
HAL Id: hal-01626946
https://hal.science/hal-01626946

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Numerical Analysis of Elliptic Hemivariational
Inequalities

Weimin Han, Mircea Sofonea, Mikaël Barboteu

To cite this version:
Weimin Han, Mircea Sofonea, Mikaël Barboteu. Numerical Analysis of Elliptic Hemivariational In-
equalities. SIAM Journal on Numerical Analysis, 2017, 55 (2), pp.640-663. �10.1137/16M1072085�.
�hal-01626946�

https://hal.science/hal-01626946
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

NUMERICAL ANALYSIS OF ELLIPTIC

HEMIVARIATIONAL INEQUALITIES∗

WEIMIN HAN† , MIRCEA SOFONEA‡ , AND MIKAËL BARBOTEU‡

Abstract. This paper is devoted to a study of the numerical solution of elliptic hemivariational
inequalities with or without convex constraints by the finite element method. For a general fam-
ily of elliptic hemivariational inequalities that facilitates error analysis for numerical solutions, the
solution existence and uniqueness are proved. The Galerkin approximation of the general elliptic
hemivariational inequality is shown to converge, and Céa’s inequality is derived for error estimation.
For various elliptic hemivariational inequalities arising in contact mechanics, we provide error esti-
mates of their numerical solutions, which are of optimal order for the linear finite element method,
under appropriate solution regularity assumptions. Numerical examples are reported on using linear
elements to solve sample contact problems, and the simulation results are in good agreement with
the theoretically predicted linear convergence.

Key words. elliptic hemivariational inequality, Clarke subdifferential, Galerkin approximation,
finite element method, convergence, error estimates, contact problems
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1. Introduction. The mathematical theory of variational inequalities started in
the sixties (cf. [36, 9]). Since then, the area of variational inequalities has received a lot
of attention. Results on mathematical theory and numerical solutions of variational
inequalities are summarized in numerous books (e.g., [17, 34, 21, 19, 2, 11, 20, 40, 28]).
Variational inequalities with particular emphasis on applications in contact mechan-
ics and engineering are documented in [33, 26, 42, 18, 43, 45, 44, 25]. Variational
inequalities are mathematical problems with convex structures, and their analysis
needs tools and techniques from convex analysis, including arguments of monotonic-
ity, notion, and properties of the subdifferential of a convex function. In contrast,
hemivariational inequalities are mathematical problems with nonconvex structures
and are particularly useful for analyzing and solving some families of nonsmooth and
nonconvex problems. The notion of hemivariational inequalities was first introduced
by Panagiotopoulos in the early 1980s [39] and is closely related to the development
of the concept of the generalized gradient of a locally Lipschitz function provided
by Clarke [13, 14]. During the last three decades, hemivariational inequalities were
shown to be very useful across a wide variety of subjects, ranging from nonsmooth
mechanics, physics, and engineering to economics. For this reason, a large number
of problems in applications lead to mathematical models expressed in terms of hemi-
variational inequalities. The mathematical literature dedicated to this field is growing
rapidly. The theory and applications of hemivariational inequalities can be found in
several books [41, 38, 27, 22, 10, 37, 24] and the references cited therein.
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Despite the substantial progress made on modeling and mathematical theories of
hemivariational inequalities, only a handful of publications can be found in the litera-
ture on numerical analysis of hemivariational inequalities. The early monograph [27]
provides discussions on the finite element method for solving hemivariational inequal-
ities; however, no error estimation is given. In [4], a bilateral contact problem with
nonmonotone friction law is discussed, and an error estimate is derived for the finite
element solutions of the corresponding problem expressed in terms of an elliptic hemi-
variational inequality; yet, the convergence order presented there is suboptimal. More
recently, in [23], a variational-hemivariational inequality is discussed theoretically and
numerically, and an optimal first order error estimate is derived for the linear finite
element solutions of the problem. This appears to be the first time in the literature
where the optimal first order error estimate is established for the linear finite element
method for solving a hemivariational inequality. Then, in [3], numerical analysis is
performed for solving a hyperbolic hemivariational inequality arising in dynamic fric-
tional contact, and an optimal order error estimate is derived for the linear finite
element solutions of the problem. In [30, 29], a temporal semidiscrete scheme based
on the backward Euler difference approximation of the time derivative for solving
a parabolic hemivariational inequality is analyzed. Convergence of the semidiscrete
solutions is shown in [30], and an error estimate is derived in [29] which is not of
optimal order with respect to the time step-size. The convergence proof is extended
in [31] to a family of θ-schemes for the time discretization of the parabolic hemivari-
ational inequality, where θ ∈ (0, 1], with θ = 1 for the backward Euler scheme and
θ = 1/2 corresponding to the Crank–Nicolson scheme. In [7], the numerical solution
of parabolic variational-hemivariational inequalities is considered. In [6], numerical
methods are discussed for solving evolutionary hemivariational inequalities, where
the time derivatives are approximated by finite differences and the spatial discretiza-
tion is done with the linear finite element. Convergence of the numerical methods is
discussed, and optimal order error estimates are presented.

The main purpose of this paper is to study the numerical solution of general
elliptic hemivariational inequality problems by the finite element method. We show
the convergence of the numerical solution, and for some particular hemivariational
inequalities, we also derive error estimates, which are of optimal order for the lin-
ear elements. We provide numerical examples to illustrate the performance of the
numerical method, including numerical convergence orders.

