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Smoothing cones over K3 surfaces

Stephen Coughlan Taro Sano

Abstract

We prove that the affine cone over a general primitively polarised K3 surface

of genus g is smoothable if and only if g ≤ 10 or g = 12. We discuss connections

with the classification of Fano threefolds, and several examples of singularities

with special behaviour.

1 Introduction

1.1 In 1974, Pinkham [23] showed that the cone over a normal elliptic curve is
smoothable if and only if the curve has degree ≤ 9. Schlessinger’s 1973 criterion
[27] can be used to show that the cone over an abelian variety of dimension ≥ 2 is
never smoothable, and Mumford also used the same criterion to show that the cone
over a curve of genus ≥ 2 embedded in sufficiently high degree is a non-smoothable
singularity [22].

The cone over a K3 surface is a natural 3-dimensional generalisation of the cone
over an elliptic curve, and our main result is the analogue of Pinkham’s theorem.

Theorem 1.2. Let S be a general K3 surface with primitive polarisation of genus g.
Then the affine cone over S is smoothable if and only if g ≤ 10 or g = 12.

We make more precise statements about what “general” means in the article.
This is connected with Brill–Noether loci as well as the rank of the Picard lattice.

1.3 A polarised K3 surface (S, L) of genus g is a K3 surface S with an ample
line bundle L such that c1(L)

2 = 2g − 2 > 0. We define

R(S) =

∞⊕

n=0

H0(S, L⊗n),

so that the affine cone over (S, L) is X = Ca(S, L) = SpecR(S). Now X is normal
([31, (3.1)]) and Gorenstein [11, §5], and if S is nonsingular, then X has an isolated
singularity at the vertex.
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1.4 The singularity at the vertex P is resolved by a single blow up f : X̃ → X at
P , with exceptional divisor E ⊂ X̃ that is isomorphic to S with normal bundle L∨,
the dual of L. By the adjunction formula, K

X̃
= f ∗KX −E, so P is a log canonical

3-fold singularity. Moreover, P is an elliptic singularity; that is, R2f∗OX̃ = CP and
R1f∗OX̃

= 0. Such singularities are important in the study of 3-folds of general type
and the boundary of their moduli spaces (see [8]).

1.5 By [27, 23], the C∗-action on X induces a grading on T 1
X , the space of

isomorphism classes of infinitesimal deformations of X :

T 1
X =

⊕

k∈Z

T 1
X(k).

Example 1.6. Suppose S is a quartic hypersurface in P3 defined by
∑3

i=0 x
4
i = 0, and

let X ⊂ A4 be the affine cone over (S,OS(1)) for OS(1) := OP3(1)|S. Then

T 1
X = C[x0, x1, x2, x3]/(x

3
0, x

3
1, x

3
2, x

3
3),

where the grading is shifted by −4. Thus T 1
X(k) is nonzero in degrees −4 ≤ k ≤

4 and the graded pieces have dimensions 1, 4, 10, 16, 19, 16, 10, 4, 1. Since X is a
hypersurface singularity, it is clearly smoothable.

1.7 The “only if” part of Theorem 1.2 proceeds by showing that for g = 11 or
g ≥ 13, T 1

X is concentrated in degree zero; that is, T 1
X(k) vanishes for k 6= 0. It

then follows from work of Schlessinger, that the only deformations of X are cones.
In fact, we show that T 1

X(k) vanishes for |k| ≥ 2 by Green’s conjecture for curves on
K3 surfaces. For |k| ≥ 1, we interpret vanishing of T 1

X(k) in terms of ramification of
the map of moduli stacks ϕg,k : Pg,k →Mgk , where ϕg,k maps a pair S, C ∈ |L⊗k| to
the stable curve C (see Section 4 for more precise statements). This extends work of
Mori and Mukai on the uniruledness of the moduli space of curves of genus 11 [19].

1.8 The “if” part is proved by sweeping out the cone. By [3], the general K3
surface S of genus g ≤ 10 or g = 12 is the anticanonical section of a Fano 3-fold.
Thus the affine cone X over S is realised as a hyperplane section through the vertex
of the cone Y over the Fano. If we vary the hyperplane section so that it misses the
vertex, then we obtain a smoothing of the vertex of X .
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1.9 Another viewpoint, is that sweeping out the cone gives a smoothing of the
projective cone Cp(V, L) over a variety V polarised by L. That is, Cp(V, L) =
ProjR(V )[x], where x is the adjoined cone variable. A naive guess would be that
all smoothings of the affine cone Ca(V, L) over a variety are induced by smoothings
of the projective cone Cp(V, L). This is not true: Pinkham [24] gave an example of
a variety V whose affine cone Ca(V, L) is a smoothable singularity, even though the
projective cone Cp(V, L) is not. At first sight, Pinkham’s example seems to be quite
special; V is 0-dimensional and Ca(V, L) is Cohen–Macaulay but not Gorenstein or
normal. We exhibit a 3-dimensional, normal and Gorenstein singularity Ca(V, L),
which is smoothable even though Cp(V, L) is not. Our example is the affine cone
over a particular surface of general type in its canonical model. Smoothing affine
cones is more general than smoothing projective cones. On the other hand, if V is
a nonsingular Calabi–Yau variety, in light of Pinkham’s theorem on elliptic curves
and Theorem 1.2 above, we may reasonably ask:

Are all smoothings of Ca(V, L) induced by deformations of Cp(V, L)?

Smoothings of projective cones over canonical curves and K3 surfaces are studied in
[5, 6], where the authors show (among other things) that the projective cone over a
general K3 surface of Picard rank 1 is smoothable iff g ≤ 10 or g = 12.

1.10 We also give examples of K3 surfaces of genus 11 and ≥ 13 whose affine
cone is smoothable. These are hyperplane sections of the anticanonical model of
a Fano 3-fold with b2 ≥ 2, from the classification of Mori–Mukai [18]. Moreover,
we exhibit K3 surfaces of genus 7 whose affine cone has at least two topologically
distinct smoothings, analogous to the affine cone over a del Pezzo surface of degree
6.

1.11 We describe the contents of this paper. In section 2 we review certain
criteria related to the vanishing of graded pieces of T 1

X , a formula for computing
graded pieces of T 1

X , and our example (2.19) of a 3-dimensional singularity whose
projective cone is not smoothable, from 1.9. We also define certain deformation
functors and morphisms between them, which relax projective normality conditions
(2.8, 2.10, 2.14). We then establish generalised criteria for formal smoothness of
those morphisms of functors (2.11, 2.14). As applications we give a short proof
of Pinkham’s theorem about smoothability of the affine cone over an elliptic curve
(2.13) and prove that the affine cone over any polarised abelian variety of dimension
≥ 2 is not smoothable (2.17). In Section 3 we study vanishing of T 1

X(k) using
Wahl’s criterion and Green’s conjecture for curves on a K3 surface. This also has
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an interesting interpretation via the classification of Fano 3-folds of index > 1 in
terms of Clifford index. The main technical part of the proof is in Section 4, where
we prove vanishing of T 1

X(1) for a general K3 surface by extending work of Mori
and Mukai on the uniruledness of the moduli space of curves of genus 11. The last
section contains the proof of Theorem 1.2 and the examples mentioned in 1.10. We
also mention further questions regarding hyperelliptic and trigonal K3 surfaces, and
quasismooth K3 surfaces.

