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This paper studies a system of two hemivariational inequalities modeling a dynamic thermoviscoelastic 
contact problem with general nonmonotone and multivalued subdifferential boundary conditions. Thermal 
effects are included in the Kelvin–Voigt thermoviscoelastic constitutive law and in the boundary conditions, 
and so in frictional heat generation, which takes place on the boundary and enters the condition for the 
temperature. The existence of a weak solution to the problem is established using a recent surjectivity result 
for differential inclusions associated with pseudomonotone operators.

1. Introduction

There has been considerable progress in theMathematical Theory of ContactMechanics and recently
a number of interesting results have been obtained. The majority of these results concerns the
solvability of contact problems, uniqueness of the solution, continuous dependence on the data,
asymptotic behavior of solutions, etc. Moreover, theoretical results in numerical analysis, numerical
simulations and other computational issues have been obtained, as well. These mathematical studies
are motivated by a variety of applications to concrete industrial processes and everyday practical
situations. In contact problems, we naturally consider various deformable materials subjected to
contact and friction conditions that lead to complex and nonstandard boundary value problems of
static, quasistatic, and dynamic type.

This paper studies a model for the dynamic frictional contact between a thermoviscoelastic
object or body and an obstacle or foundation. The main novelty of the model lies in the general
nonmonotone multivalued subdifferential boundary condition used to describe the processes on the
contact boundary. We employ three such boundary conditions between the normal components of
the displacement and the stress, between the tangential components of the velocity and the stress, and
between temperature and the heat flux vector. These conditions on the contact surface are natural
generalizations leading to a nonmonotone normal compliance condition, a multivalued friction law
and a heat exchange conduction, respectively.
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We note that the contact problems for elastic or viscoelastic bodies with thermal effects have been
investigated in a number of papers. The first result on unique solvability of a contact problem with
friction in elastodynamics were delivered by Duvaut and Lions in [1]. The normal compliance model
of contact with friction for isothermal viscoelastic materials was studied by Martins and Oden [2].
Next, these results were extended to thermoelastic and thermoviscoelastic models by Figueiredo and
Trabucho [3] and Shi and Shillor [4].A thermoelstic contact problemwas investigated in [5].Dynamic
frictional contact problems for elastic and viscoelastic materials with or without thermal effects have
been studied in e.g. Adly et al. [6], Amassad et al. [7], Andrews et al. [8–10], Chau et al. [11], Han
and Sofonea [12], Ionescu and Paumier [13], Jarušek [14], Kuttler and Shillor [15,16], Kuttler et
al. [17,18], Migórski [19,20], Migórski et al. [21–23], Rochdi and Shillor [24], Szafraniec [25] and the
references therein. In these contributions, various methods of proofs were exploited: the Galerkin
method, compactness arguments, regularization techniques, fixed points, and surjectivity theorems.
Results for hemivariational inequalities that model static, quasistatic, and dynamic contact problems
can be found in Panagiotopoulos [26,27], Naniewicz and Panagiotopoulos [28], and Migórski et al.
[22].

The main novelty of this work lies in the analysis of a system that contains strong couplings
in the multivalued boundary conditions: both the normal compliance condition and the friction
law depend on the boundary temperature (see (8) and (9)) and the relation between the boundary
temperature and the heat flux depends on the tangential velocity, via frictional heat generation
(10). To our best knowledge, dynamic contact problems with such a combination of a multivalued
normal compliance condition and a multivalued normal damped response condition have not been
studied in the literature. A simpler system that takes into account nonmonotone friction was studied
by Denkowski and Migórski in [29], however, since that publication there has been considerable
progress in the field and the results in this work are new, since the model here is considerably more
sophisticated. The result that we establish here were announced in the conference [30].

Here, we establish the existence of a solution to a problem set in a weak formulation. The latter
consists of a systemof two coupled nonlinear hemivariational inequalities of hyperbolic and parabolic
types for the displacements and the temperature, respectively. All subdifferentials in this paper are
understood in the sense of Clarke and are considered for locally Lipschitz, and in general, nonconvex
and nonsmooth superpotentials. The multivalued boundary conditions (8)–(10) cover several types
of boundary conditions, see e.g. [12,22,31]. We note that when these superpotentials are convex, the
hemivariational inequalities reduce to the usual variational inequalities. The uniqueness of a solution
to the system is not expected because of the strong coupling in the constitutive laws and boundary
conditions. Also, in contrast to [23], our approach does not need a fixed point argument, since it is
fully based on a surjectivity result for a class of multivalued pseudomonotone operators, [32].

It is of interest to extend these results to more general settings, such as viscoplastic materials with
hardening, and to include Joules heating by adding the equation for static electrical potential that
describes the electric currents in the system, which cause changes in the temperature.

The rest of the paper is structured as follows. Preliminary material is recalled in Section 2. In
Section 3, we present the physical setting and the classical formulation of the problem. Section 4
provides the variational formulation of the contact problem and states the main existence result in
Theorem 4.1. The proof of the theorem is carried out in Section 5.

2. Preliminaries

We recall in this section the notations, definitions, and basic results used in the paper. More details
can be found in [28,33–35].

Let X be a Banach space and X∗ denote its dual space. The Clarke subdifferential of a locally
Lipschitz function ϕ : X → R at x ∈ X is defined by

∂ϕ(x) = { x∗ ∈ X∗ | 〈x∗, v〉X∗×X ≤ ϕ0(x; v) for all v ∈ X },
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where

ϕ0(x; v) = lim sup
y→x, λ↓0

ϕ(y + λv) − ϕ(y)

λ

is the generalized directional derivative of ϕ at x in the direction v ∈ X. A function ϕ is regular (in
the sense of Clarke) at x ∈ X if for all v ∈ X the one-sided directional derivative ϕ′(x; v) exists and
is equal to ϕ0(x; v).

A multivalued operator F : X → 2X
∗
is said to be bounded if it sends bounded sets of X into

bounded ones in X∗. An operator F is said to be coercive if there exists a function β : R+ → R with
β(r) → ∞, as r → ∞ such that

〈
x∗, x

〉
X∗×X

≥ β
(
||x||X

)
||x||X for all x∗ ∈ F(x). A multifunction F

is called upper semicontinuous if for all closed sets D ⊂ X∗, the weak inverse image of D under F
given by F−(D) = {x ∈ X | F(x) ∩ D �= ∅} is a closed subset in X.

Let X be a reflexive Banach space and L : D(L) ⊂ X → X∗ be a linear densely defined maximal
monotone operator. An operator F : X → 2X

∗
is said to be pseudomonotone with respect to D(L)

(L-pseudomonotone for short) iff

(a) for all x ∈ X, F(x) is a nonempty, convex, and weakly compact set in X∗,
(b) F is upper semicontinuous from every finite dimensional subspace of X into X∗ equipped

with the weak topology (for short, w-X∗),
(c) if {xn} ⊂ D(L) is such that xn → x weakly inX, Lxn → Lx weakly inX∗, x∗

n ∈ F(xn), x
∗
n → x∗

weakly in X∗ and lim sup 〈x∗
n , xn〉X∗×X ≤ 〈x∗, x〉X∗×X , then x∗ ∈ F(x) and 〈x∗

n , xn〉X∗×X →
〈x∗, x〉X∗×X .

The following proposition is crucial in the proof of the main theorem of this paper.

Proposition 2.1 ([32], Theorem 2.1): If X is a reflexive Banach space, L : D(L) ⊂ X → X∗ is a
linear maximal monotone operator and F : X → 2X

∗ \{∅} is bounded coercive and L-pseudomonotone
operator, then L + F is surjective.