The rest of the paper is organized as follows. In section 2 we review some prelim-
inary material needed in the study of hemivariational inequalities. In the literature
(e.g., [37, section 4.3], [4]), there are solution existence and uniqueness results for some
elliptic hemivariational inequalities. Nevertheless, we discuss in section 3 a general
family of elliptic hemivariational inequalities in a form that facilitates numerical anal-
ysis. The family includes elliptic hemivariational inequalities without constraints,
as well as those with convex constraints. The existence and uniqueness result for
these elliptic hemivariational inequalities is somewhat more general than that in the
existing literature. For example, in both [37, section 4.3] and [4], only elliptic hemi-
variational inequalities without constraints are discussed, the nonconvex functional is
given in the form of a boundary integral, and moreover, a stronger growth condition
on the nonconvex functional is assumed. In comparison, Theorem 3.1 in section 3
covers elliptic hemivariational inequalities with and without constraints; the noncon-
vex functional is not limited to a concrete form, and moreover, only a mild growth
condition is used on the nonconvex functional. In section 4 we introduce Galerkin
methods for solving the hemivariational inequalities, prove convergence, and derive
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Céa-type inequalities useful for error estimation. We note that in [23], Céa-type
inequalities and optimal order error estimates for the linear element solutions were
derived under the additional assumption that the nonconvex functional is Lipschitz
continuous; in this paper, we remove this unsatisfactory assumption. Moreover, the
inequality problem studied in [23] does not contain a constraint, whereas in this paper,
inequality problems both with and without constraints are covered. In section 5 we
introduce several contact problems, in which the material’s behavior is modeled with
a nonlinear elastic constitutive and contact conditions in subdifferential forms. We
apply our results in earlier sections for the analysis and numerical approximations of
the contact problems. Optimal first order error estimates are shown for the linear el-
ement method, under appropriate solution regularity assumptions. Finally, in section
6 we present simulation results which provide numerical evidence of our theoretical
error estimates.

2. Preliminaries. All linear spaces in this paper are assumed to be real. For a
normed space X, we denote by ‖ · ‖X its norm, by X∗ its topological dual, and by
〈·, ·〉X∗×X the duality pairing of X and X∗. Sometimes, when no confusion may arise,
we simply write 〈·, ·〉 instead of 〈·, ·〉X∗×X . We use 0X to represent the zero element
of X, 2X

∗

to denote the collection of all the subsets of X∗. Weak convergence is
indicated by the symbol ⇀. Given two normed spaces X and Y , L(X,Y ) is the space
of all linear continuous operators from X to Y .

We deal with both single-valued and multivalued operators defined on a normed
space X. We start by recalling several definitions for single-valued operators.

Definition 2.1. Consider an operator A : X → X∗, which is generally nonlinear.
It is bounded if it maps bounded sets of X to bounded sets of X∗. It is monotone if
〈Au − Av, u − v〉 ≥ 0 for all u, v ∈ X. It is maximal monotone if it is monotone
and 〈Au − w, u − v〉 ≥ 0 for any u ∈ X implies that w = Av. It is coercive if
there exists a function α : R+ → R with limr→+∞ α(r) = +∞ such that 〈Au, u〉 ≥
α(‖u‖X) ‖u‖X for all u ∈ X. It is pseudomonotone if it is bounded and un ⇀ u in X
with lim supn→∞〈Aun, un − u〉 ≤ 0 imply 〈Au, u− v〉 ≤ lim infn→∞〈Aun, un − v〉 for
all v ∈ X.

It can be proved that an operator A : X → X∗ is pseudomonotone if and only if
it is bounded and un ⇀ u in X together with lim supn→∞〈Aun, un − u〉 ≤ 0 imply
Aun ⇀ Au in X∗ and limn→∞〈Aun, un〉 = 〈Au, u〉.

For a multivalued operator T : X → 2X
∗

, its graph G(T ) is
G(T ) := {(x, x∗) ∈ X ×X∗ | x∗ ∈ Tx}.

Definition 2.2. An operator T : X → 2X
∗

is monotone if 〈u∗ − v∗, u − v〉 ≥ 0
for all (u, u∗), (v, v∗) ∈ G(T ). It is maximal monotone if it is monotone and maximal
in the sense of inclusion of graphs in the family of monotone operators from X to
2X

∗

. It is coercive if there exists a function α : R+ → R with limr→+∞ α(r) = +∞
such that 〈u∗, u〉 ≥ α(‖u‖X) ‖u‖X for all (u, u∗) ∈ G(T ).

Next, we recall the notions of pseudomonotonicity and generalized pseudomono-
tonicity for a multivalued operator.

Definition 2.3. Let X be a reflexive Banach space. A multivalued operator
T : X → 2X

∗

is pseudomonotone if
(a) for every u ∈ X, the set Tu ⊂ X∗ is nonempty, closed, and convex;
(b) T is upper semicontinuous from each finite dimensional subspace of X to X∗

endowed with the weak topology;

3



 

(c) for any sequences {un} ⊂ X and {u∗
n} ⊂ X∗ such that un ⇀ u in X, u∗

n ∈
Tun for all n ≥ 1, and lim sup〈u∗

n, un−u〉 ≤ 0, we have that for every v ∈ X,
there exists u∗(v) ∈ Tu such that

〈u∗(v), u− v〉 ≤ lim inf 〈u∗
n, un − v〉.

Definition 2.4. Let X be a reflexive Banach space. A multivalued operator
T : X → 2X

∗

is generalized pseudomonotone if for any sequences {un} ⊂ X and
{u∗

n} ⊂ X∗ such that un ⇀ u in X, u∗
n ∈ Tun for n ≥ 1, u∗

n ⇀ u∗ in X∗, and
lim sup〈u∗

n, un − u〉 ≤ 0, we have u∗ ∈ Tu and

lim
n→∞

〈u∗
n, un〉 = 〈u∗, u〉.

The following result displays relations between the two notions (cf. [16, Proposi-
tions 1.3.65 and 1.3.66]).

Proposition 2.5. Let X be a reflexive Banach space and T : X → 2X
∗

.
(a) If T is pseudomonotone, then it is generalized pseudomonotone.
(b) If T is a bounded, generalized pseudomonotone operator such that for all

u ∈ X, Tu is a nonempty, closed, and convex subset of X∗, then T is
pseudomonotone.