We work over the complex numbers unless otherwise stated.

Acknowledgements. We thank Paul Hacking, Yoshinori Namikawa and Miles
Reid for useful discussions. We also thank Angelo Lopez and Ciro Ciliberto for
pointing out [5, 6] after the first version of this article appeared, and also to Shigeru
Mukai for helpful comments on the first version. SC was supported by the DFG
through grant Hu 337-6/2, and ERC Advanced grant no. 340258, TADMICAMT. TS
was supported by Max Planck Institute for Mathematics, JSPS Research Fellowships
for Young Scientists and JST tenure track program.

2 Review and properties of graded T 1
X

2.1 Criterion for negative gradedness Let ArtC be the category of Artin local
C-algebras with residue field C and (Sets) be the category of sets. For an algebraic
scheme X , let DefX : ArtC → (Sets) be the usual deformation functor (cf. [28, 2.4.1]).
For a projective scheme X →֒ PN , let HilbX := HilbX →֒PN : ArtC → (Sets) be the
Hilbert functor parametrizing embedded deformations of X →֒ PN (cf. [28, 3.2.1]).

Let (X,L) be a polarised manifold, that is, X is a smooth projective variety such
that dimX ≥ 1 and L is an ample line bundle. Let

Ca(X,L) := Spec
⊕

k≥0

H0(X,L⊗k)

be the affine cone over (X,L). By [14, 8.8.6], Ca(X,L) is normal. We also have the
following property.

Proposition 2.2. Let (X,L) be a polarised manifold. Assume that H i(X,L⊗k) = 0
for all 0 < i < dimX and k ∈ Z. Then we have the following:

(i) The cone Ca(X,L) is Cohen–Macaulay;

(ii) If ωX ≃ L⊗m for some m ∈ Z, then Ca(X,L) is Gorenstein.
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Proof. For (i), it is enough to check the conditions (a) and (b) in [11, 5.1.6(ii)]. We
can check (a) by the construction of Ca(X,L). The condition (b) is nothing but our
assumption. Part (ii) follows from [11, 5.1.9].

Write Ca := Ca(X,L) for the affine cone over X . For k ∈ Z≥0, let Ak :=
C[t]/(tk+1) and T 1

Ca
:= DefCa

(A1) be the tangent space to DefCa
. Then by [23, Propo-

sition 2.2] or [31, (3.2)], the C∗-action on Ca induces a grading T 1
Ca

=
⊕

k∈Z T
1
Ca
(k).

Let C̃a → Ca be the blowup at the vertex P ∈ Ca. Then C̃a ≃ Tot(L∨) :=
SpecOX

⊕
k≥0L

⊗k is the total space of the dual line bundle L∨ of L. The punctured

cone C ′
a := Ca r P is isomorphic to C̃a r X if we view X as the zero section in

C̃a. Note that C ′
a ≃ SpecOX

⊕
k∈Z L

⊗k. We have the inclusion map ι : C ′
a → Ca, the

bundle π : C̃a → X , and the C∗-bundle C ′
a → X , which we also denote by π.

Restricting the short exact sequence 0 → π∗L→ T
C̃a
→ π∗TX → 0 of [27, §4] to

C ′
a, we have

0→ OC′
a
→ TC′

a
→ π∗TX → 0, (1)

because π∗L|C′
a
is the trivial line bundle. More precisely, by [31, Proposition 3.3], we

have isomorphisms
TC′

a
≃ π∗EL ≃ TC̃a

(− logX)⊗OC′
a

(2)

where EL is the extension

0→ OX → EL → TX → 0 (3)

corresponding to c1(L) ∈ H1(X,Ω1
X) ≃ Ext1(TX ,OX).

We use the following criterion about the vanishing of the graded pieces T 1
Ca
(k)

when L induces a projectively normal embedding in Pn.

Proposition 2.3. ([2, Theorem 12.1]) Let (X,L) be a polarised manifold. Assume
that L induces a projectively normal embedding Φ|L| : X →֒ PN .

(i) (Pinkham [23, Theorem 5.1]) Suppose that T 1
Ca
(k) = 0 for all k > 0. Write

Cp(X,L) ⊂ P
N+1 for the projective cone over Φ|L| : X →֒ P

N as defined in 1.9.
Then the restriction map

HilbCp(X,L) → DefCa(X,L)

is formally smooth.

(ii) (Schlessinger [27, §4.3]) Suppose that T 1
Ca
(k) = 0 for all k 6= 0. Then we have

a canonical morphism of functors

HilbX → DefCa(X,L)

and it is formally smooth. Every deformation of Ca(X,L) is a cone.
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We describe the eigencomponent T 1
Ca
(k) for an arithmetically Gorenstein embed-

ding X ⊂ Pn.

Proposition 2.4. Let X ⊂ Pn be a smooth, arithmetically Gorenstein variety of
dimension ≥ 2, and let Ca = Ca(X,OX(1)) be the affine cone over X. If dimX ≥ 3,
then

T 1
Ca
(k) = H1(X, TX(k)).

If X is a surface with ωX = O(c), then

T 1
Ca
(c− k) ≃ T 1

Ca
(c+ k) ≃ H1(X, TX(c+ k)) for k 6= 0,

and T 1
Ca
(c) ⊆ H1(X, TX(c)).

Proof. We start from T 1
Ca

= Ext1(Ω1
Ca
,OCa

). Since codimP Ca ≥ 3 and Ca is Cohen–
Macaulay, we have

T 1
Ca

= Ext1(Ω1
Ca
,OCa

) = H1(C ′
a, TC′

a
).

By the projection formula and the Leray spectral sequence, we know that H1(OC′
a
) =

H1(
⊕

k∈ZOX(k)) and H1(π∗TX) = H1(
⊕

k∈Z TX(k)).
If X is not a surface, then H1(OX(k)) = H2(OX(k)) = 0 for all k because X

is arithmetically Gorenstein. Thus the long exact sequence associated to (1) above
gives T 1

Ca
(k) = H1(TX(k)).

Now suppose that X is an arithmetically Gorenstein surface with ωX = O(c).
Then H1(OX(c + k)) vanishes for all k, and this gives an inclusion of T 1

Ca
(c + k) in

H1(TX(c+k)) for all k. For k > 0, we have H2(OX(c+k)) = 0 by Kodaira vanishing,
and thus T 1

Ca
(c+ k) = H1(TX(c+ k)) for all k > 0. Now T 1

Ca
(c+ k) ∼= T 1

Ca
(c− k) by

a theorem of Wahl [32, §2.3], and this completes the proof.

2.5 Generalised criteria In the following, we generalise Proposition 2.3 (i) and
(ii) for a general ample line bundle L. That is, we do not assume that X is projec-
tively normal. For that purpose, we prepare several notions on projective cones and
two deformation functors in Definitions 2.6 and 2.8. We do not use these directly
in the proof of Theorem 1.2, but we give some other applications, and the functors
may be useful in studying some of the questions raised in Section 5.

Definition 2.6. (cf. Appendices to [17] and [10]) Let (X,L) be a polarised manifold.
Let

R(X,L)[t] :=
⊕

i≥0

⊕

k≥0

H0(X,L⊗k) · ti
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be a graded C-algebra such that deg(σk·t
i) = k+i, where σk ∈ H0(X,L⊗k). We define

Cp(X,L) := ProjR(X,L)[t] to be the projective cone over (X,L) and Ht ⊂ Cp(X,L)
to be the divisor defined by the variable t. There is a natural C∗-action on R(X,L)[t]
which is trivial on t, and this induces a C∗-action on Cp(X,L).