Note that in Theorem 2.1 in [32], it is assumed that X is also strictly convex. However, we skip
this assumption since, due to the Troyanski renorming theorem (see e.g. [34, Proposition 32.23]),
every reflexive Banach space can be endowed with an equivalent norm such that X becomes strictly
convex. Also, in Theorem 2.1 in [32], the result of Proposition 2.1 is stated under the hypothesis that
L is densely defined.We skip this assumption too, since by Theorem 32.L in [34], it follows that every
linear maximal monotone operator is densely defined.

Finally, we denote by L(X,Y) the space of all linear continuous mappings from a normed space
X to a normed space Y .

3. Classical formulation

We now describe the physical setting of the contact problem and provide its classical formulation.
We follow the exposition of themodel described in [1,8,23,36–38] and employ the thermoviscoelastic
version of the Kelvin–Voigt constitutive law. Thus, the thermomechanical behavior of the material
is assumed to be linear while the nonlinear effects occur only in the contact boundary conditions.

The physical setting consists of a thermoviscoelastic structure, the ‘body’, represented in the
reference configuration by an open bounded domain � ⊂ R

d whose boundary ∂� = Ŵ is divided
into three measurable and disjoint parts Ŵ = ŴD ∪ ŴN ∪ ŴC . On the part ŴD, of positive surface
measure, the body is clamped, while known tractions of density fN act onŴN . On the potential contact
surface ŴC the body may come in frictional contact with a reactive thermally active foundation. The
reference configuration � is assumed to be stress-free and at a constant reference temperature,
conveniently scaled to be zero. We assume that the temperature changes which accompany the
deformations are small and so the material parameters are supposed to be temperature independent.
However, for the sake of generality, the material is assumed to be anisotropic. We denote by f0 the
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density (per unit mass) of the applied body forces acting in�, such as gravity. The material density ρ

assumed to be constant, scaled so that ρ = 1. Moreover, the body is subjected to a heat source term
per unit volume g , such as Joule heating. Here, we study the evolution of the state of the system on a
finite time interval [0,T], with T > 0.

We denote by u = (ui) ∈ R
d the displacement vector, by σ = (σij) ∈ S

d the stress tensor, by

ε(u) = (εij) ∈ S
d the linearized (small) strain tensor, i.e. εij(u) = (∂ui/∂xj + ∂uj/∂xi)/2, where

i, j = 1, . . . , d, and by θ ∈ R the temperature. The latter is measured with respect to a reference
temperature �ref that may be taken as the ambient temperature (in 0K). We also use the prime
to denote the time derivative, so v = u′ = (u′

i) represents the velocity vector. In what follows, the
summation convention over the repeated indices is used, and the notation ∂j = ∂/∂xj refers to the

partial derivative. The functions u : � × [0,T] → R
d , σ : � × [0,T] → S

d and θ : � × [0,T] → R

are the unknowns of the problem. We also use the notation Q = � × (0,T), D = ŴD × (0,T),
N = ŴN × (0,T) and C = ŴC × (0,T), and sometimes we suppress the explicit dependence on
the variables x and t.

The system of equations of motion, assuming small displacements and the law of energy conser-
vation, takes the form

u′′
i − ∂jσij = f0i in Q,

θ ′ + ∂iqi = −cij�ref ∂ju
′
i + g in Q.

The behavior of the body is governed by the thermoviscoelastic constitutive law

σij = aijkl εkl(u
′) + bijkl εkl(u) − cij θ in Q,

and the heat flux vector q = (qi) ∈ R
d is given by the anisotropic version of the Fourier law of heat

conduction
qi = −kij ∂jθ in Q.

Here,Ae = (aijkl) and Be = (bijkl) are the elasticity and viscosity tensors, respectively, Ce = (cij) and
k = (kij) are the tensors of thermal expansion and of thermal conductivity, respectively.

We turn to describe the boundary conditions, so we denote by ν = (νi) the unit outward normal
onoŴ. Throughout the paper, we assume that the boundaryŴ is Lipschitz continuous and, therefore,
the unit outward normal on Ŵ exists a.e. on the boundary. Let uν = u · ν and σν = σν · ν be the
normal components of u and σ on Ŵ, and let uτ = u − uνν and σ τ = σν − σνν be their tangential
components. Then, on the ŴD ∪ ŴN portion of the boundary, we impose the following conditions

u = 0 on D,

σν = fN on N ,

and finally, for the sake of simplicity assuming that the ambient temperature �ref is constant, we set

θ = 0 on D ∪ N .

Wenow describe the thermomechanical boundary conditions on the potential contact surfaceŴC .
We note that frictional heat generation can be substantial and, therefore, the properties of the contact
surface could drastically change with the temperature, thus, it is important to allow the various
coefficients to depend on the temperature.

First, we describe the normal contact conditions. The foundation is assumed to be reactive and
the reaction force is a function of the normal penetration (uν − g0)+, where ( · )+ denotes the positive
part function and g0 is the gap function measuring the distance between the body and a foundation
in the direction of the normal. We use it since when uν ≤ g0 there is no contact and, therefore, no
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reaction. We note that in the literature (see [2,38–40] and references therein) the power law normal
compliance condition has been used, namely

−σν = kc(uν − g0)
nc
+ on C ,

where kc andnc , both positive constants, are the normal compliance stiffness coefficient and exponent,
respectively. Here, we model the foundation’s reaction with a very general contact law that includes
the power law normal compliance condition as a special case, i.e.

−σν = p(θ , uν − g0) on C ,

where p = p(x, t, θ , r) with (x, t) ∈ C , and θ , r ∈ R, is a given nonnegative function that satisfies
appropriate growth and smoothness conditions. This function contains the information on the
normal contact process and depends on the surface temperature and the interpenetration of the
surface asperities. To take into account the multivalued character and possible discontinuities of p,
we assume that the normal stress σν and the normal displacement uν satisfy a nonmonotone normal
compliance condition of the form

−σν(t) ∈ pν(θ(t))∂ jν(t, uν(t)) on C ,

where pν is a prescribed function of the temperature θ , and ∂ jν represents the Clarke subdifferential
of the normal contact pseudo-potential jν , assumed to be locally Lipschitz, with respect to its last
variable.

The corresponding Coulomb law of dry friction may be stated as follows:

‖σ τ‖ ≤ Fb(θ , uν − g0),

−σ τ = Fb(θ , uν − g0)
u′

τ

‖u′
τ‖

, if u′
τ �= 0

⎫
⎬
⎭ on C ,

where Fb = Fb(x, t, θ , r) for (x, t) ∈ C , θ , r ∈ R is the so-called friction bound, a given function
which depends on the temperature θ and the contact penetration (uν − g0)+. In this work, we use
quite a general version of the friction condition described by the subdifferential condition

−σ τ (t) ∈ pτ (θ(t))∂ jτ (t, u
′
τ (t)) on C ,

which describes a multivalued relation between the tangential force σ τ and the tangential velocity u
′
τ

and includes thermal effects. Here, pτ is a prescribed function of the temperature θ , jτ is the friction
pseudo-potential, and ∂ jτ is its Clarke subdifferential, assuming that jτ is a locally Lipschitz function
jτ with respect to its last variable.