The following surjectivity result (cf. [38, Theorem 2.11]) will be applied in study-
ing the elliptic hemivariational inequalities.

Theorem 2.6. Let X be a reflexive Banach space, T1 : X → 2X
∗

pseudomonotone
and coercive, and T2 : X → 2X

∗

maximal monotone with T2(0X) �= ∅. If either T1 or
T2 is bounded, then T1 + T2 is surjective.

Finally, we recall the definitions of the convex and the Clarke subdifferentials.

Definition 2.7. Let ϕ : X → R∪{+∞} be a proper, convex, and lower semicon-
tinuous function. The mapping ∂cϕ : X → 2X

∗

defined by

∂cϕ(x) := {x∗ ∈ X∗ | 〈x∗, v − x〉 ≤ ϕ(v)− ϕ(x) ∀ v ∈ X}

is called the (convex) subdifferential of ϕ. An element x∗ ∈ ∂cϕ(x) (if any) is called
a subgradient of ϕ at x.

Definition 2.8. Let ψ : X → R be a locally Lipschitz functional. The generalized
(Clarke) directional derivative of ψ at x ∈ X in the direction v ∈ X is defined by

ψ0(x; v) := lim sup
y→x, λ↓0

ψ(y + λv)− ψ(y)

λ
.

The generalized gradient (subdifferential) of ψ at x is defined by

∂ψ(x) :=
{

ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X
}

.

Details on the properties of the subdifferential mappings, in both the convex and
the Clarke sense, can be found in the books [14, 15, 16, 37, 38, 41, 44]. In particular,
knowing the generalized subdifferential, we can compute the generalized directional
derivative through the formula [14]

(1) ψ0(x; v) = max {〈ζ, v〉 | ζ ∈ ∂ψ(x)} .
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3. Analysis of a general elliptic hemivariational inequality. Let X be a
reflexive Banach space, K ⊂ X, and Xj a Banach space. Given an operator A : X →
X∗, a locally Lipschitz functional j : Xj → R, a linear operator γj : X → Xj , and a
linear functional f : X → R, we consider the following problem.

Problem (P). Find an element u ∈ K such that

(2) 〈Au, v − u〉+ j0(γju; γjv − γju) ≥ 〈f, v − u〉 ∀ v ∈ K.

For the study of Problem (P), we adopt the following assumptions on the data:
(A1) X is a reflexive Banach space, and K is a closed and convex subset of X

with 0X ∈ K.
(A2) Xj is a Banach space, γj ∈ L(X,Xj): for a constant cj > 0,

(3) ‖γjv‖Xj
≤ cj‖v‖X ∀ v ∈ X.

(A3) A : X → X∗ is pseudomonotone and strongly monotone: for a constant
mA > 0,

(4) 〈Av1 −Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2X ∀ v1, v2 ∈ X.

(A4) j : Xj → R is locally Lipschitz, and there are constants c0, c1, αj ≥ 0 such
that

‖∂j(z)‖X∗

j
≤ c0 + c1‖z‖Xj

∀ z ∈ Xj ,(5)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj‖z1 − z2‖2Xj
∀ z1, z2 ∈ Xj .(6)

(A5)

(7) αjc
2
j < mA.

(A6)

(8) f ∈ X∗.

Note that Problem (P) contains as particular cases various problems considered
in the literature. The space Xj is introduced to facilitate derivation of optimal order
error estimates for numerical solutions of Problem (P) in later sections. For applica-
tions in contact mechanics with a spatial dimension d, the functional j(·) is an integral
over the contact boundary Γ3, and Xj can be chosen to be L2(Γ3) or L2(Γ3)

d. The
relation (7) is a smallness assumption, which poses a limit on the size of j relative
to the strong monotonicity of A. For a locally Lipschitz function j : Xj → R, the
hypothesis (6) is equivalent to the condition

(9) 〈∂j(z1)− ∂j(z2), z1 − z2〉X∗

j
×Xj

≥ −αj‖z1 − z2‖2Xj
∀ z1, z2 ∈ Xj .

This is known as the relaxed monotonicity condition and it was extensively used in
the literature (e.g., [37]). In case j : Xj → R is convex, then (6) and (9) hold with
αj = 0, due to the monotonicity of the (convex) subdifferential. We call (2) an elliptic
hemivariational inequality in view of the assumption (4). When K = X, (2) is an
elliptic hemivariational inequality without constraint. When K is a proper convex
subset of X, (2) is an elliptic hemivariational inequality with a convex constraint.
The assumption 0X ∈ K is valid for all the contact problems we consider and is
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introduced to simplify the exposition. It is possible to replace this assumption by the
non-emptiness ofK; then instead of Theorem 2.6 that follows from [38, Theorem 2.11],
we apply [38, Theorem 2.12] in the existence proof for the elliptic hemivariational
inequalities.

Since 0X ∈ K, we derive the following inequalities from (4), (9), and (5):

〈Av, v〉 ≥ mA‖v‖2X − c ‖v‖X ∀ v ∈ X,(10)

〈∂j(z), z〉X∗

j
×Xj

≥ −αj‖z‖2Xj
− c0‖z‖Xj

∀ z ∈ Xj(11)

for some constant c ≥ 0.
We have the following existence and uniqueness result.

Theorem 3.1. Under the assumptions (A1)–(A6), Problem (P) has a unique so-
lution u ∈ K.

Proof. We first prove the existence. By making use of the indicator function

IK(v) =

{

0 if v ∈ K,

+∞ if v ∈ X\K,

we can rewrite Problem (P) in the equivalent form: find u ∈ X such that

(12) 〈Au, v − u〉+ IK(v)− IK(u) + j0(γju; γjv − γju) ≥ 〈f, v − u〉 ∀ v ∈ X.