Remark 2.7. LetOCp
(1) be the tautological sheaf corresponding to the graded module

R(X,L)[t](1) shifted by degree 1. Then we can check that this is invertible and Ht ∈
|OCp

(1)|. Note that OCp
(1) is not necessarily very ample. We can also check that

CprHt ≃ Ca. Let C̃p → Cp be the blowup at the vertex P . Then C̃p ≃ P(OX ⊕L∨)
is the projectivization of OX ⊕ L∨. We also have the punctured cone C ′

p := Cp r P

and C ′
p ≃ C̃p rH0 ≃ Tot(L) ≃ SpecOX

⊕
k≥0(L

∨)⊗k, where H0 ⊂ C̃p is the negative
section.

Next we define two deformation functors associated to an algebraic scheme with
a closed subscheme and a line bundle.

Definition 2.8. (cf. [28, 3.3.3, 3.4.4]) Let X be an algebraic scheme, D ⊂ X be its
closed subscheme, and L be a line bundle on X .

(i) For A ∈ ArtC, a deformation of a pair (X,D) over A is a pair (ξ,DA) which
consists of ξ = (X →֒ XA → SpecA) ∈ DefX(A), and a closed subscheme
DA ⊂ XA which is flat over A and has an isomorphism DA ⊗A C ≃ D. Let
Def(X,D)(A) be the isomorphism classes of deformations of (X,D) over A ∈
ArtC. Then we obtain a deformation functor Def(X,D) : ArtC → (Sets) of the
pair (X,D).

(ii) For A ∈ ArtC, a deformation of a pair (X,L) over A is a pair (ξ, LA) which
consists of ξ = (X →֒ XA → SpecA) ∈ DefX(A), and LA ∈ PicXA with an
isomorphism LA|X ≃ L. Let Def(X,L)(A) be the set of isomorphism classes
of deformations of (X,L) over A. Then we obtain a deformation functor
Def(X,L) : ArtC → (Sets) of the pair (X,L).

Remark 2.9. Let (X,L) be a polarised manifold. Let T 1
(X,L) := Def(X,L)(A1) be the

tangent space for Def(X,L). It is known that T 1
(X,L) ≃ H1(X, EL) and we can take

H2(X, EL) as an obstruction space, where EL is the sheaf as in (3) (cf. [28, Theorem
3.3.11]).

Definition 2.10. Let Def(Cp(X,L),Ht) : ArtC → (Sets) be the deformation functor of
a pair (Cp(X,L), Ht) (cf. [28, 3.4.4]). Then we have a restriction morphism

Φ: Def(Cp(X,L),Ht) → DefCa(X,L)

which is induced by the open immersion Ca(X,L) →֒ Cp(X,L).

7



Using this morphism of functors, we can generalise Proposition 2.3(i) as follows.

Proposition 2.11. Let (X,L) be a polarised manifold and let Cp := Cp(X,L), Ca :=
Ca(X,L) be the projective (respectively affine) cone over (X,L). Assume that T 1

Ca
(k)

vanishes for all k > 0. Then the restriction morphism Φ: Def(Cp,Ht) → DefCa
is

formally smooth.

Proof. We follow the approach of [2, Theorem 12.1], that is, we shall prove the
following:

(a) The tangent map dΦ: T 1
(Cp,Ht)

→ T 1
Ca

is surjective;

(b) Given ξA := (Cp,A, Ht,A) ∈ Def(Cp,Ht)(A). Let ξ̄A := Φ(ξA) ∈ DefCa
(A) be its

image and assume that ξ̄A can be lifted over a small extension A′ ∈ ArtC of A.
Then there exists a lift ξA′ ∈ Def(Cp,Ht)(A

′) of ξA over A′.

First we shall check (a). Let Φ′ : Def(C′
p,Ht) → DefC′

a
be the restriction by an

open immersion ι′ : C ′
a →֒ C ′

p. We have a commutative diagram

T 1
(Cp,Ht)

dΦ
//

� _

ι∗p

��

T 1
Ca� _

ι∗a

��

T 1
(C′

p,Ht)
dΦ′

// T 1
C′

a
.

The vertical homomorphisms are induced by open immersions ιp : C
′
p →֒ Cp and

ιa : C
′
a →֒ Ca and they are injective since Ca and Cp are normal. We will show that

T 1
(Cp,Ht)

= (dΦ′)−1(T 1
Ca
). This is sufficient since we can construct a deformation of

(Cp, Ht) from η ∈ (dΦ′)−1(T 1
Ca
) ⊂ T 1

(C′
p,Ht)

by taking the push-forward of the structure

sheaf by the open immersion ιp : C
′
p →֒ Cp.

Let T 1
(C′

p,Ht)
=

⊕
k∈Z T

1
(C′

p,Ht)
(k) and T 1

C′
a
=

⊕
k∈Z T

1
C′

a
(k) be the eigendecomposi-

tions with respect to the C∗-actions on C ′
p and C ′

a. Since all the homomorphisms in
the above diagram are C∗-equivariant, we have a homomorphism dΦ′(k) : T 1

(C′
p,Ht)

(k)→

T 1
C′

a
(k) for all k ∈ Z. By the assumption on T 1

Ca
(k), it is enough to check that

dΦ′(k) : T 1
(C′

p,Ht)
(k)→ T 1

C′
a
(k) is surjective for all k ≤ 0.

Let EL∨ be the locally free sheaf on X defined by the extension associated
to c1(L

∨) ∈ H1(X,Ω1
X) as in short exact sequence (3). In fact, since c1(L) =

−c1(L
∨), we have EL ≃ EL∨ by [28, 3.3.10]. Then by [31, Proposition 3.3], we

have TC′
p
(− logHt) ≃ π∗

pEL∨ where πp : C
′
p ≃ Tot(L)→ X is the projection.
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Since πp is an affine morphism, we obtain an isomorphism

T 1
(C′

p,Ht) ≃ H1(C ′
p, TC′

p
(− logHt)) ≃

⊕

k≤0

H1(X, EL∨ ⊗ L⊗k)

by the projection formula and (πp)∗OC′
p
≃

⊕
k≥0OX(L

⊗−k). Hence, for k ≤ 0, we
obtain

T 1
(C′

p ,Ht)(k) ≃ H1(X, EL∨ ⊗ L⊗k).

Let πa : C
′
a → X be the C∗-bundle projection. Then we have TC′

a
≃ π∗

aEL∨ by (2)
and

T 1
C′

a
≃ H1(C ′

a, TC′
a
) ≃

⊕

k∈Z

H1(X, EL∨ ⊗ L⊗k) (4)

by the projection formula for the affine morphism πa and (πa)∗OC′
a
≃

⊕
k∈Z L

⊗k.
Hence, for k ∈ Z, we obtain

T 1
C′

a
(k) ≃ H1(X, EL∨ ⊗ L⊗k).