Next, we describe the boundary condition for the temperature onŴC . We assume that there is heat
exchange between the surface and the foundation, which is at temperature θR, with a heat exchange
coefficient kR > 0. Moreover, since the flux of heat generated by the frictional contact forces is
proportional to the tangential velocity u′

τ , we assume a boundary condition of the following form

kij ∂iθ νj = FC(θ)‖u′
τ‖ − kR(θ − θR) on C ,

where FC = FC(x, t, θ) for (x, t) ∈ C , θ ∈ R is a prescribed function. The inclusion of such a term is
required if the effects of the frictional heat generation are to be taken into account, which is essential
in many applications. For example, the sudden application of car brakes may lead to the dissipation
of energy in the form of frictional heating at a rate of over 100HP. Again, for the sake of generality,
we extend the boundary condition to the following relation between the boundary temperature and
the heat flux vector of the form qiνi ∈ p(u′

τ ) ∂ j(θ) which we write as
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−
∂θ(t)

∂νk
= −kij∂iθ(t)νj ∈ p(u′

τ (t)) ∂ j(t, θ(t)) on C .

Here, p is a prescribed function of the tangential velocity u′
τ , j is the surface thermal pseudo-potential,

and ∂ j represents its Clarke subdifferential with respect to its last variable, since we assume that j is a
locally Lipschitz function.

Collecting the equations and conditions above, the classical formulation of the problem of
thermoviscoelastic contact with a reactive foundation and the frictional heat generation can be stated
as follows.

Problem 1: Find a displacement field u : Q → R
d , a stress field σ : Q → S

d , a temperature field
θ : Q → R, and a heat flux q : Q → R

d such that

u′′(t) − Div σ (t) = f0(t) in Q, (1)

σ (t) = Aeε(u′(t)) + Beε(u(t)) + Ceθ(t) in Q, (2)

θ ′(t) + div q(t) = g(t) − �ref Cε(u′(t)) in Q, (3)

q(t) = −k∇θ(t) in Q, (4)

u(t) = 0 on D, (5)

σ (t)ν = fN (t) on N , (6)

θ(t) = 0 on D ∪ N , (7)

−σν(t) ∈ pν(θ(t)) ∂ jν(t, uν(t)) on C , (8)

−σ τ (t) ∈ pτ (θ(t)) ∂ jτ (t, u
′
τ (t)) on C , (9)

−
∂θ(t)

∂νk
∈ p(u′

τ (t)) ∂ j(t, θ(t)) on C , (10)

u(0) = u0, u′(0) = v0, θ(0) = θ0 in �. (11)

Here, u0, v0, and θ0 are the prescribed initial displacement, velocity and temperature, respectively.
To analyze Problem 1, we need to reformulate it in a weak form.

4. Weak formulation

We turn to a weak formulation of Problem 1 and the statement of ourmain theorem on its solvability.
First, we introduce the standard Lebesgue and Sobolev spaces. Let H = L2(�; S

d). For the
displacement and the temperature we use the spaces

E = {v ∈ H1(�; R
d) | v = 0 on ŴD}, V = {η ∈ H1(�) | η = 0 on ŴD ∪ ŴN }.

The spaces E and V are Hilbert when endowed with the norms ‖v‖E = ‖ε(v)‖H for v ∈ E, and
‖η‖V = ‖∇η‖L2(�;Rd) for η ∈ V , respectively. It follows from the Korn and Poincaré inequalities
(see, e.g. [12,34]), these norms are equivalent to the respective standard norms on E and V . The
spaces E ⊂ L2(�; R

d) ⊂ E∗ and V ⊂ L2(�) ⊂ V∗ form the Gelfand triples. We also need the
following spaces of vector valued functions for displacement and temperature, respectively,

E = L2(0,T;E) and E = {v ∈ E | v′ ∈ E∗},
V = L2(0,T;V) and V = {η ∈ V | η′ ∈ V∗}.

Here, the time derivative is understood in the sense of vector valued distributions. It is well-known
that the spaces E and V endowed with the standard graph norms are reflexive separable Banach
spaces and the embeddings
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E ⊂ E ⊂ L2(0,T; L2(�; R
d)) ⊂ E∗, V ⊂ V ⊂ L2(0,T; L2(�)) ⊂ V∗

are dense and continuous. It is also known (see e.g. [35]) that the embeddingsE ⊂ C(0,T; L2(�; R
d))

and {v ∈ E | v′ ∈ E} ⊂ C(0,T;E) are continuous and, in addition, the embedding E ⊂
L2(0,T; L2(�; R

d)) is compact. Analogously, the embeddings V ⊂ C(0,T; L2(�)) and {η ∈ V |
η′ ∈ V} ⊂ C(0,T;V) are continuous and the embedding V ⊂ L2(0,T; L2(�)) is compact. Next, we
introduce the trace operators γ : E → L2(Ŵ; R

d) and γs : V → L2(Ŵ) for vector and scalar valued
functions.

We next present the hypotheses on the problem data of Problem 1 that allow for the use of the
appropriate mathematical tools.

H(Ae) : Ae : � × S
d → S

d is such that

(a) Ae(x, ε) = a(x)ε, a(x) = (aijkl(x)), aijkl = ajikl = alkij ∈ L∞(�),

(b) aijkl(x)εijεkl ≥ αA εijεij for all ε = (εij) ∈ S
d , a.e. x ∈ � with αA > 0.

H(Be) : Be : � × S
d → S

d is such that

(a) Be(x, ε) = b(x)ε, b(x) = (bijkl(x)), bijkl = bjikl = blkij ∈ L∞(�),

(b) bijkl(x)εijεkl ≥ 0 for all ε = (εij) ∈ S
d , a.e. x ∈ �.

H(Ce, C) : Ce : � × R → S
d and C : � × S

d → R are such that

Ce(x, r) = c(x)r for all r ∈ R, C(x, ε) = �ref cij(x)εij for all ε = (εij) ∈ S
d ,

a.e. x ∈ � with c(x) = (cij(x)), cij = cji ∈ L∞(�).

H(k) : k : � → S
d is such that

(a) k(x) = (kij(x)), kij = kji ∈ L∞(�),

(b) kij(x)ξiξj ≥ αk ξiξi for all ξ = (ξi) ∈ R
d , a.e. x ∈ � with αk > 0.

H(pν , pτ , p) : pν , pτ : ŴC × R → R and p : ŴC × R
d → R are such that

(a) pν(·, r), pτ (·, r) are measurable for all r ∈ R,
(b) pν(x, ·), pτ (x, ·) are continuous for a.e. x ∈ ŴC ,
(c) 0 ≤ pν(x, r) ≤ pν , 0 ≤ pτ (x, r) ≤ pτ for all r ∈ R, a.e. x ∈ ŴC with pν , pτ > 0,
(d) p(·, ξ) is measurable for all ξ ∈ R

d ,
(e) p(x, ·) is continuous for a.e. x ∈ ŴC ,
(f) 0 ≤ p(x, ξ) ≤ p for all ξ ∈ R

d , a.e. x ∈ ŴC with p > 0.

H(jν) : jν : C × R → R is such that

(a) jν(·, ·, r) is measurable for all r ∈ R, jν(·, ·, e0( · )) ∈ L1(C) with e0 ∈ L2(ŴC),
(b) jν(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ C ,
(c) |∂ jν(x, t, r)| ≤ c0ν(x, t) for all r ∈ R, a.e. (x, t) ∈ C with c0ν ∈ L2(0,T; L∞(ŴC)), c0ν ≥ 0,
(d) jν(x, t, ·) or −jν(x, t, ·) is regular on R for a.e. (x, t) ∈ C .