Now consider the following problem: find u ∈ X such that

(13) Au+ γ∗
j ∂j(γju) + ∂cIK(u) ∋ f,

where ∂j ⊂ X∗
j denotes the generalized gradient of j, ∂cIK is the convex subdifferential

of IK , and γ∗
j ∈ L(X∗

j , X
∗) is the adjoint of γj . Corresponding to (13), introduce two

multivalued operators T1, T2 : X → 2X
∗

:

T1v = Av + γ∗
j ∂j(γjv), T2v = ∂cIK(v).

We know that IK is proper, convex, and lower semicontinuous with an effective domain
K. It is well known (cf., e.g., [16, Theorem 1.3.19]) that the operator T2 = ∂cIK : X →
2X

∗

is maximal monotone with D(∂cIK) = K.
We claim that the operator T1 is bounded, coercive, and pseudomonotone. The

boundedness of T1 follows from that of A, γj , γ
∗
j , and the growth condition (5) on ∂j.

For the coercivity, we use the inequalities (10) and (11),

〈T1v, v〉 = 〈Av, v〉+ 〈∂j(γjv), γjv〉
≥ mA‖v‖2X − c ‖v‖X − αj‖γjv‖2Xj

− c0‖γjv‖Xj

≥
(

mA − αjc
2
j

)

‖v‖2X − c ‖v‖X

for all v ∈ X. Thus, T1 is coercive with α(v) :=
(

mA − αjc
2
j

)

‖v‖X − c, due to the
smallness assumption (7).

We now prove that the operator T1 is pseudomonotone. Observe that for all
v ∈ X, the set Av + γ∗

j ∂j(γjv) is nonempty, closed, and convex in X∗. According to
Proposition 2.5, we only need to show that T1 is generalized pseudomonotone. From
(4), (6), and (7), we know the operator T1 is strongly monotone,

(14) 〈T1v1 − T1v2, v1 − v2〉 ≥
(

mA − αjc
2
j

)

‖v1 − v2‖2X ∀ v1, v2 ∈ X.
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Let un ∈ X, un ⇀ u in X, u∗
n ∈ T1un, u

∗
n ⇀ u∗ in X∗, and lim supn→∞〈u∗

n, un−u〉 ≤
0. Use (14),

(

mA − αjc
2
j

)

‖un − u‖2X ≤ 〈u∗
n, un − u〉 − 〈T1u, un − u〉,

and we deduce that un → u in X. Since u∗
n ∈ T1un, we can write u∗

n = u∗
n,1+u∗

n,2 with
u∗
n,1 = Aun and u∗

n,2 ∈ γ∗
j ∂j(γjun). Since A and γ∗

j ∂j(γj ·) are bounded operators, by
passing to a subsequence if necessary, we may assume that u∗

n,1 ⇀ u∗
a and u∗

n,2 ⇀ u∗
b

in X∗ for some u∗
a, u

∗
b ∈ X∗. Letting n → ∞ in u∗

n = u∗
n,1 + u∗

n,2, we have u∗ =
u∗
a + u∗

b . Exploiting the equivalent condition for the pseudomonotonicity of A, we
have Aun ⇀ Au in X∗, implying u∗

a = Au. Since X ∋ v �→ γ∗
j ∂j(γjv) ∈ 2X

∗

has
a closed graph with respect to the strong topology in X and weak topology in X∗,
we infer that u∗

b ∈ γ∗
j ∂j(γju). Hence, u∗ = u∗

a + u∗
b ∈ Au + γ∗

j ∂j(γju) = T1u. From
u∗
n ⇀ u∗ in X∗ and un → u in X, we have 〈u∗

n, un〉 → 〈u∗, u〉. Hence, T1 is generalized
pseudomonotone and is then also pseudomonotone.

We then apply Theorem 2.6 and deduce that there exists a solution u ∈ X to the
inclusion (13). This solution also solves the problem (12). Indeed, let u ∈ X be such
that

(15) Au+ y∗ + z∗ = f

with y∗ ∈ ∂cIK(u) and z∗ ∈ γ∗
j ∂j(γju). For all v ∈ X, we have

〈y∗, v − u〉 ≤ IK(v)− IK(u), 〈z∗, v〉 ≤ j0(γju; γjv).

Combining (15) with these inequalities, we obtain

〈Au, v − u〉+ IK(v)− IK(u) + j0(γju; γjv − γju) ≥ 〈f, v − u〉 ∀ v ∈ X.

So u ∈ X satisfies (12) and we conclude that Problem (P) has at least one solution
u ∈ K.

The solution uniqueness is proved by a standard approach and is hence omitted.
Note that the smallness assumption (7) is needed in the uniqueness proof.

4. Galerkin approximation. In this section, we consider numerical schemes
for solving Problem (P). We keep assumptions (A1)–(A6) so that Problem (P) has a
unique solution u ∈ K. In the rest of the paper, we will use c to represent a generic
positive constant that is independent of the meshsize h and the solution u and whose
value may vary from one place to another.

Let Xh ⊂ X be a finite dimensional subspace with h > 0 denoting a spatial
discretization parameter. We use Kh := Xh ∩K to approximate the convex set K.
The Galerkin approximation of Problem (P) is the following.

Problem (Ph). Find an element uh ∈ Kh such that

(16) 〈Auh, vh − uh〉+ j0(γju
h; γjv

h − γju
h) ≥ 〈f, vh − uh〉 ∀ vh ∈ Kh.

The arguments of the proof of Theorem 3.1 can be applied in the setting of
the finite dimensional set Kh, and we know that under the assumptions (A1)–(A6),
Problem (Ph) has a unique solution uh ∈ Kh.

The focus of this section is convergence analysis and error estimation for the
numerical solution of Problem (Ph). We assume

(17) ∀ v ∈ K, ∃ vh ∈ Kh such that vh → v in X as h → 0.
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We also assume A : X → X∗ is Lipschitz continuous, i.e., for some constant LA > 0,

(18) ‖Au−Av‖X∗ ≤ LA‖u− v‖X ∀u, v ∈ X.