We see that dΦ′(k) is an isomorphism for all k ≤ 0 by the description of T 1
(C′

p,Ht)
(k)

and T 1
C′

a
(k), and the following commutative diagram for C ′

p ≃ SpecOX

⊕
k≤0 L

⊗k and

C ′
a ≃ SpecOX

⊕
k∈Z L

⊗k:

(πp)∗OC′
p

//

≃

��

(πa)∗OC′
a

≃

��⊕
k≤0L

⊗k //
⊕

k∈Z L
⊗k.

Next consider the situation in (b). We shall construct a lift (Cp,A′, Ht,A′) ∈
Def(Cp,Ht)(A

′) of (Cp,A, Ht,A). The transformation Φ′ : Def(C′
p,Ht) → DefC′

a
induces a

homomorphism

o(Φ′) : H2(C ′
p, TC′

p
(− logHt))→ H2(C ′

a, TC′
a
)

between the obstruction spaces of the functors. This is injective since we have a
commutative diagram

H2(C ′
p, TC′

p
(− logHt))

≃
//

��

⊕
k≤0H

2(X, EL∨ ⊗ L⊗k)
� _

��

H2(C ′
a, TC′

a
)

≃
//
⊕

k∈Z H
2(X, EL∨ ⊗ L⊗k).
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Thus we can lift ι∗p(ξA) in Def(C′
p,Ht)(A) to A′. Let (C ′

p,A′, Ht,A′) in Def(C′
p,Ht)(A

′) be

the corresponding deformation. We see that (ιp)∗OC′

p,A′
is flat over A′ since ξ̄A can

be lifted over A′. Thus we obtain a lift of (Cp,A, Ht,A) over A
′ as required.

We define smoothability as follows.

Definition 2.12. Let X be an algebraic scheme. We say that X is smoothable if
there exists a deformation φ : X → S of X over some quasi-projective curve S whose
fibre Xs := φ−1(s) is smooth for general s ∈ S.

As a corollary of Proposition 2.11, we obtain a quick proof of Pinkham’s theorem
on cones over elliptic curves.

Corollary 2.13. ([23, §9]) Let E be an elliptic curve and L be an ample line bundle
on E of degree d. Then Ca(E,L) has a smoothing if and only if d ≤ 9.

Proof. Note that T 1
C′

a
(k) ≃ H1(E, EL∨⊗L⊗k) as in (4). This vanishes for all k > 0 by

the exact sequence (3) and H1(E,L⊗k) = 0 for all k > 0. Since Ca is normal, we have
a C∗-equivariant injection T 1

Ca
→֒ T 1

C′
a
and this induces an injection T 1

Ca
(k) →֒ T 1

C′
a
(k).

Thus we obtain T 1
Ca
(k) = 0 for all k > 0 and, by Proposition 2.11, the restriction

morphism Φ: Def(Cp(E,L),Ht) → DefCa(E,L) is formally smooth.
Assume that Ca(E,L) is smoothable. By the formal smoothness of Φ, the pro-

jective cone Cp(E,L) also has a smoothing Cp → S over some quasi-projective curve
S. Since −KCp(E,L) is ample, the general fibre Cp,s is a smooth del Pezzo surface of
degree d. Hence we obtain d ≤ 9 by the classification of del Pezzo surfaces.

Conversely assume that d ≤ 9. For a given (E,L), we can explicitly construct a
smooth del Pezzo surface S such that E ∈ |−KS| and L ≃ OS(−KS)|C. For example,
first choose an embedding ιE : E →֒ P2 as a cubic curve and take p1, . . . , p9−d ∈ E
such that L ≃ OE(3) ⊗ OE(−p1 − · · · − p9−d). Let S → P2 be the blow-up at
p1, . . . , p9−d. Note that we can choose the embedding ιE such that p1, . . . , p9−d are
in general position and S is del Pezzo. Then we see that L ≃ OS(−KS)|C by the
construction. For this S, we see that Ca(E,L) is a hypersurface in Ca(S,−KS) since
H0(S,−mKS)→ H0(E,mL) is surjective by H1(S,−(m− 1)KS) = 0 for all m ≥ 1.
Thus we can construct a smoothing by sweeping out the cone.

Using the functor Def(X,L) as in Definition 2.8, we have the following analogue of
Proposition 2.3 (ii) for a general polarization.

Proposition 2.14. Let X be a smooth projective variety and L an ample line bundle
on X. Assume that dimX ≥ 1 and H1(X,L⊗k) = 0 for all k > 0.
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(i) We can define a canonical morphism of functors

Γ: Def(X,L) → DefCa(X,L) .

(ii) Suppose that T 1
Ca
(k) = 0 for k 6= 0. Then the morphism Γ is formally smooth.

Thus Ca(X,L) has only conical deformations.

Remark 2.15. The morphism Γ of Proposition 2.14 can also be formulated as a
morphism of functors

Γw : Hilb
w
X → DefCa(X,L),

where Hilbw
X denotes the Hilbert functor of embedded deformations of X in weighted

projective space wPn via the Proj-construction X = Proj
⊕

k≥0H
0(X,L⊗k).

Remark 2.16. Christophersen–Kleppe treated a similar result (cf. [4, Corollary 5.2]).
However they assume H2(X,OX) = 0 which implies that the deformations preserve
polarizations (cf. [15, Example 21.2.5]). A general projective variety X has non-
algebraic deformations. By considering deformations of (X,L), we can avoid this
problem.

Proof. (i) For A ∈ ArtC and (XA, LA) ∈ Def(X,L)(A), let

Ca(XA, LA) := Spec
⊕

k≥0

H0(XA, L
⊗k
A ).

We see that H0(XA, L
⊗k
A ) is flat over A by [31, Corollary 0.4.4] and H1(X,L⊗k) = 0

for all k > 0. Hence Ca(XA, LA) is a deformation of Ca(X,L) and we can define Γ
by letting ΓA((XA, LA)) := Ca(XA, LA).

(ii) We follow the approach of [2, Theorem 12.1] as in Proposition 2.11. That is, we
shall prove the following:

(a) The tangent map dΓ: T 1
(X,L) → T 1

Ca
is surjective;

(b) Given ξA := (XA, LA) ∈ Def(X,L)(A). Let ξ̄A := Γ(ξA) ∈ DefCa
(A) be its image

and assume that ξ̄A can be lifted over a small extension A′ ∈ ArtC of A. Then
there exists a lift ξA′ ∈ Def(X,L)(A

′) of ξA over A′.

Let ι : C ′
a →֒ Ca be the open immersion of the punctured neighborhood. Then

ι∗ : DefCa
→ DefC′

a
is the restriction by ι, and we define Γ′ := ι∗◦Γ: Def(X,L) → DefC′

a

to be the composition. Then the tangent map dΓ′ is decomposed as

dΓ′ : T 1
(X,L)

dΓ
−→ T 1

Ca

ι∗

−→ T 1
C′

a

11



and ι∗ is injective since the cone Ca is normal.
We shall prove dΓ is surjective. We can describe dΓ′ as the natural homomorphism

dΓ′ : H1(X, EL)→ H1(C ′
a, TC′

a
) ≃ H1(C ′

a, π
∗
aEL),

where πa : C
′
a → X is the C∗-bundle projection. Note that we have H1(C ′

a, π
∗
aEL) ≃⊕

k∈ZH
1(X, EL⊗L

⊗k) and dΓ′ is induced by the adjunction morphism EL → (πa)∗π
∗
aEL.

