing extent solution is straightforwardly adapted to improve the computing of the
essential JEPs. Indeed, the frequency of candidate essential JEPs [4] is directly
derived from the cardinality of the extent. For the same reason, this solution
also enables to compute the top-k minimal JEPs [16] when a value for k is pro-
vided. Moreover, the pruning strategy becomes more and more efficient during
the mining step because the minimal frequency threshold to belong to the top-k
minimal JEP only increases during the mining.

Protocol. In order to compute all the minimal JEPs whatever the positive class
is, we successively consider each class (of the dataset) as the positive class while
the union of the others classes constitutes the negative class. Computations were
performed on a server using Ubuntu 12.04 with 2 processors Intel Xeon 2.80 GHz
and 512 gigabytes of RAM.

4.2 Results and discussions

Computation of the minimal JEPs. We computed all the minimal JEPs on the
13 selected datasets, by using the post-filtering and maintaining extent solutions.
Moreover, essential JEPs are computed with two minimum frequency thresholds
(1% and 5%), and the top-k JEPs with k = 10 and k = 20. Table 4 gives the
cardinalities of the sets of the minimal JEPs and the running times. For com-
puting all the minimal JEPs, the maintaining extent solution always operates
faster than the post-filtering solution, by a factor varying from 1.6 to 3. By ob-
serving the results for the essential JEPs and top-k minimal JEPs, one notes
that the running time decreases significantly when a minimal threshold is set for
the cardinality of the extent. The use of a frequency constraint related to the



Table 4. Computation of minimal JEP including negation of attributes

All minimal JEPs Essential JEPs Top-K minimal JEPs

post-filtering maintaining extent 1% 5% 10 20

Datasets Min.JEPs Time Time Time Time Time Time

iris 40 70.564 ms 24.348 ms 14.316 ms 9.783 ms 13.043 ms 17.303 ms

breast 38 924.998 ms 347.572 ms 190.432 ms 79.198 ms 95.212 ms 119.213 ms

ecoli 200 842.345 ms 353.734 ms 173.658 ms 98.982 ms 134.314 ms 136.712 ms

zoo 3323 1339.008 ms 579.208 ms 232.023 ms 101.032 ms 67.178 ms 79.032 ms

pima 1443 7.323 s 3.093 s 895.053 ms 532.123 ms 1.009 s 1.694 s

glass 59747 27.172 s 12.418 s 6.927 s 3.241 s 1.439 s 2.081 s

congres 55449 89.396 s 38.077 s 19.145 s 8.380 s 3.107 s 4.929 s

hepatitis 410404 123.520 s 53.706 s 25.576 s 14.419 s 2.978 s 3.097 s

heart 122865 3.351 mn 1.194 mn 29.560 s 15.201 s 9.432 s 8.921 s

tic-tac-toe 109949 5.664 mn 2.797 mn 55.860 s 13.182 s 4.541 s 6.325 s

wine 1353996 200.321 mn 99.366 mn 58.053 mn 36.324 mn 8.342 mn 11.821 mn

mushroom 17345228 673.563 mn 423.116 mn 192.743 mn 101.765 mn 27.545 mn 50.325 mn

waveform 23895434 1845.431 mn 954.190 mn 421.813 mn 238.425 mn 47.342 mn 59.175 mn

cardinality of the extent is efficient, obviously there is the risk to miss interesting
patterns.

Minimal JEPs as rules to express correlations. A JEP expresses a correlation
between the occurrence of a pattern and one class of objects. This part provides
experimental results to assess the interest of such rules: do these rules cover a
large part of the objects? Are they confident enough? We have also performed
experiments to evaluate the usefulness of the explicit description of the absent
attributes by adding their negations.

The study has been conducted by using a leave-one-out framework: every
object has been successively discarded from the dataset. For every object g, the
minimal JEPs have been extracted by considering G \{g} as the dataset and the
resulting rules have been applied on g.