Note that conditions (18) and (4) imply the pseudomonotonicity of the operator A
[46, Proposition 27.6].

Proposition 4.1. The solution uh ∈ Kh of Problem (Ph) is uniformly bounded
independent of h.

Proof. We let vh = 0 in (16) to get

(19) 〈Auh, uh〉 ≤ j0(γju
h;−γju

h) + 〈f, uh〉.

From (6) and (5),

j0(γju
h;−γju

h) ≤ αj‖γjuh‖2Xj
− j0(0; γju

h)(20)

≤ αj‖γjuh‖2Xj
+ c0 + c1‖γjuh‖Xj

≤ αjc
2
j‖uh‖2X + c

(

1 + ‖uh‖X
)

.

Apply (10) and (20) in (19),

(

mA − αjc
2
j

)

‖uh‖2X ≤ c
(

1 + ‖uh‖X
)

.

We then use the elementary implication for real numbers

a, b, x ≥ 0 and x2 ≤ a x+ b ⇒ x2 ≤ a2 + 2 b

to conclude that uh ∈ Kh is uniformly bounded independent of h.

4.1. Convergence. We begin with an application of (4) with v1 = u and v2 =
uh to obtain, for any vh ∈ Kh,

mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ 〈Au, vh − u〉(21)

+ 〈Au, u− uh〉+ 〈Auh, uh − vh〉.

From (2) with v = uh,

(22) 〈Au, u− uh〉 ≤ j0(γju; γju
h − γju)− 〈f, uh − u〉.

From (16),

(23) 〈Auh, uh − vh〉 ≤ j0(γju
h; γjv

h − γju
h)− 〈f, vh − uh〉.

Using (22) and (23) in (21), we have

mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ 〈Au, vh − u〉 − 〈f, vh − u〉(24)

+ j0(γju; γju
h − γju) + j0(γju

h; γjv
h − γju

h).

For error estimation, it will be more convenient to rewrite (24) as

(25) mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+R(vh) + Ij(v
h),
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where

R(vh) := 〈Au, vh − u〉+ j0(γju; γjv
h − γju)− 〈f, vh − u〉,(26)

Ij(v
h) := j0(γju; γju

h − γju) + j0(γju
h; γjv

h − γju
h)− j0(γju; γjv

h − γju).(27)

Notice that for ε > 0 arbitrarily small, there is a constant c depending on ε such that

〈Au−Auh, u− vh〉 ≤ LA‖u− uh‖X‖u− vh‖X
≤ ε ‖u− uh‖2X + c ‖u− vh‖2X .

We further deduce from (25) that

(28) (mA − ε) ‖u− uh‖2X ≤ c ‖u− vh‖2X +R(vh) + Ij(v
h).

We will apply repeatedly the subadditivity of the generalized directional
derivative:

j0(z;w1 + w2) ≤ j0(z;w1) + j0(z;w2) ∀ z, w1, w2 ∈ Xj .

Using

j0(γju; γju
h − γju) ≤ j0(γju; γju

h − γjv
h) + j0(γju; γjv

h − γju),

we first bound the term Ij(v
h) as

Ij(v
h) ≤ j0(γju; γju

h − γjv
h) + j0(γju

h; γjv
h − γju

h).

Then,

j0(γju; γju
h − γjv

h) ≤ j0(γju; γju− γjv
h) + j0(γju; γju

h − γju),

j0(γju
h; γjv

h − γju
h) ≤ j0(γju

h; γjv
h − γju) + j0(γju

h; γju− γju
h),

and we have

Ij(v
h) ≤

[

j0(γju; γju
h − γju) + j0(γju

h; γju− γju
h)
]

(29)

+
[

j0(γju; γju− γjv
h) + j0(γju

h; γjv
h − γju)

]

.

By (6),

j0(γju; γju
h − γju) + j0(γju

h; γju− γju
h) ≤ αj‖γju− γju

h‖2Xj
.

Thus,

(30) Ij(v
h) ≤ αjc

2
j‖u− uh‖2X + j0(γju; γju− γjv

h) + j0(γju
h; γjv

h − γju).

From (1) and (5),

j0(γju; γju− γjv
h) ≤

(

c0 + c1‖γju‖Xj

)

‖γju− γjv
h‖Xj

,

j0(γju
h; γjv

h − γju) ≤
(

c0 + c1‖γjuh‖Xj

)

‖γju− γjv
h‖Xj

.

Note that ‖γjuh‖Xj
is bounded by a constant independent of h (Proposition 4.1).

Thus,

(31) Ij(v
h) ≤ αjc

2
j‖u− uh‖2X + c ‖γju− γjv

h‖Xj
.
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Combine (28) and (31),

(

mA − αjc
2
j − ε

)

‖u− uh‖2X ≤ c ‖u− vh‖2X + c ‖γju− γjv
h‖Xj

+R(vh).

Since αjc
2
j < mA, we can choose ε = (mA − αjc

2
j )/2 > 0 and get

(32) ‖u− uh‖2X ≤ c
[

‖u− vh‖2X + ‖γju− γjv
h‖Xj

+R(vh)
]

∀ vh ∈ Kh.

This is a starting point for convergence statement (Theorem 4.2 below) and error
estimation (cf. subsection 5.3).

Theorem 4.2. Under the assumptions (A1)–(A6), (17), and (18), we have the
convergence of the numerical solution defined by Problem (Ph) to the solution of
Problem (P).

Proof. By (17), we have a sequence {vh}, vh ∈ Kh, that converges to u in X as
h → 0. The residual term R(vh) can be bounded as follows:

∣

∣R(vh)
∣

∣ ≤ ‖Au‖X∗‖u− vh‖X +
(

c0 + c1‖γju‖Xj

)

‖γju− γjv
h‖Xj

+ ‖f‖X∗‖u− vh‖X .