Thus we see that dΓ′ is an isomorphism onto the degree 0 part of the target space.
Hence dΓ is an isomorphism onto T 1

Ca
(0). By this and the assumption T 1

Ca
(k) = 0

for k 6= 0, we see that dΓ is surjective. This proves (a).
Next we shall prove (b). The obstruction class to lifting ξA to A′ is o(ξA) ∈

H2(X, EL). We show that o(ξA) = 0. The morphism Γ′ : Def(X,L) → DefC′
a
induces

a linear map
oΓ′ : H2(X, EL)→ H2(C ′

a, TC′
a
)

between the obstruction spaces. By the construction of the obstruction map and
π∗
aEL ≃ TC′

a
, we have a commutative diagram

H2(X, EL)
o
Γ′

//

o′

((❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

o′′

""❉
❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

❉

H2(C ′
a, TC′

a
)

≃
��

H2(C ′
a, π

∗
aEL)

≃
��

H2(X, (πa)∗π
∗
aEL).

Note that o′′ is induced by the adjunction homomorphism EL → (πa)∗π
∗
aEL which is

a split injection. Hence o′′ is injective and oΓ′ is also injective.
We see that oΓ′(o(ξA)) = 0 since ξ̄A ∈ DefCa

(A) and its image ξ̄′A ∈ DefC′
a
(A) can

be extended over A′. Hence we have o(ξA) = 0 and obtain (b). This concludes the
proof of Proposition 2.14.

We think that the following result is known to experts, but we could not find it
in the literature. We prove it as an application of Proposition 2.14.

Corollary 2.17. Let X be an abelian variety of dimension n ≥ 2 and L an ample
line bundle on X. Then the affine cone Ca = Ca(X,L) has only conical deformations.

Proof. We see that ι∗ : T 1
Ca
→ T 1

C′
a
is injective since Ca is S2 and codimCa

P ≥ 2. We

have an isomorphism T 1
C′

a
≃

⊕
k∈Z H

1(X, EL ⊗ L⊗k). Note that TX ≃ O
⊕n
X . Thus

H1(X, TX ⊗ L⊗k) = 0 and H1(X,L⊗k) = 0 for any k 6= 0 by Serre duality, Kodaira
vanishing and n ≥ 2. Hence we obtain H1(X, EL ⊗ L⊗k) = 0 and thus T 1

Ca
(k) = 0

for k 6= 0. To conclude the proof, we apply Proposition 2.14 (ii).
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2.18 A smoothable affine cone with a non-smoothable projectivization
In [24, Ex. 2.11], Pinkham exhibited a Cohen–Macaulay curve singularity as the affine
cone Ca(X) over a certain projective 0-dimensional scheme X such that Ca(X) is
smoothable, but there is no smoothing induced by a deformation of the projective
cone Cp(X). Below, we construct a Gorenstein normal 3-fold singularity, the cone
over a certain surface X of general type, such that Ca(X) is smoothable but Cp(X)
is not.

Example 2.19. Let X ⊂ A6 be the codimension 3 variety defined by the 4×4 Pfaffians

of the skew matrix M with homogeneous entries of degrees

(
−1 1 1 1

1 1 1
3 3
3

)
. The general

such M is 


0 x1 x2 x3

x4 x5 x6

f1 f2
f3


 ,

and X = Ca(S,KS) is the cone over a divisor S of bidegree (3, 4) in P1 × P2 under
the Segre embedding in P

5 (S is the canonical model of a surface of general type
with pg = 6 and K2 = 11). Indeed, the 4× 4 Pfaffians of M are

x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5, x1f3 − x2f2 + x3f1, x4f3 − x5f2 + x6f1,

the first three define the Segre embedding, and the last two cut out the divisor S.
All deformations of X are obtained by varying the entries of M [16, 33]. Thus

after coordinate changes, the general fibre X ′ of any deformation of X is defined by
the Pfaffians of

M ′ =




λ x1 x2 x3

x4 x5 x6

f ′
1 f ′

2

f ′
3


 ,

where f ′
i = fi + hi for some polynomials hi.

We first show that X is smoothable. Let λ be a nonzero constant, and choose
hi sufficiently general with some terms of degree ≤ 1. Since λ is constant, Pfaffians
1 and 2 are redundant, and X ′ is a nonsingular complete intersection for suitably
chosen hi.

Now suppose that we restrict ourselves to deformations X ′ that are induced by a
deformation of the projective cone Cp(S,KS) over S. Then λ ≡ 0 for degree reasons,
and hi must have degree ≤ 3 — in particular, we see that the above smoothing is not
induced by Cp(S,KS). Since λ = 0, X ′ passes through the origin, and a computation
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of the partial derivatives of Pfaffians 3, 4 and 5 shows that the Jacobian matrix of
X ′ must have rank ≤ 2 there. Thus X ′ must be singular at the origin.

Remark 2.20. The above example is quite flexible. For example, we get 3-fold singu-
larities with similar properties by taking a divisor Sk in P

1×P
2 of bidegree (k, k+1)

for any k ≥ 3.

3 Vanishing of T 1
X(k) for |k| ≥ 2

Theorem 3.1. Let S be a K3 surface with primitive polarisation L of Clifford index
> 2. Let X be the affine cone over (S, L), then T 1

X(k) vanishes for |k| ≥ 2.

3.2 The Clifford index of a smooth curve C is

Cliff C = min{d− 2r | r ≥ 1, d ≤ g − 1},

computed over all special linear systems grd on C. Clifford index is a refinement
of gonality. The general curve has maximal Clifford index

[
g−1
2

]
, and using this

terminology, Clifford’s theorem states that Cliff C ≥ 0 with equality if and only if C
has a g12. It follows from work of Green–Lazarsfeld [13] (see also Reid [25]), that the
Clifford index is constant for all curves in a linear system |C| on a K3 surface. Thus
we define the Clifford index of a K3 surface (S, L) to be Cliff C for any C in |L|.

The generic polarised K3 surface of genus g has maximal Clifford index
[
g−1
2

]
,

and so the hypothesis of Theorem 3.1 holds for general K3 surfaces of genus g ≥ 7.
Curves of Clifford index 0 are hyperelliptic, index 1 means trigonal or a plane quintic,
and index 2 means tetragonal or a plane sextic [9, §0].

Example 3.3. The K3 surface of genus 6 is a complete intersection H1 ∩H2 ∩H3 ∩Q
inside the Plücker embedding of Gr(2, 5) in P9, where Hi are hyperplanes and Q is
a hyperquadric. We compute T 1

X has nonzero graded pieces in degrees −2,−1, 0, 1, 2
with dimensions 1, 10, 19, 10, 1. The generic curve of genus 6 has Clifford index 2,
while the generic curve of genus 7 has Clifford index 3. Thus the theorem is sharp.

3.4 Wahl’s criterion Theorem 3.1 is proved by using Koszul cohomology and
Green’s conjecture for curves on a K3 surface, to show that S satisfies Wahl’s criterion
for vanishing of T 1(k) for k ≤ −2.

Theorem 3.5. (Wahl [32, Corollary 2.8]) Suppose the free resolution of OS begins
with

OS ← OP ← OP(−2)
a ← OP(−3)

b ← . . . . (5)

14



Then T 1
X(k) = 0 for k ≤ −2.