H(jτ ) : jτ : C × R
d → R is such that

(a) jτ (·, ·, ξ) is measurable for all ξ ∈ R
d , jτ (·, ·, e1( · )) ∈ L1(C) with

e1 ∈ L2(ŴC; R
d),

(b) jτ (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ C ,
(c) ‖∂ jτ (x, t, ξ)‖ ≤ c0τ (x, t) + c1τ‖ξ‖ for all ξ ∈ R

d , a.e. (x, t) ∈ C with
c0τ ∈ L2(0,T; L∞(ŴC)), c0τ , c1τ ≥ 0,
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(d) j0τ (x, t, ξ ;−ξ) ≤ dτ (1 + ‖ξ‖) for all ξ ∈ R
d , a.e. (x, t) ∈ C with dτ ≥ 0,

(e) jτ (x, t, ·) or −jτ (x, t, ·) is regular on R
d for a.e. (x, t) ∈ C .

H(j) : j : C × R → R is such that

(a) j(·, ·, r) is measurable for all r ∈ R, j(·, ·, e2( · )) ∈ L1(C) with e2 ∈ L2(ŴC),
(b) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ C ,
(c) |∂ j(x, t, r)| ≤ c0(x, t) + c1|r| for all r ∈ R, a.e. (x, t) ∈ C with

c0 ∈ L2(0,T; L∞(ŴC)), c0, c1 ≥ 0,
(d) j0(x, t, r;−r) ≤ d(1 + |r|) for all r ∈ R, a.e. (x, t) ∈ C with d ≥ 0,
(e) j(x, t, ·) or −j(x, t, ·) is regular on R

d for a.e. (x, t) ∈ C .

(H0) : f0 ∈ E∗, fN ∈ L2(N ; R
d), g ∈ V∗, u0, v0 ∈ E and θ0 ∈ V .

Examples of potentials that satisfy conditionsH(jν),H(jτ ) andH(j) can be found in [20,22,28,31]
and in the references therein.

We now construct a weak formulation of Problem 1. To this end, we assume that (u, σ , θ , q)
are sufficiently smooth functions that solve Problem 1. Let v ∈ E and t ∈ (0,T). We multiply the
equation of motion (1) by v and use Green’s formula (see [22, Theorem 2.25]) to find that

〈u′′(t), v〉E∗×E + 〈σ (t), ε(v)〉H = 〈f0(t), v〉E∗×E +
∫

Ŵ

σ (t)ν · γ v dŴ. (12)

Taking into account the boundary condition (6) and the fact that v = 0 on ŴD, yields

∫

Ŵ

σ (t)ν · γ v dŴ =
∫

ŴN

fN (t) · γ v dŴ +
∫

ŴC

(σν(t)vν + σ τ (t) · vτ ) dŴ. (13)

On the other hand, by the definition of the Clarke subdifferential, it follows from (8) and (9), that
on C

−σν(t) vν ≤ pν(θ(t)) j0ν(t, uν(t); vν),

−σ τ (t) · vτ ≤ pτ (θ(t)) j0τ (t, u
′
τ (t); vτ ).

(14)

Here and in what follows, we simplify the notation of γsθ(t) on the boundary ŴC and simply write
θ(t). Similarly, we skip γ when writing the normal and tangential components of γ u, γ u′ and γ (σν).
Inserting (13) and (14) in (12), we find

〈u′′(t), v〉E∗×E + 〈σ (t), ε(v)〉H
+

∫

ŴC

(
pν(θ(t))j0ν(t, uν(t); vν) + pτ (θ(t))j0τ (t, u

′
τ (t); vτ )

)
dŴ ≥ 〈f (t), v〉E∗×E , (15)

where
〈f (t), v〉E∗×E = 〈f0(t), v〉E∗×E + 〈fN (t), γ v〉L2(ŴN ;Rd)

for all v ∈ E, a.e. t ∈ (0,T). We note that hypothesis (H0) implies that f ∈ E∗.
Next, let η ∈ V and t ∈ (0,T). We multiply (3) by η and then apply Green’s formula again and

obtain

〈θ ′(t), η〉V∗×V − 〈q(t),∇η〉L2(�;Rd) = 〈g(t) − Cε(u′(t)), η〉V∗×V +
∫

Ŵ

q(t) · ν γsη dŴ.

Since η = 0 on ŴD ∪ ŴN , it follows that

∫

Ŵ

q(t) · ν γsη dŴ =
∫

ŴC

q(t) · ν γsη dŴ,
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and then (10) implies that

−q(t) · ν γsη ≤ p(u′
τ (t)) j

0(t, γsθ(t); γsη) on C .

Hence, we find

〈θ ′(t), η〉V∗×V − 〈q(t),∇η〉L2(�;Rd) +
∫

ŴC

p(u′
τ (t)) j

0(t, γsθ(t); γsη) dŴ

≥ 〈g(t), η〉V∗×V − 〈Cε(u′(t)), η〉V∗×V . (16)

Finally, using the constitutive law (2), the heat conduction condition (4), the inequalities (15) and
(16), and the initial conditions (11), we obtain the following weak formulation of Problem 1.

Problem 2: Find (u, θ) ∈ E × V such that u′ ∈ E, θ ′ ∈ V∗ and

〈u′′(t), v〉E∗×E + 〈Aeε(u′(t)) + Beε(u(t)) + Ceθ(t), ε(v)〉H

+
∫

ŴC

(
pν(θ(t))j0ν(t, uν(t); vν) + pτ (θ(t))j0τ (t, u

′
τ (t); vτ )

)
dŴ ≥ 〈f (t), v〉E∗×E ,

for all v ∈ E, a.e. t ∈ (0,T),

〈θ ′(t), η〉V∗×V + 〈k∇θ(t),∇η〉L2(�;Rd) + 〈Cε(u′(t)), η〉V∗×V

+
∫

ŴC

p(u′
τ (t)) j

0(t, γsθ(t); γsη) dŴ ≥ 〈g(t), η〉V∗×V

for all η ∈ V, a.e. t ∈ (0,T),

u(0) = u0, u′(0) = v0, θ(0) = θ0.

It is seen that Problem 2 consists of a system of two strongly coupled hemivariational inequalities.
Our main existence result in the study of Problem 2 and in this work, which we prove in the next
section, is as follows.

Theorem 4.1: Assume that H(Ae), H(Be), H(Ce, C), H(k), H(pν , pτ , p), H(jν), H(jτ ), H(j) and
(H0) hold true. Then, Problem 2 has a solution.

We conclude that Problem 1 has a weak solution.

5. Proof of Theorem 4.1

We establish Theorem 4.1 in this section. The main idea of the proof is to solve a related system of
evolutionary inclusions and to show that a solution of this system is also a solution to Problem 2. The
proof is carried out in the following steps.

Step 1. We start by introducing a system of coupled evolutionary inclusions related to Problem 2. To
that end we let A, B : E → E∗, C1 : V → E∗, C2 : V → V∗ and C3 : E → V∗ be the operators given
by

〈Au, v〉E∗×E = 〈Aeε(u), ε(v)〉H, (17)

〈Bu, v〉E∗×E = 〈Beε(u), ε(v)〉H, (18)

〈C1θ , v〉E∗×E = 〈Ceθ , ε(v)〉H, (19)

〈C2θ , η〉V∗×V = 〈k∇θ ,∇η〉L2(�;Rd), (20)

〈C3u, η〉V∗×V = 〈Cε(u), η〉L2(�) (21)
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for all u, v ∈ E and θ , η ∈ V . Next, we define functionals J1, J2 : (0,T) × L2(ŴC) × L2(ŴC; R
d) → R

and J3 : (0,T) × L2(ŴC; R
d) × L2(ŴC) → R by

J1(t, θ , v) =
∫

ŴC

pν(θ)jν(t, vν) dŴ, (22)

J2(t, θ , v) =
∫

ŴC

pτ (θ)jτ (t, vτ ) dŴ, (23)

J3(t, v, θ) =
∫

ŴC

p(vτ )j(t, θ) dŴ, (24)

for all θ ∈ L2(ŴC) and v ∈ L2(ŴC; R
d), a.e. t ∈ (0,T).