Note that
‖γju− γjv

h‖Xj
≤ cj‖u− vh‖X .

Then,
lim
h→0

R(vh) = 0,

and we conclude the convergence ‖u− uh‖X → 0 as h → 0 from (32).

4.2. Error estimation for numerical solutions of the problem without

constraint. In the special case K = X, we have Kh = Xh, and the original problem
(2) and its approximation (16) become

(33) 〈Au, v〉+ j0(γju; γjv) ≥ 〈f, v〉 ∀ v ∈ X

and

(34) 〈Auh, vh〉+ j0(γju
h; γjv

h) ≥ 〈f, vh〉 ∀ vh ∈ Xh.

We replace v by u− v in (33),

〈Au, u− v〉+ j0(γju; γju− γjv) ≥ 〈f, u− v〉 ∀ v ∈ X.

Thus,
〈Au, vh − u〉 ≤ j0(γju; γju− γjv

h)− 〈f, u− vh〉 ∀ vh ∈ Xh.

Using this inequality in (24), we have

(35) mA‖u− uh‖2X ≤ 〈Au−Auh, u− vh〉+ Ĩj(v
h),

where

(36) Ĩj(v
h) := j0(γju; γju

h − γju) + j0(γju; γju− γjv
h) + j0(γju

h; γjv
h − γju

h).

Applying the inequality

j0(γju
h; γjv

h − γju
h) ≤ j0(γju

h; γju− γju
h) + j0(γju

h; γjv
h − γju),
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we write

Ĩj(v
h) ≤

[

j0(γju; γju
h − γju) + j0(γju

h; γju− γju
h)
]

+
[

j0(γju; γju− γjv
h) + j0(γju

h; γjv
h − γju)

]

.

The right side of the above inequality is the same as that of (29). Then, by (31),

(37) Ĩj(v
h) ≤ αjc

2
j‖u− uh‖2X + c ‖γju− γjv

h‖Xj
.

Combining (35) and (37), we get

mA‖u− uh‖2X ≤ ‖Au−Auh‖X‖u− vh‖X + αjc
2
j‖u− uh‖2X + c ‖γju− γjv

h‖Xj
.

Using the smallness assumption (7), similar to (32), we deduce from the above in-
equality that

(38) ‖u− uh‖2X ≤ c
(

‖u− vh‖2X + ‖γju− γjv
h‖Xj

)

∀ vh ∈ Xh.

This is a Céa’s inequality and is a basis for deriving error estimates (cf. subsections
5.1 and 5.2).

5. Error analysis for contact problems. We illustrate applications of the
framework developed in section 4 on convergence and error estimation for the finite
element solutions of three sample static contact problems with elastic materials. Let
Ω be the reference configuration of the elastic body, assumed to be an open, bounded,
connected set in R

d (d = 2, 3). The boundary Γ = ∂Ω is assumed Lipschitz continuous
and is partitioned into three disjoint and measurable parts Γ1, Γ2, and Γ3 such that
meas (Γ1) > 0. The body is in equilibrium under the action of a total body force of
density f0 in Ω and a surface traction of density f2 on Γ2, is fixed on Γ1, and is in
potential contact on Γ3 with a foundation. Different contact conditions will lead to
different contact problems, as discussed below.

We use S
d for the space of second order symmetric tensors on R

d and “ · ” the
canonical inner product on the spaces R

d and S
d. We denote by u : Ω → R

d and
σ : Ω → S

d the displacement field and the stress field, respectively. The linearized
strain tensor associated with u is denoted by ε(u). Let ν be the unit outward normal
vector, defined a.e. on Γ. For a vector field v, we use vν := v ·ν and vτ := v−vνν for
the normal and tangential components of v on Γ. Similarly, for the stress field σ, its
normal and tangential components on the boundary are defined as σν := (σν) ·ν and
στ := σν−σνν, respectively. Then for the contact problems under consideration, we
have the elastic constitutive law

(39) σ = Fε(u) in Ω,

the equilibrium equation

(40) Divσ + f0 = 0 in Ω,

the displacement boundary condition

(41) u = 0 on Γ1,

and the traction boundary condition

(42) σν = f2 on Γ2.
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Here and below we do not always indicate explicitly the dependence of a quantity
on the spatial variable x. In (39), F : Ω × S

d → S
d is the elasticity operator and is

assumed to have the following properties:

(43)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
d, a.e. x ∈ Ω,

‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;
(b) there exists mF > 0 such that for all ε1, ε2 ∈ S

d, a.e. x ∈ Ω,
(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2;

(c) F(·, ε) is measurable on Ω for all ε ∈ S
d.

(d) F(x,0Sd) = 0Sd for a.e. x ∈ Ω.

The relations (39)–(42) will be supplemented by a set of boundary conditions on Γ3.
To study the contact problems, we need some function spaces. For the stress

and strain fields, we use the space Q = L2(Ω; Sd), which is a Hilbert space with the
canonical inner product

(σ, τ )Q :=

∫

Ω

σij(x) τij(x) dx;

the associated norm is denoted by ‖ · ‖Q. The displacement fields will be sought in
the space

(44) V =
{

v ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1

}

or its subset. Since meas (Γ1) > 0, it is known that V is a Hilbert space with the
inner product

(u,v)V :=

∫

Ω

ε(u) · ε(v) dx, u,v ∈ V,

and the associated norm ‖ · ‖V . For v ∈ H1(Ω;Rd) we use the same symbol v for its
trace on Γ. By the Sobolev trace theorem, we have a constant c > 0 such that

‖v‖L2(Γ3;Rd) ≤ c ‖v‖V ∀v ∈ V.