Let (S, L) be a polarised K3 surface. By [26], we can choose C ∈ |L| a nonsingular
irreducible curve. Since C is a hyperplane section of S ⊂ Pg and the coordinate ring
of S is Gorenstein, the Betti numbers of OC are the same as those of OS. Moreover,
by adjunction C ⊂ Pg−1 is a canonical curve, so we are reduced to studying the
equations and syzygies of canonical curves.

3.6 Green’s conjecture We refer to [12] for details on Koszul cohomology and
Green’s conjecture. For simplicity, we formulate everything in terms of Betti num-
bers. For a nonhyperelliptic canonical curve C ⊂ Pg−1 of genus g, the free resolution
of OC as an OPg−1-module is

OC ← F0 ← F1 ← · · · ← Fg−2 ← 0

where F0 = O
β0,0

P
, Fi =

⊕
j=1,2OP(−i − j)βi,j for i = 1, . . . , g − 3 and Fg−2 =

OP(−g − 2)βg−2,3. This data is represented in a Betti table as follows:

0 1 2 . . . g − 4 g − 3 g − 2

β0,0

β1,1 β2,1 . . . βg−4,1 βg−3,1

β1,2 β2,2 . . . βg−4,2 βg−3,2

βg−2,3

Thus for Wahl’s criterion (5) to be verified, we need β1,2 = β2,2 = 0. This is equivalent
to βg−3,1 = βg−4,1 = 0 by Koszul duality. Now, Green’s conjecture relates non-
vanishing of certain Betti numbers with existence of special linear systems on C:

Conjecture 3.7 (Green [12]). Let C be a canonical curve in Pg−1. Then

βp,1(C,KC) 6= 0 ⇐⇒ C has a grd with d ≤ g − 1, r ≥ 1 and d− 2r ≤ g − 2− p.

Proof of Theorem 3.1. Green’s conjecture holds for curves on any K3 surface by
Voisin [29, 30] and Aprodu–Farkas [1]. Thus S satisfies Wahl’s criterion if and only
if C does not have a grd with d − 2r ≤ g − 2 − (g − 4) = 2, which means that the
Clifford index of S must be > 2.
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3.8 Higher index Fano 3-folds, imprimitive embeddings and smoothings
In this subsection we recover the classification of higher index Fano 3-folds from
smoothings of affine cones over K3 surfaces embedded imprimitively. Ciro Ciliberto
informed us that this is similar to the line of thought in [6]. Let S be a general K3
surface of genus ≤ 6, and write X = Ca(S,OS(1)). Now S has Clifford index ≤ 2,
and in fact, T 1

X(k) does not vanish for some |k| ≥ 2. Here, we study the connection
between this nonvanishing, imprimitive embeddings of K3 surfaces and Fano 3-folds
of higher Fano index.

Fix I > 1 and take the affine cone Y = Ca(S,OS(I)) over the nonprimitive
embedding of S by OS(I). By Proposition 2.4, we have

T 1
Y (k)

∼= T 1
X(kI).

In the table below, we list all nonsingular Fano 3-folds W,A of Fano index I > 1 with
PicW ≃ Z and ample generator A satisfying −KW = IA. Each entry of the table
has two interpretations in terms of smoothings of general K3 surfaces of genus ≤ 6.
Firstly, as a special subspace

⊕
k≤0 T

1
X(kI) of T

1
X corresponding to a deformation of

Ca(S,OS(1)) with total space Ca(W,A). Secondly, as a deformation of Ca(S,OS(I))
with total space Ca(W,−KW ). We work this out in a series of examples below.

g (W,A) Index Fano description

2 W6 ⊂ P(1, 1, 1, 2, 3) 2 del Pezzo 3-fold of degree 1

3 W4 ⊂ P(14, 4) 4 P3

W4 ⊂ P(14, 2) 2 del Pezzo 3-fold of degree 2

4 W2,3 ⊂ P(15, 2) 2 cubic 3-fold

W2,3 ⊂ P(15, 3) 3 quadric 3-fold

5 W2,2,2 ⊂ P(16, 2) 2 intersection of two quadrics

6 W = H1 ∩H2 ∩H3 ∩Gr(2, 5) ⊂ P
6 2 del Pezzo 3-fold of degree 5

Remark 3.9. The only higher index Fano 3-folds that are missing from the table are
P1 × P1 × P1 and P2 × P2. These have Picard rank ρ > 1, and in these cases, the
K3 surfaces in question have genus 7 but do not have maximal Clifford index. These
3-folds make an appearance in Section 5.7.

Example 3.10. Consider the cone X = Ca(S,OS(1)) over the quartic K3 surface
from Example 1.6. Now, T 1

X contains an 11-dimensional subspace T 1
X(−2)⊕T 1

X(−4),
corresponding to the deformation X → ∆ defined by

X : (x4
0 + x4

1 + x4
2 + x4

3 + t00x
2
0 + t01x0x1 + · · ·+ t33x

2
3 + u = 0) ⊂ A

4 ×∆,
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where ∆ = C
11(tij , u). Let λ, µ : C→ ∆ be maps

λ : x 7→ (x2, . . . , x2, x4) and µ : y 7→ (y, . . . , y, y2),

where for simplicity, we assume all coefficients are 1. Performing base change with
respect to λ or µ induces one parameter smoothings ofX , which we denote by Xλ and
Xµ. The total space of Xλ is the affine cone Ca(V,OV (1)) over a quartic Fano 3-fold
V4 ⊂ P4, and λ sweeps out the hyperplane section in Ca(V,OV (1)). On the other
hand, the total space of Xµ is the affine cone Ca(W,OW (1)) over W4 ⊂ P(1, 1, 1, 1, 2),
and µ sweeps out the weighted hyperplane section of weight 2 inside Ca(W,OW (1)).

The subspace T 1
X(−2) ⊕ T 1

X(−4) was chosen so that Xµ admits a weighted C∗-
action. The subspaces T 1

X(−3) and T 1
X(−4) have similar properties, giving rise to

smoothings of X that sweep out weighted hyperplanes in the cone Ca(W,OW (1)),
where W is the 3-fold W4 ⊂ P4(1, 1, 1, 1, k) for k = 3, 4. When k = 3, W has a
1
3
(1, 1, 1) quotient singularity, while k = 4 gives W ≃ P3.

Example 3.11. Continuing with the quartic K3 surface S, we now take I = 4 and
consider the affine cone Y = Ca(S,OS(4)). We see that Y is smoothable, because it
is a hyperplane section of Ca(P

3,−KP3). The smoothing given by sweeping out this
hyperplane corresponds to the 1-dimensional vector space T 1

X(−4)
∼= T 1

Y (−1).

Example 3.12. Consider the affine cone X = Ca(S,OS(1)) over the K3 surface S
of genus 6 from Example 3.3. The subspace T 1

X(−2) in T 1
X corresponds to a one

parameter deformation of X , whose total space is the affine cone Ca(W,OW (1)) over
the del Pezzo 3-fold of index 2: W = H1∩H2∩H3∩Gr(2, 5) in P6. The deformation is
realised by varying the hyperquadric section Q = 0 cutting out X in Ca(W,OW (1)),
to Q = t, where t is the deformation parameter.

4 Vanishing of T 1(k) for |k| = 1

The following is a key result of this section.

Theorem 4.1 (cf. Beauville [3, §5.2], Mukai [20, §4]). Let S be a general K3 surface
with primitive polarisation L of genus g = 11 or g ≥ 13. Then

H1(S,Ω1
S ⊗ L⊗k) = 0

for any k ≥ 1.