We now state the properties of the operators and functionals defined above in the following
lemmas. The proof of the first lemma is presented in [29, Lemma 3], and the proofs of the other three
lemmas are analogous to each other and can be found in [20, Lemma 5].

Lemma 5.1: If H(Ae), H(Be), H(Ce, C), H(k) hold, then the operators A, B, C1, C2, and C3, given
by (17)–(21), respectively, are such that

(i) A ∈ L(E,E∗), A is symmetric, 〈Av, v〉E∗×E ≥ αA‖v‖2E for v ∈ E,
(ii) B ∈ L(E,E∗), B is symmetric, 〈Bv, v〉E∗×E ≥ 0 for v ∈ E,
(iii) C1 ∈ L(V ,E∗), |〈C1θ , v〉E∗×E| ≤ c‖θ‖L2(�)‖v‖E for θ ∈ V , v ∈ E with c > 0,

(iv) C2 ∈ L(V ,V∗),C2 is symmetric, 〈C2θ , θ〉V∗×V ≥ αk ‖θ‖2V for θ ∈ V,
(v) C3 ∈ L(E,V∗), |〈C3v, θ〉V∗×V | ≤ c‖θ‖L2(�)‖v‖E for θ ∈ V , v ∈ E with c > 0,
(vi) 〈C1θ , v〉E∗×E + 〈C3v, θ〉V∗×V = 0 for all v ∈ E, θ ∈ V.

Lemma 5.2: If H(jν) andH(pν , pτ , p) hold, then the functional J1 : (0,T)×L2(ŴC)×L2(ŴC; R
d) →

R given by (22) is such that

(i) J1(·, θ , v) is measurable for all θ ∈ L2(ŴC), v ∈ L2(ŴC; R
d),

(ii) J1(t, θ , ·) is well defined and locally Lipschitz for θ ∈ L2(ŴC), a.e. t,

(iii) J01 (t, θ , v;w) ≤
∫

ŴC

pν(θ) j0ν(t, vν;wν) dŴ for θ ∈ L2(ŴC), v,w ∈ L2(ŴC; R
d),

a.e. t ∈ (0,T),
(iv) ‖∂J1(t, θ , v)‖L2(ŴC;R d) ≤ c0ν(t) with c0ν ∈ L2(0,T), c0ν(t) =

√
2|ŴC|pνc0ν(t),

(v) J01 (t, θ , v;−v) ≤ pν‖c0ν‖L∞(C)

√
|ŴC|‖v‖L2(ŴC;R d) for v ∈ L2(ŴC; R

d),

(vi) ∂J1(t, ·, ·) has a closed graph in the L2(ŴC) × L2(ŴC; R
d) × (w-L2(ŴC; R

d)) topology for a.e.
t ∈ (0,T).

Lemma 5.3: If H(jτ ) andH(pν , pτ , p) hold, then the functional J2 : (0,T)×L2(ŴC)×L2(ŴC; R
d) →

R given by (23) is such that

(i) J2(·, θ , v) is measurable for all θ ∈ L2(ŴC), v ∈ L2(ŴC; R
d),

(ii) J2(t, θ , ·) is well defined and locally Lipschitz for θ ∈ L2(ŴC), a.e. t,

(iii) J02 (t, θ , v;w) ≤
∫

ŴC

pτ (θ) j0τ (t, vτ ;wτ ) dŴ for θ ∈ L2(ŴC), v,w ∈ L2(ŴC; R
d),

a.e. t ∈ (0,T),
(iv) ‖∂J2(t, θ , v)‖L2(ŴC;R d) ≤ c0τ (t) + c1τ‖v‖L2(ŴC;R d) with c0τ ∈ L2(0,T), c0τ (t) =

√
2|ŴC| pτ

c0τ (t), c1τ =
√
2 pτ c1τ ,

(v) J02 (t, θ , v;−v) ≤ dτ

(
1 + ‖v‖L2(ŴC;R d)

)
for v ∈ L2(ŴC; R

d) with dτ = pτ dτ ,

(vi) ∂J2(t, ·, ·) has a closed graph in L2(ŴC) × L2(ŴC; R
d) × (w-L2(ŴC; R

d))

topology, for a.e. t ∈ (0,T).
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Lemma 5.4: IfH(j)andH(pν , pτ , p)hold, then the functional J3 : (0,T)×L2(ŴC; R
d)×L2(ŴC) → R

given by (24) is such that

(i) J3(·, v, θ) is measurable for all v ∈ L2(ŴC; R
d), θ ∈ L2(ŴC),

(ii) J3(t, v, ·) is well defined and locally Lipschitz for v ∈ L2(ŴC; R
d), a.e. t,

(iii) J03 (t, v, θ; η) ≤
∫

ŴC

p(vτ ) j
0(t, θ; η) dŴ for v ∈ L2(ŴC; R

d), θ , η ∈ L2(ŴC),

a.e. t ∈ (0,T),
(iv) ‖∂J3(t, v, θ)‖L2(ŴC) ≤ c0(t) + c1‖θ‖L2(ŴC) with c0(t) =

√
2|ŴC| p c0(t),

c0 ∈ L2(0,T), c1 =
√
2 p c1,

(v) J03 (t, v, θ;−θ) ≤ d
(
1 + ‖θ‖L2(ŴC)

)
for v ∈ L2(ŴC; R

d), θ ∈ L2(ŴC)

with d = d p,
(vi) ∂J3(t, ·, ·) has a closed graph in the L2(ŴC; R

d) × L2(ŴC) × (w-L2(ŴC)) topology for a.e.
t ∈ (0,T).

Consider now the following system of evolutionary inclusions.

Problem 3: Find u ∈ E with u′ ∈ E and θ ∈ V such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) + Au′(t) + Bu(t) + C1θ(t) + γ ∗∂J1(t, γsθ(t), γ u(t))

+ γ ∗∂J2(t, γsθ(t), γ u′(t)) ∋ f (t) a.e. t ∈ (0,T)

θ ′(t) + C2θ(t) + C3u
′(t) + γ ∗

s ∂J3(t, γ u
′(t), γsθ(t)) ∋ g(t) a.e. t ∈ (0,T)

u(0) = u0, u
′(0) = v0, θ(0) = θ0.

The following is the link between the two problems.

Proposition 5.5: Assume H(jν), H(jτ ), H(j) and H(pν , pτ , p). Then, every solution to Problem 3 is
a solution to Problem 2.