Table 5 provides results obtained by applying minimal JEPs, essential JEPs,
or top-k minimal JEPs as association rules. No Negated attributes designates the
descriptions which do not explicitly take into account the absence of attributes
whereas With Negated attributes points the descriptions that explicitly consider
the absence of attributes. The column Cov denotes the coverage of the set of
association rules (the part of the objects for which at least one association rule
has applied). The column Con refers to the average confidence (i.e., the ratio
between the number of correct applications of the rules over the whole number
of applications of the rules). For example, if we consider the dataset named breast,
whith the No Negated attributes description, 47.78% of the objects contain at
least one minimal JEP, this coverage raises to 49.33% of the objects when the
descriptions With Negated attributes are accounted. With the same dataset, by
using the No Negated attributes description, 98.19% of the rules resulting from
a minimal JEP apply on an object of the proper class ; this average confidence
slightly decreases to 96.13% when the No Negated attributes description is used.



First of all, the JEPs often apply on a large portion of the objects: for 7
datasets among the 13 datasets, more than 80% of the objects contain at least
one JEP. Note that this coverage increases when the description turns from No
Negated attributes to With Negated attributes, up to 8% for the hepatitis dataset.

The average confidences indicate that minimal JEPs often point a reliable
association between a pattern and a class, even when no frequency constraint
is set. By paying the price of a lower coverage, setting a minimum frequency
threshold – as it is done for the essential JEPs or, indirectly, for the top-k
minimal JEPs – causes an increase of the average confidence, depending on
the dataset. The average confidence levels reached by the two descriptions, No
Negated attributes and With Negated attributes, are very comparable.

As a conclusion, both description families, With Negated attributes and No
Negated attributes, lead to minimal JEPs reaching a similar level of confidence.
However, the minimal JEPs extracted with the With Negated attributes descrip-
tions cover a wider range of objects than the minimal JEPs extracted with the
No Negated attributes descriptions, but with a longer running time.

5 Related work

Since the key paper of Dong and Li [2], subsequent research has focused on min-
ing emerging patterns and contrast sets. However, there are very few attempts
to tackle the discovery of minimal JEPs. Fan and Ramamohanarao have pro-
posed an algorithm extracting the minimal JEPs whose frequency of occurrence
is greater than a given threshold, such JEPs are called essential JEPs [4]. Ter-
lecki and Walczak have designed a computational method based on a CP-Tree to
get the k most supported minimal JEPs, named top-k minimal JEPs [16]. These
methods require either a frequency threshold or a given number of expected pat-
terns. On the contrary, our method is free from these parameters and computes
the whole set of minimal JEPs. Terlecki and Walczak [15] have experimentally
shown that taking into account the absence of attributes may provide interest-
ing pieces of knowledge to build more accurate classifiers. We have dealt with
this issue since our method extracts minimal JEPs including the negation of the
attributes which are absent.

In addition, JEPs can be associated to version space [13]. A version space
gathers the descriptions that match all objects of one class and no object of the
other class. Therefore a version space corresponds to the JEPs that match all
objects of one class. JEPs are also related to the concept of disjunctive version
space since a JEP corresponds to all descriptions of objects that match at least
one object of one class and no object for the other classes. In Formal Concept
Analysis, a JEP is also named ”hypothesis” [5] (a hypothesis brings together the
descriptions of objects that match at least one object in one class and no object
in others).



Table 5. Evaluation of minimal JEPs as rules to express correlations
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6 Conclusion

We have introduced an efficient method to extract the whole set of minimal JEPs.
To the best of our knowledge, it is the first method which does not require either
a frequency threshold or a given number of expected patterns. Our method is also
able to straightforwardly extract the essential JEPs and the k most supported
minimal JEPs. Moreover it enables the integration of negated attributes that
can be precious for a classification purpose. We have experimentally analyzed



the computation of these JEPs, together with the reliability of the correlations
between a JEP and a class.

The structure of tree of the minimal JEPs constitutes a framework for de-
signing and expressing algorithms to compute the minimal JEPs from a dataset.
In order to speed up the calculation, this framework will be used to seek for
efficient orderings on the attributes or on the objects. Another direction is to
produce patterns correlated to one class to a lesser extent and mine emerging
patterns with high growth-rate values. Beyond this work, we plan to use minimal
JEPs in the design of an advanced rule-based classifier.
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