Remark 4.2. After the first version of this article appeared, Angelo Lopez and Shigeru
Mukai informed us that ϕg is actually birational onto its image for g = 11 and g ≥ 13,
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cf. [5], [21]. Moreover, Ciro Ciliberto informed us that [6, Lemma 2.3] shows the same
vanishing as Theorem 4.1, using rather different methods, under the assumption that
S is general of Picard rank 1. It is quite likely that Theorem 4.1 and [6, Lemma 2.3]
give different (intersecting) dense open sets in the moduli space of K3 surfaces. In
particular, our result shows vanishing for some K3 surfaces of higher Picard rank.

4.3 Some moduli spaces (stacks) of K3 surfaces Before proving Theorem
4.1, we introduce the necessary material on moduli spaces of K3 surfaces. Good
references for this are [3] and [7, §6]. The main point is that the spaces we consider
are smooth as stacks, and so we can use infinitesimal methods to study morphisms
between them.

Let Fg be the moduli stack of polarised K3 surfaces (S, L) such that L is primitive
and c1(L)

2 = 2g− 2. We define Pg,k to be the moduli stack of pairs (S, C), where C
is a stable curve in |L⊗k| for some line bundle L such that (S, L) ∈ Fg. Finally, we
writeMg for the moduli stack of stable curves of genus g. Then we have a forgetful
map

ϕg,k : Pg,k →Mgk (6)

sending (S, C) to C, where gk is the genus of C ∈ |L⊗k|. Following the construction
of [3, §3], we can show that Pg,k is a smooth irreducible Deligne-Mumford stack.

When k = 1, Beauville [3, (5.1)] shows that the vanishing in Theorem 4.1 is
equivalent to generic finiteness of the morphism of stacks ϕg : Pg →Mg, and Mukai
[20, Theorem 7] proves that ϕg is generically finite when g = 11 and g ≥ 13 (see
below for definitions and notation). Beauville’s proof actually shows that for each
k > 0, the vanishing of H1(S,Ω1

S ⊗ L⊗k) is equivalent to generic finiteness of the
forgetful map ϕg,k defined in (6) above.

4.4 When k ≥ 2, the following lemma is a bit stronger than the generic vanishing
proved using Mori–Mukai. Thus it is enough to show the vanishing for k = 1, 2 in
Theorem 4.1.

Lemma 4.5. Let (S, L) be a polarised K3 surface as in Theorem 4.1. Suppose k ≥ 2
and H1(S,Ω1

S ⊗ L⊗k) = 0. Then H1(S,Ω1
S ⊗ L⊗k+1) = 0.

Proof. Let C ∈ |L| be a smooth member. We compute H1(S, TS ⊗ L⊗k). First use
the long exact sequence associated to

0→ L⊗k|C → (Ω1
S ⊗ L⊗k+1)|C → Ω1

C ⊗ L⊗k+1|C → 0
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to show that h1(C, (Ω1
S⊗L

⊗k+1)|C) = 0 for k ≥ 2. Then for k ≥ 2, the lemma follows
from the long exact sequence associated to

0→ Ω1
S ⊗ L⊗k → Ω1

S ⊗ L⊗k+1 → Ω1
S ⊗ L⊗k+1|C → 0.

Remark 4.6. By the Riemann–Roch formula, we can estimate the dimension of T 1
X(1)

using h1(TS ⊗ L) ≈ −χ(TS ⊗ L) = 20 − (2g − 2). This shows that Fano 3-folds of
genus g > 10 are superabundant: they are “not expected” to exist.

Proof of Theorem 4.1. Let (S, L) be a general K3 surface polarised by L with c1(L)
2 =

2g − 2, and take a smooth curve C ∈ |L⊗k|. By duality, it is enough to show that
H1(S,Ω1

S(−C)) = 0.
Twisting the standard short exact sequence 0→ Ω1

S → Ω1
S(logC)→ OC → 0 by

O(−C), we get the following exact sequence of cohomology

0→ H1(S,Ω1
S(−C))

κ
−→ H1(S,Ω1

S(logC)(−C))
τ
−→ H1(C,OC(−C)) (7)

where κ is injective because h0(OC(−C)) = h1(2KC) = 0 by Serre duality. Now by
[3, (5.1)], τ is the tangent map at (S, C) to the forgetful map ϕg,k from (6). Hence
ϕg,k is unramified at (S, C) if and only if τ is injective. Thus by Proposition 4.9
below, H1(S,Ω1

S(−C)) = 0 for general (S, C).

4.7 Mukai’s construction In order to prove that ϕg,k is generically finite, we
use the following theorem of Mori–Mukai [19]:

Assumption (∗) Let S ⊂ P
m be a smooth K3 surface with m ≥ 5 such that S is

set-theoretically an intersection of quadrics, and the map H0(OPm(1))→ H0(OS(1))
is an isomorphism. Suppose that S contains an irreducible smooth curve C such that
H0(OS(1))→ H0(OC(1)) is an isomorphism and degC ≥ m+ 1, so that pa(C) > 0.
Let HP ⊂ Pm be a general hyperplane such that H := S ∩HP is a smooth transverse
hyperplane section of S and C ∩HP is in general position in HP.

Theorem 4.8 (Mori–Mukai [19, Theorem 1.2]). Let S, Γ := C +H be a pair such
that S, C,H satisfy assumption (∗). Then for every embedding i : Γ→ S ′ into a K3
surface S ′, there exists an isomorphism I : S → S ′ whose restriction to Γ coincides
with i.

Proposition 4.9. The map ϕg,k is generically finite for g = 11 or g ≥ 13.
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Proof. It is enough to construct a pair (S,Γg,k) ∈ Pg,k such that

ϕ−1
g,k(Γg,k) = {(S,Γg,k)}.

In [20, §4], Mukai constructed such pairs for g = 11, g ≥ 13 when k = 1. We
summarise the construction here.

Let E ⊂ P5 be a sextic normal elliptic curve. Let S := Q1 ∩Q2 ∩Q3 be a smooth
complete intersection of three quadrics Qi which contain E. Since S contains an
elliptic curve, there is an elliptic fibration S → P1. Let H ∈ |OS(1)| be a general
hyperplane section. We can assume that S contains the following singular fibres:

(I3) E1 ∪ E2 ∪ E3 with Ei · Ej = 1 for all i 6= j

(I2) E ′
2 ∪ E4 with E ′

2 · E4 = 2,

where Ei ≃ P1 and Ei ·H = i for all i = 1, . . . , 4. Let Γ := E∪H . Then Γ is a stable
curve of genus 11. We can check that (S,Γ) satisfies Assumption (∗).

Let
Γ13 := Γ ∪ E3, Γ16 := Γ ∪ E3 ∪ E4,

Γ14 := Γ ∪ E4, Γ17 := Γ ∪ E1 ∪ E3 ∪ E4,

Γ15 := Γ ∪ E2 ∪ E3, Γ18 := Γ ∪ E2 ∪ E3 ∪ E4.

We construct Γg for g ≥ 19 by adding smooth fibres to Γi for 13 ≤ i ≤ 18. Then
since (S,Γg) ∈ Pg,1, we see by Theorem 4.8 that ϕ−1

g,1(Γg) = {(S,Γg)}. This is the
construction due to Mukai.