We assume the densities of body forces and surface tractions satisfy

(45) f0 ∈ L2(Ω;Rd), f2 ∈ L2(Γ2;R
d)

and define f ∈ V ∗ by

(46) 〈f ,v〉V ∗×V = (f0,v)L2(Ω;Rd) + (f2,v)L2(Γ2;Rd) ∀v ∈ V.

As examples of Problem (P), we consider three choices of the boundary conditions
on the contact boundary Γ3, leading to different contact problems. For each problem,
convergence of the numerical solutions follows from Theorem 4.2. Thus, we will focus
on the derivation of error bounds.

5.1. A bilateral contact problem with friction. The first set of contact
boundary conditions we consider is

(47) uν = 0, −στ ∈ ∂jτ (uτ ) on Γ3.

The feature of bilateral contact is reflected by the condition uν = 0. Note that a
problem similar to the one described by (39)–(42) and (47) has already been studied
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in [26, p. 177], where F is a linear operator, and in [44, p. 144], where F satisfies
conditions (43). In these references, the function jτ is assumed to be convex. The
novelty of our results below in this subsection is that we extend the numerical analysis
of those models to the nonconvex case. To this end, on the potential function jτ : Γ3×
R

d → R, we assume

(48)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) jτ (·, z) is measurable on Γ3 for all z ∈ R
d

and jτ (·, z0(·)) ∈ L1(Γ3) for some z0 ∈ L2(Γ3)
d;

(b) jτ (x, ·) is locally Lipschitz on R
d for a.e. x ∈ Γ3;

(c) |∂jτ (x, z)| ≤ c0 + c1‖z‖ for a.e. x ∈ Γ3,
for all z ∈ R

d with c0, c1 ≥ 0;
(d) j0τ (x, z1; z2 − z1) + j0τ (x, z2; z1 − z2) ≤ αjτ ‖z1 − z2‖2

for a.e. x ∈ Γ3, all z1, z2 ∈ R
d with αjτ ≥ 0.

We comment that in the case where jτ : R
d → R is independent of x, the condition

(48)(a) can be dropped.
To apply Theorem 3.1, we let

X = K = V1 := {v ∈ V | vν = 0 a.e. on Γ3} ,(49)

Xj = L2(Γ3)
d, γjv = vτ for v ∈ V1,(50)

and define

〈Au,v〉 = (F(ε(uh)), ε(vh))Q, u,v ∈ V,(51)

j(z) =

∫

Γ3

jτ (·, z(·)) dΓ, z ∈ Xj .(52)

Note that [37, Theorem 3.47]

(53) j0(z;w) ≤
∫

Γ3

j0τ (·, z(·);w(·)) dΓ, z,w ∈ Xj .

Then (A1)–(A4) and (A6) are satisfied with mA = mF from (43)(b), αj = αjτ from
(48)(d). Note that the pseudomonotonicity of A follows from (43)(a) and (43)(b) [46,

Proposition 27.6]. The inequality (3) holds for any cj ≥ λ
−1/2
1,V , λ1,V > 0 being the

smallest eigenvalue of the eigenvalue problem

u ∈ V1,

∫

Ω

ε(u)·ε(v) dx = λ

∫

Γ3

uτ ·vτdΓ ∀v ∈ V1.

Following a standard approach (cf. [26, 37]), the following weak formulation of
the first contact problem can be derived.

Problem (P1). Find a displacement field u ∈ V1 such that

(54) (F(ε(u)), ε(v))Q +

∫

Γ3

j0τ (uτ ;vτ ) dΓ ≥ 〈f ,v〉V ∗×V ∀v ∈ V1.

By Theorem 3.1, we know that assuming additionally

(55) αjτ < λ
1/2
1,V mF ,

there is a unique element u ∈ V1 satisfying

(F(ε(u)), ε(v))Q + j0(uτ ;vτ ) ≥ 〈f ,v〉V ∗×V ∀v ∈ V1.
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The element u is also a solution of Problem (P1) due to the property (53). Uniqueness
of the solution u can be shown similar to the argument in the uniqueness part of the
proof of Theorem 3.1. In the rest of this subsection, we assume (55).

We introduce a finite element method to solve Problem (P1). For simplicity, as-
sume Ω is a polygonal/polyhedral domain and express the three parts of the boundary,
Γk, 1 ≤ k ≤ 3, as unions of closed flat components with disjoint interiors:

Γk = ∪ik
i=1Γk,i, 1 ≤ k ≤ 3.

Let {T h} be a regular family of partitions of Ω into triangles/tetrahedrons that are
compatible with the partition of the boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3, in
the sense that if the intersection of one side/face of an element with one set Γk,i has
a positive measure with respect to Γk,i, then the side/face lies entirely in Γk,i. Then
construct linear element spaces corresponding to T h:

V h =
{

vh ∈ C(Ω)d | vh|T ∈ P1(T )
d for T ∈ T h, vh = 0 on Γ1

}

,(56)

V h
1 =

{

vh ∈ V h | vhν = 0 on Γ3

}

.(57)

The finite element approximation of Problem (P1) is the following.
Problem (Ph

1). Find a displacement field uh ∈ V h
1 such that

(58) (F(ε(uh)), ε(vh))Q +

∫

Γ3

j0τ (u
h
τ ;v

h
τ ) dΓ ≥ 〈f ,vh〉V ∗×V ∀vh ∈ V h

1 .

Under the same assumptions, Problem (Ph
1 ) has a unique solution uh ∈ V h

1 . To
apply the theory developed in section 4, we note that (17) is valid with K = V1 and
Kh = V h

1 defined by (56). The Lipschitz condition (18) follows from (43)(a). Then
we have the convergence by applying Theorem 4.2:

uh → u in V as h → 0.

From (38), we have Céa’s inequality

(59) ‖u− uh‖2V ≤ c
(

‖u− vh‖2V + ‖uτ − vh
τ‖L2(Γ3)d

)

∀vh ∈ V h
1 .