Proof: If (u, θ) is a solution to Problem 3, then

u′′(t) + Au′(t) + Bu(t) + C1θ(t) + γ ∗ξ∗(t) + γ ∗ζ ∗(t) = f (t), (25)

θ ′(t) + C2θ(t) + C3u
′(t) + γ ∗

s η∗(t) = g(t) (26)

for a.e. t ∈ (0,T), where ξ∗(t) ∈ ∂J1(t, γsθ(t), γ u(t)), ζ ∗(t) ∈ ∂J2(t, γsθ(t), γ u′(t)) and η∗(t) ∈
∂J3(t, γ u

′(t), γsθ(t)) for a.e. t ∈ (0,T). Let v ∈ E and η ∈ V . Using the definition of the generalized
subdifferential and Lemmas 5.2(iii), 5.3(iii) and 5.4(iii), we obtain

〈γ ∗ξ∗(t), v〉E∗×E = 〈ξ∗(t), γ v〉L2(ŴC;R d) ≤ J01 (t, γsθ(t), γ u(t); γ v)

≤
∫

ŴC

pν(γsθ(t))j0ν(t, uν(t); vν) dŴ,

〈γ ∗ζ ∗(t), v〉E∗×E = 〈ζ ∗(t), γ v〉L2(ŴC;R d) ≤ J02 (t, γsθ(t), γ u′(t); γ v)

≤
∫

ŴC

pτ (γsθ(t))j0τ (t, u
′
τ (t); vτ ) dŴ,

〈γ ∗
s η∗(t), η〉V∗×V = 〈η∗(t), γsη〉L2(ŴC) ≤ J03 (t, γ u

′(t), γsθ(t); γsη)

≤
∫

ŴC

p(u′
τ (t))j

0(t, γsθ(t); γsη) dŴ.

Next, we test equation (25) with v ∈ E, and equation (26) with η ∈ V . Using the definition of
operatorsA, B, C1, C2, C3 and the above inequalities, we see that (u, θ) is a solution to Problem 2.
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Step 2. We reformulate Problem 3 in this step as an abstract multivalued first order evolutionary
inclusion. We let the operator K : E → C(0,T;E) be defined by

(Kv)(t) =
∫ t

0
v(s) ds + u0 for v ∈ E .

We observe that operator K has the following properties:

(i) ‖Kv‖C(0,T;E) ≤
√
T ‖v‖E + ‖u0‖E , for all v ∈ E ,

(ii) ‖Kv1 − Kv2‖C(0,T;E) ≤
√
T ‖v1 − v2‖E , for all v1, v2 ∈ E ,

(iii) K : E → E is weakly continuous, i.e. vn → v weakly in E implies Kvn → Kv weakly in E .

The first two properties follow immediately from the definition. The proof of (iii) is as follows. The
operator M : E → C(0,T;E), defined by (Mv)(t) =

∫ t
0 v(s) ds, for v ∈ E , is linear and continuous,

M ∈ L(E , E), thusM ∈ L(w-E ,w-E). Therefore, if vn → v weakly in E , thenMvn → Mv weakly in
E , which implies that Kvn → Kv weakly in E .

Using the operator K , Problem 3 can be equivalently formulated as follows.
Find w ∈ E and θ ∈ V such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

w′(t) + Aw(t) + B(Kw)(t) + C1θ(t) + γ ∗∂J1(t, γsθ(t), γ (Kw)(t))

+ γ ∗∂J2(t, γsθ(t), γw(t)) ∋ f (t) a.e. t ∈ (0,T),

θ ′(t) + C2θ(t) + C3w(t) + γ ∗
s ∂J3(t, γw(t), γsθ(t)) ∋ g(t) a.e. t ∈ (0,T),

w(0) = v0, θ(0) = θ0.

(27)

To deal with the initial conditions, we perform the translation w̃(t) = w(t)−v0 and θ̃ (t) = θ(t)−θ0.
Then, we can rewrite (27) in the equivalent form.

Find w̃ ∈ E and θ̃ ∈ V such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃′(t) + A(w̃(t) + v0) + B(K(w̃( · ) + v0))(t) + C1(̃θ(t) + θ0)

+ γ ∗∂J1(t, γs (̃θ(t) + θ0), γ (K(w̃( · ) + v0))(t))

+ γ ∗∂J2(t, γs (̃θ(t) + θ0), γ (w̃(t) + v0)) ∋ f (t) a.e. t ∈ (0,T),

θ̃ ′(t) + C2(̃θ(t) + θ0) + C3(w̃(t) + v0)

+ γ ∗
s ∂J3(t, γ (w̃(t) + v0), γs (̃θ(t) + θ0)) ∋ g(t) a.e. t ∈ (0,T),

w̃(0) = 0, θ̃ (0) = 0.

(28)

We introduce the following Nemitsky operators defined by

A : E → E∗, (Av)(t) = A(v(t) + v0), (29)

B : E → E∗, (Bv)(t) = B(K(v( · ) + v0)(t)), (30)

C1 : V → E∗, (C1θ)(t) = C1(θ(t) + θ0), (31)

C2 : V → V∗, (C2θ)(t) = C2(θ(t) + θ0), (32)

C3 : E → V∗, (C3v)(t) = C3(v(t) + v0) (33)

and the multivalued Nemitsky operators N1, N2 : E × V → 2E∗
and N3 : E × V → 2V∗

N1(v, θ) = {v∗ ∈ E∗ | v∗(t) ∈ γ ∗∂J1(t, γs(θ(t) + θ0), γ (K(v + v0)(t))) a.e.t}, (34)

N2(v, θ) = {v∗ ∈ E∗ | v∗(t) ∈ γ ∗∂J2(t, γs(θ(t) + θ0), γ (v(t) + v0)) a.e. t}, (35)

N3(v, θ) = {θ∗ ∈ V∗ | θ∗(t) ∈ γ ∗
s ∂J3(t, γ (v(t) + v0), γs(θ(t) + θ0)) a.e. t} (36)
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for (v, θ) ∈ E × V . Next, we define the operator

G : E × V → 2(E×V)∗ by G(v, θ) =
(

Av + Bv + C1θ + N1(v, θ) + N2(v, θ)

C2θ + C3v + N3(v, θ)

)
,

for (v, θ) ∈ E × V and the functional

F ∈ E∗ × V∗ by F =
(
f
g

)
.

Furthermore, we introduce the operators

L1 : D(L1) ⊂ E → E∗, L1v = v′ with D(L1) = {v ∈ E | v(0) = 0},
L2 : D(L2) ⊂ V → V∗, L2η = η′ with D(L2) = {η ∈ V | η(0) = 0},

and L : D(L) = D(L1) × D(L2) ⊂ E × V → (E × V)∗ defined by

L(v, η) =
(
L1v
L2η

)
for (v, η) ∈ D(L).

Using these notations, we can formulate Problem (28), and hence also Problem 3, in an abstract
form as follows.

Problem 4: Find (w, θ) ∈ D(L) such that F ∈ (L + G)(w, θ).

Step 3. This step takes into account Lemma 5.5 and the fact that Problem 3 is equivalent to Problem
4, and proves an existence result for Problem 4.

Lemma 5.6: Assume H(Ae), H(Be), H(Ce, C), H(k), H(pν , pτ , p), H(jν), H(jτ ), H(j) and (H0).
Then, Problem 4 has a solution.

Proof: It iswell-known thatL is a linear andmaximalmonotone operator (cf. [34, Proposition 32.10]).
In order to show that Problem 4 has a solution (w, θ) ∈ D(L), we prove that

(i) G is bounded,

(ii) G is coercive,

(iii) G is L-pseudomonotone.