Next we consider the case k > 1. The linear system |Γg| is free. Indeed, if there
is a fixed curve C ⊂ Bs |Γg|, then we see that C = Ei for some i and (Γg − C)2 = 0
by Saint-Donat’s classification [26]. This does not happen since Γg − C is ample
by construction. Take a smooth member Cg,k−1 ∈ |(k − 1)Γg| and define Γg,k :=
Γg ∪ Cg,k−1. Thus (S,Γg,k) is in Pg,k and ϕ−1

g,k(Γg,k) = {(S,Γg,k)}.

Note that for g ≤ 10, ϕg is not generically finite for dimension reasons, and ϕ12

is also not generically finite (essentially due to the existence of Fano 3-folds of genus
12, cf. [3]). Thus combining Theorem 4.1 and Proposition 2.4 we get

Corollary 4.10. Let S be a general K3 surface with primitive polarisation L of genus
g and write X = Ca(S, L). Then T 1

X is concentrated in degree 0 if and only if g = 11
or g ≥ 13.

See the next section for various comments about the generality assumption.
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5 Smoothings and Fano threefolds

We prove the main theorem, after which we present several remarks and examples.

Theorem 5.1. Let S be a general K3 surface with primitive polarisation L of genus
g. The affine cone Ca(S, L) over (S, L) is smoothable if and only if g ≤ 10 or g = 12.

Proof. Let X = Ca(S, L) denote the affine cone over S. If g = 11 or g ≥ 13, then X
has only conical deformations by Corollary 4.10 and Proposition 2.3. If g ≤ 10 or g =
12 then by [3, Corollary 4.1], S is an anticanonical member of a smooth Fano 3-fold
W , that is, S ∈ |−KW |. Let Ca(W,−KW ) be the affine cone over the pair (W,−KW )
and σ ∈ H0(W,−KW ) be the defining section of S. Then we can regard Ca(S, L) as a
divisor in Ca(W,−KW ) defined by the section σ since H0(W,−mKW )→ H0(S, L⊗k)
is surjective for all m ≥ 1 by H1(W,−(m− 1)KW ) = 0. Let X ⊂ Ca(W,−KW )×A1

be a divisor defined by a function σ + λ, where λ is the parameter of the affine line
A1. Then we have a deformation X → A1 of X . The fibre over 0 is X , and the
general fibre Xt is nonsingular, because the general fibres avoid the vertex. This is a
smoothing of X by sweeping out the anticanonical member of W .

5.2 The cone over a K3 surface with g = 11 or g ≥ 13 can nevertheless
be smoothable If a K3 surface S is an anticanonical section of a Fano 3-fold with
b2 ≥ 2 from the Mori–Mukai classification [18], then Ca(S,OS(1)) is smoothable.
Thus there are K3 surfaces of genus 11 and ≥ 13 whose affine cone is smoothable.
For such K3 surfaces, Theorem 4.1 does not apply, and H1(Ω1

S(L)) does not vanish.

Example 5.3. Let S be a hypersurface of bidegree (2, 3) in P1×P2. Since S is a section
of |−KP1×P2 |, we see that (S,−KP1×P2|S) is a K3 surface of genus 28. Nevertheless,
we obtain a smoothing of the affine cone Ca(S,OS(1)), simply by sweeping out the
cone inside Ca(P

1 × P2,−KP1×P2).

Example 5.4. Suppose S is a K3 of genus 13. By [18], there are five distinct defor-
mation families of Fano 3-folds with g = 13. Two each with b2 = 2 and b2 = 3, and
one with b2 = 4. The cone Ca(S,OS(1)) over a general S is not smoothable, but
if we specialise Ca(S,OS(1)) to Ca(S

′,OS′(1)) where S ′ is the hyperplane section of
one of the above Fano 3-folds, then Ca(S

′,OS′(1)) is smoothable. Thus we see that
there are at least five strata in the moduli space of genus 13 K3 surfaces, for which
the cone over a K3 surface in such a stratum is smoothable.

Example 5.5. Similarly, if S is a K3 of genus 11, then by [18], there are four families
of Fano 3-folds with g = 11. Three with b2 = 2 and one with b2 = 3. The general
K3 of genus 11 is not a hyperplane section of any Fano 3-fold.
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5.6 K3 surfaces of genus > 32 Suppose S is a K3 surface of genus ≥ 13.
The only smoothings of Ca(S,OS(1)) that we know of, are induced by Fano 3-folds
appearing in the classification of Mori–Mukai [18], in the same way as the above
examples. If S has genus > 32, exceeding the maximum appearing in [18], then
any smoothing of Ca(S,OS(1)) does not lift to the projective cone Cp(S,OS(1)). In
spite of Example 2.19, we expect that Ca(S,OS(1)) is not smoothable for any S of
sufficiently large genus. An equivalent question (cf. [3, §5.4]) is the following:

Is ϕg,k actually finite and unramified for g > 32?

5.7 K3 surfaces whose affine cone has at least two distinct smoothings
We give an example of a K3 surface S of genus 7 which is a hyperplane section
of two topologically distinct anticanonical Fano 3-folds. It follows that the affine
cone Ca(S,OS(1)) has two topologically distinct smoothings, obtained by sweeping
out the cone over the two different Fano 3-folds. First recall the following famous
example:

Example 5.8. The degree 6 del Pezzo surface Y is a hyperplane section of V1 =
V : (1, 1) ⊂ P2 × P2 and V2 = P1 × P1 × P1. Thus Ca(Y,−KY ) has two distinct
smoothings.

Inspired by this, we found the following example:

Example 5.9. Let Y be the degree 6 del Pezzo surface, and take π : S → Y a dou-
ble cover branched in B ∈ |−2KY |. Then S is a K3 surface of degree 12 in P7.
By Example 5.8, Y = Vi ∩ Hi for some Hi ∈ |−

1
2
KVi
|. Take πi : Wi → Vi a dou-

ble cover branched in Xi ∈ |−KVi
|, where Xi are chosen so that Xi ∩ Hi = B

since H0(Vi,−KVi
) → H0(Y,−2KY ) is surjective. The Wi are Fano 3-folds with

distinct topology. Indeed, W1 (respectively W2) is number 2.6b (resp. 3.1) of the
classification [18]. Moreover, both W1 and W2 contain S as a section of |−KWi

|,
because Wi ∩ π∗

iHi = S. Thus the affine cone Ca(S,OS(1)) is a hyperplane section
of Ca(Wi,−KWi

) ⊂ A
9 for each i, and so Ca(S,OS(1)) has two topologically distinct

smoothings.

5.10 Hyperelliptic and trigonal K3 surfaces In view of Theorem 3.1, it
would be interesting to systematically study cones over hyperelliptic and trigonal
K3 surfaces, and other K3 surfaces with Clifford index ≤ 2. These K3 surfaces
are not general in the sense of Theorem 1.2. For example, we would expect that
the genus bound on smoothable cones over hyperelliptic K3 surfaces is given by the
genus bound on hyperelliptic Fano 3-folds.
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5.11 Quasismooth K3 surfaces It would be very interesting to generalise The-
orem 1.2 to the case of affine cones over quasismooth K3 surfaces embedded in
weighted projective space. Some applications of this are worked out in [8]. This
motivates future work.
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