Then, we apply the surjectivity result given in Proposition 2.1.
The auxiliary results that are used to prove these properties of the operator G, which rely on the

properties of the operators A, B, C1, C2, C3, N1, N2, and N3, are presented in Lemmas A.1–A.7 in
Appendix.
Proof of (i). We conclude from Lemmas A.1(i), A.2(i), A.3(i), A.4(i)-(ii), A.5(ii), A.6(ii) and A.7(ii)
that

‖G(v, θ)‖(E×V)∗ ≤ c (1 + ‖v‖E + ‖θ‖V ) ≤ c (1 + ‖(v, θ)‖E×V )

for all (v, θ) ∈ E × V with c > 0, hence that G is a bounded operator.
Proof of (ii). The coercivity of G follows from Lemmas A.1(ii), A.2(iii), A.3(ii), A.4(iii), A.5(iii),
A.6(iii) and A.7(iii). Indeed, for (v, θ) ∈ E × V and (v∗, θ∗) ∈ G(v, θ), we obtain

〈(v∗, θ∗), (v, θ)〉(E×V)∗×(E×V) = 〈Av, v〉E∗×E + 〈Bv, v〉E∗×E + 〈C1θ , v〉E∗×E

+ 〈C2θ , θ〉V∗×V + 〈C3v, θ〉V∗×V + 〈ξ∗, v〉E∗×E

+ 〈ζ ∗, v〉E∗×E + 〈η∗, θ〉V∗×V

≥ αA ‖v‖2E + αk ‖θ‖2V − c1‖(v, θ)‖E×V − c2,
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where ξ∗ ∈ N1(v, θ), ζ ∗ ∈ N2(v, θ) and η∗ ∈ N3(v, θ) with c1, c2 ∈ R.

Proof of (iii). Next, we show thatG is an L-pseudomonotone operator. It follows fromLemmasA.5(i),
A.6(i), andA.7(i), thatG has nonempty, convex, andweakly compact values in (E×V)∗.Weprove that
the operator G is upper semicontinuous in (E ×V)×(w-(E ×V)∗) topology. To that end, it is enough
to show ([35]) that ifD ⊂ (E×V)∗ is weakly closed, thenG−(D) = { (v, θ) ∈ E×V | G(v, θ)∩D �= ∅ }
is closed in E × V .

Let (vn, θn) ∈ G−(D) and (vn, θn) → (v, θ) in E × V . Then, we can find (v∗
n , θ

∗
n ) ∈ D such

(v∗
n , θ

∗
n ) ∈ G(vn, θn). Since G is a bounded operator, the sequence {(v∗

n , θ
∗
n )} is bounded in (E × V)∗.

Hence, by passing to a subsequence, if necessary, we may assume that

(v∗
n , θ

∗
n ) → (v∗, θ∗) weakly in (E × V)∗.

Moreover, we have

v∗
n = Avn + Bvn + C1θn + ξ∗

n + ζ ∗
n in E∗, (37)

θ∗
n = C2θn + C3vn + η∗

n in V∗, (38)

with ξ∗
n ∈ N1(vn, θn), ζ ∗

n ∈ N2(vn, θn) and η∗
n ∈ N3(vn, θn). Since Ni, i = 1, 2, 3 are bounded

operators (cf. Lemmas A.5(ii), A.6(ii), A.7(ii)), we have, possibly for subsequences,

ξ∗
n → ξ∗, ζ ∗

n → ζ ∗ weakly in E∗, η∗
n → η∗ weakly in V∗. (39)

Hence, from the closedness of graph of ∂Ji(t, ·, ·), i = 1, 2, 3, in suitable topologies (cf. Lemmas
5.2(vi), 5.3(vi), 5.4(vi)), we obtain

ξ∗ ∈ N1(v, θ), ζ ∗ ∈ N2(v, θ), η∗ ∈ N3(v, θ). (40)

We now pass to the weak limit in (37) and (38). We use (39) and the continuity of A, B, C1, C2,
and C3 (cf. Lemmas A.1(iv), A.2(ii), A.3(iv), and A.4(iv)) to deduce that

v∗ = Av + Bv + C1θ + ξ∗ + ζ ∗ in E∗,

θ∗ = C2θ + C3v + η∗ in V∗,

which together with (40) yield (v∗, θ∗) ∈ G(v, θ). Next, since D is weakly closed in (E × V)∗ and
(v∗

n , θ
∗
n ) → (v∗, θ∗) weakly in (E × V)∗, we have also (v∗, θ∗) ∈ D. Therefore, (v, θ) ∈ G−(D) which

shows that G is upper semicontinuous in a suitable topology.
To complete the proof of L-pseudomonotonicity of G, we need to show that for every sequence

{(vn, θn)} ⊂ D(L) such that (vn, θn) → (v, θ) weakly in E × V , (v′
n, θ

′
n) → (v′, θ ′) weakly in

(E ×V)∗, (v∗
n , θ

∗
n ) ∈ G(vn, θn), (v

∗
n , θ

∗
n ) → (v∗, θ∗)weakly in (E ×V)∗ and lim sup 〈(v∗

n , θ
∗
n ), (vn, θn)−

(v, θ)〉(E×V)∗×(E×V) ≤ 0, we obtain

(v∗, θ∗) ∈ G(v, θ), (41)

〈(v∗
n , θ

∗
n ), (vn, θn) − (v, θ)〉(E×V)∗×(E×V) → 0. (42)

First, we note that (41) is a consequence of the condition (v∗
n , θ

∗
n ) ∈ G(vn, θn). This can be proved

analogously as in the above proof of the upper semicontinuity of G. Second, to prove (42), we need
to show that
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〈ξ∗
n + ζ ∗

n, vn − v〉E∗×E → 0, 〈η∗
n, θn − θ〉V∗×V → 0, (43)

〈C1θn, vn − v〉E∗×E + 〈C3vn, θn − θ〉V∗×V → 0, (44)

〈Avn, vn − v〉E∗×E → 0, 〈C2θn, θn − θ〉V∗×V → 0, (45)

〈Bvn, vn − v〉E∗×E → 0. (46)

The convergences (43) follow directly from Lemmas A.5(iv), A.6(iv), and A.7(iv). Next, Lemma
5.1(vi) and the weak continuity of C1 and C3 (cf. Lemma A.4(iv)) lead to

〈C1θn, vn − v〉E∗×E + 〈C3vn, θn − θ〉V∗×V

=
∫ T

0

(
〈C1θn(t), vn(t)〉E∗×E + 〈C3vn(t), θn(t)〉V∗×V

)
dt

+ 〈C1θ0, vn〉E∗×E + 〈C3v0, θn〉V∗×V − 〈C1θn, v〉E∗×E − 〈C3vn, θ〉V∗×V

→ 〈C1θ0, v〉E∗×E + 〈C3v0, θ〉V∗×V − 〈C1θ , v〉E∗×E − 〈C3v, θ〉V∗×V

= −
∫ T

0

(
〈C1θ(t), v(t)〉E∗×E + 〈C3v(t), θ(t)〉V∗×V

)
dt = 0,

which establishes (44).
Next, we prove (45). From (43) and (44), we obtain

0 ≥ lim sup〈(v∗
n , θ

∗
n ), (vn, θn) − (v, θ)〉(E×V)∗×(E×V)

≥ lim sup
(
〈Avn, vn − v〉E∗×E + 〈C2θn, θn − θ〉V∗×V

)

+ lim inf 〈Bvn, vn − v〉E∗×E .

The monotonicity of the operator B (cf. Lemma A.2(iv)) implies

lim inf 〈Bvn, vn − v〉E∗×E = lim inf 〈Bvn − Bv, vn − v〉E∗×E

+ lim〈Bv, vn − v〉E∗×E ≥ 0.
(47)

It follows that
lim sup

(
〈Avn, vn − v〉E∗×E + 〈C2θn, θn − θ〉V∗×V

)
≤ 0. (48)

We claim that

lim sup〈Avn, vn − v〉E∗×E ≤ 0 and lim sup〈C2θn, θn − θ〉E∗×E ≤ 0. (49)

Indeed, assume that lim sup〈Avn, vn − v〉E∗×E > 0. Therefore, there exist m > 0 and a subse-
quence such that lim〈Avn, vn − v〉E∗×E = m > 0. Then, from (48), we obtain lim sup〈C2θn, θn −
θ〉V∗×V ≤ −m < 0 and subsequently the L2-pseudomonotonicity of C2 (cf. Lemma A.3(iii)) implies
lim〈C2θn, θn − θ〉V∗×V = 0. It follows that m ≤ 0, which contradicts the choice m > 0. Hence, the
first inequality in (49) holds true. Similarly, we can show the second inequality in (49).

Since A is L1-pseudomonotone (cf. Lemma A.1(iii)) and C2 is L2-pseudomonotone (cf. Lemma
A.3(iii)), we conclude that (45) holds true.

Finally, to justify (46), we use the hypotheses and the convergences (43)–(45), and the fact that

0 ≥ lim sup 〈(v∗
n , θ

∗
n ), (vn, θn) − (v, θ)〉(E×V)∗×(E×V) ≥ lim sup〈Bvn, vn − v〉E∗×E .

This, together with (47) implies that lim〈Bvn, vn − v〉E∗×E = 0, which completes the proof of (46),
and consequently also of (42). This finishes the proof of (iii).

We have all necessary ingredients to apply Proposition 2.1 and conclude that Problem 4 has a
solution (w, θ) ∈ D(L).
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Finally, we use Lemma 5.6 to infer that Problem 4 has a solution (w, θ) ∈ D(L). Hence (u =
K(w + v0), θ + θ0) is a solution to Problem 3. Then, Proposition 5.5 implies that (u, θ) ∈ E × V is a
solution to Problem 2. The proof of Theorem 4.1 is now complete.

Remark 1: We note that we may weaken the assumptions on the initial data. Indeed, Theorem 4.1
still holds if the initial conditions are less regular, i.e. v0 ∈ L2(�; R

d) and θ0 ∈ L2(�). In this case
we approximate these elements by sequences of more regular functions, i.e. {vn0 } ⊂ E, {θn0 } ⊂ V such
that vn0 → v0 in L2(�; R

d) and θn0 → θ0 in L2(�). Then, we may consider a sequence of versions
of Problem 2, called Problems 2n, with suitable initial conditions (i.e. u′

n(0) = vn0 and θn(0) = θn0 )
and apply Theorem 4.1. Then, a subsequence of solutions of Problems 2n converges to a solution of
Problem 2.
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Appendix 1. Auxilary results

We provide a collection of results that are used in the proofs in the paper, especially in establishing the properties of
the operator G in Section 5. The Lemmas below are generalizations of similar results in [29].

Lemma A.1 ([29, Lemma 8]): If H(Ae) holds, then the operator A : E → E∗ defined by (29) satisfies:

(i) ‖Av‖E∗ ≤ c (1 + ‖v‖E ) for all v ∈ E with c > 0,
(ii) 〈Av, v〉E∗×E ≥ αA ‖v‖2E − c1 ‖v‖E − c2 for all v ∈ E with c1, c2 ∈ R,
(iii) A is L1-pseudomonotone,
(iv) A is continuous and weakly continuous.

Lemma A.2 ([29, Lemma 9]): If H(Be) holds, then the operator B : E → E∗ defined by (30) satisfies:

(i) ‖Bv‖E∗ ≤ c (1 + ‖v‖E ) for all v ∈ E with c > 0,
(ii) ‖Bv1 − Bv2‖E∗ ≤ c ‖v1 − v2‖E for all v1, v2 ∈ E with c > 0,
(iii) 〈Bv, v〉E∗×E ≥ −c1 ‖v‖E − c2 for all v ∈ E with c1 ≥ 0 and c2 ∈ R,
(iv) B is monotone,
(v) B is weakly continuous.

Lemma A.3 ([29, Lemma 10]): If H(k) holds, then the operator C2 : V → V∗ defined by (32) satisfies:

(i) ‖C2θ‖V∗ ≤ c (1 + ‖θ‖V ) for all θ ∈ V with c > 0,
(ii) 〈C2θ , θ〉V∗×V ≥ αk ‖θ‖2V − c1‖θ‖V − c2 for all θ ∈ V with c1, c2 ∈ R,
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(iii) C2 is L2-pseudomonotone,
(iv) C2 is continuous and weakly continuous.

Lemma A.4 ([29, Lemma 13]): If H(Ce ,C) holds, then the operators C1 : V → E∗ and C3 : E → V∗ defined by (31)
and (33), respectively, satisfy:

(i) ‖C1θ‖E∗ ≤ c (1 + ‖θ‖V ) for θ ∈ V with c > 0,
(ii) ‖C3v‖V∗ ≤ c (1 + ‖v‖E ) for v ∈ E with c > 0,
(iii) 〈C1θ , v〉E∗×E + 〈C3v, θ〉V∗×V ≥ −c ‖(v, θ)‖E×V for (v, θ) ∈ E × V with c > 0,
(iv) C1 and C3 are continuous and weakly continuous.

The proofs of the next Lemmas are analogous to each other and they are similar to the results in [29, Lemmas 11
and 12] or [20, Lemma 13].

Lemma A.5: If H(jν) and H(pν , pτ , p) hold, then the operator N1 : E × V → 2E∗
defined by (34) satisfies:

(i) N1 has nonempty, convex, and weakly compact values in E∗,
(ii) ‖N1(v, θ)‖E∗ ≤ c ‖v‖E for all v ∈ E , θ ∈ V with c > 0,
(iii) 〈v∗, v〉E∗×E ≥ −c ‖v‖E for all v∗ ∈ N1(v, θ), v ∈ E , θ ∈ V with c > 0,
(iv) If v∗

n ∈ N1(vn, θn) with (vn, θn) → (v, θ) weakly in E × V

and v∗
n → v∗ weakly in E∗, then v∗ ∈ N1(v, θ) and 〈v∗

n , vn − v〉E∗×E → 0.

Lemma A.6: If H(jτ ) and H(pν , pτ , p) hold, then the operator N2 : E × V → 2E∗
defined by (35) satisfies:

(i) N2 has nonempty, convex, and weakly compact values in E∗,
(ii) ‖N2(v, θ)‖E∗ ≤ c (1 + ‖v‖E ) for (v, θ) ∈ E × V with c > 0,
(iii) 〈v∗, v〉E∗×E ≥ −c1 ‖v‖E − c2 for v∗ ∈ N2(v, θ), (v, θ) ∈ E × V with c1, c2 > 0,
(iv) If v∗

n ∈ N2(vn, θn) with (vn, θn) → (v, θ) weakly in E × V

and v∗
n → v∗ weakly in E∗, then v∗ ∈ N2(v, θ) and 〈v∗

n , vn − v〉E∗×E → 0.

Lemma A.7: If H(j) and H(pν , pτ , p) hold, then the operator N3 : E × V → 2V∗
given by (36) satisfies:

(i) N3 has nonempty, convex, and weakly compact values in V∗,
(ii) ‖N3(v, θ)‖V∗ ≤ c (1 + ‖θ‖V ) for (v, θ) ∈ E × V with c > 0,
(iii) 〈θ∗, θ〉V∗×V ≥ −c1 ‖θ‖V − c2 for θ∗ ∈ N3(v, θ), (v, θ) ∈ E × V with c1, c2 > 0,
(iv) If θ∗

n ∈ N3(vn, θn) with (vn, θn) → (v, θ) weakly in E × V

and θ∗
n → θ∗ weakly in V∗, then θ∗ ∈ N3(v, θ) and 〈θ∗

n , θn − θ〉V∗×V → 0.
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