Then, applying finite element interpolation error estimates [1, 8, 12], we conclude the
optimal order error bound

(60) ‖u− uh‖V ≤ c h

under the regularity assumptions

(61) u ∈ H2(Ω)d, uτ ∈ H2(Γ3,i)
d, 1 ≤ i ≤ i3.

Note that we cannot derive optimal order error estimates from (59) for higher
order elements. For example, if the conforming quadratic element is used in defining
the finite element space V h

1 , then under higher solution regularity assumptions, we
can only get a suboptimal error estimate

‖u− uh‖V ≤ c h3/2.

As a concrete example of jτ , let (cf. [4])

(62) jτ (z) =

∫ ‖z‖

0

µ(t) dt.
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Then the contact condition −στ ∈ ∂jτ (uτ ) from (47) is equivalent to

(63) ‖στ‖ ≤ µ(0) if uτ = 0, −στ = µ(‖uτ‖)
uτ

‖uτ‖
if uτ �= 0 on Γ3.

Here, µ(t) can be interpreted as a friction bound function. This function is assumed
to be measurable from [0,∞) to R, µ(0+) > 0, and with two positive constants c1, c2,

0 ≤ µ(t) ≤ c1 (1 + t) ∀ t ≥ 0,

µ(t2)− µ(t1) ≥ −c2 (t2 − t1) ∀ t2 > t1 ≥ 0.

Then (48) holds with αjτ = c2.

5.2. A frictionless normal compliance contact problem. Here, the contact
boundary conditions are

(64) − σν ∈ ∂jν(uν), στ = 0 on Γ3.

The first relation in (64) is a normal compliance contact condition, whereas the second
relation indicates that the contact is frictionless. The problem described by (39)–(42)
and (64) represents the frictionless version of a nonlinear elastic contact model studied
in [37, p. 202]. In that reference, the unique solvability of the model is provided but
there is no numerical analysis of the problem. Here, we fill this gap by providing
both the numerical analysis and numerical simulations in the study of such a contact
model. To this end, we assume the following properties on the potential function
jν : Γ3 × R → R:

(65)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) jν(·, z) is measurable on Γ3 for all z ∈ R and there
exists z0 ∈ L2(Γ3) such that jν(·, z0(·)) ∈ L1(Γ3);

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂jν(x, z)| ≤ c0 + c1|z| for a.e. x ∈ Γ3,
for all z ∈ R with c0, c1 ≥ 0;

(d) j0ν(x, z1; z2 − z1) + j0ν(x, z2; z1 − z2) ≤ αjν |z1 − z2|2
for a.e. x ∈ Γ3, all z1, z2 ∈ R with αjν ≥ 0.

Again, in case jν : R → R is independent of x, the condition (65) (a) can be dropped.
The weak formulation of the contact problem is the following.

Problem (P2). Find a displacement field u ∈ V such that

(66) (F(ε(u)), ε(v))Q +

∫

Γ3

j0ν(uν , vν) dΓ ≥ 〈f ,v〉V ∗×V ∀v ∈ V.

We use the finite element space V h of (56) and introduce the following approxi-
mation of Problem (P2).

Problem (Ph
2). Find a displacement field uh ∈ V h such that

(67) (F(ε(uh)), ε(vh))Q +

∫

Γ3

j0ν(u
h
ν , v

h
ν ) dΓ ≥ 〈f ,vh〉V ∗×V ∀vh ∈ V h.

Discussion of Problem (P2) and error analysis for Problem (Ph
2 ) are similar to

that in subsection 5.1, with the following modifications:

X = K = V, Xj = L2(Γ3), γjv = vν for v ∈ V,(68)

j(z) =

∫

Γ3

jν(·, z(·)) dΓ, z ∈ Xj ,(69)
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αj = αjν , and cj ≥ λ
−1/2
2,V with λ2,V > 0 the smallest eigenvalue of the eigenvalue

problem

u ∈ V,

∫

Ω

ε(u)·ε(v) dx = λ

∫

Γ3

uνvνdΓ ∀v ∈ V.

We have the following results. With the additional assumption

(70) αjν < λ
1/2
2,V mF ,

Problem (P2) has a unique solution u ∈ V . For the numerical solution uh defined by
Problem (Ph

2 ), we have Céa’s inequality

(71) ‖u− uh‖2V ≤ c
(

‖u− vh‖2V + ‖uν − vhν ‖L2(Γ3)

)

∀vh ∈ V h.

From this inequality, we conclude the convergence of the method:

uh → u in V as h → 0.

Moreover, under the regularity assumptions

(72) u ∈ H2(Ω)d, uν ∈ H2(Γ3,i), 1 ≤ i ≤ i3,

we have the optimal order error bound

(73) ‖u− uh‖V ≤ c h.

5.3. A frictionless unilateral contact problem. The third set of contact
boundary conditions we consider is

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0, ξν ∈ ∂jν(uν) on Γ3,(74)

στ = 0 on Γ3.(75)

These conditions model a frictionless contact with a foundation made of a rigid body
covered by a layer made of elastic material. Penetration is restricted by the relation
uν ≤ g, where g represents the thickness of the elastic layer. When there is penetration
and the normal displacement does not reach the bound g, the contact is described
by a multivalued normal compliance condition: −σν = ξν ∈ ∂jν(uν). The problem
described by (39)–(42) and (74)–(75) represents the frictionless version of a nonlinear
elastic contact model studied in [32], where the unique solvability of the model is
provided by using both a primal and a dual variational formulation of the model.
Here we continue the study of the model by providing the numerical analysis of the
frictionless problem in [32]. To this end, for the potential function jν : Γ3 × R → R,
we again assume (65).

Corresponding to the constraint uν ≤ g on Γ3, we introduce a subset of the space
V of (44):

(76) U := {v ∈ V | vν ≤ g on Γ3} .

The weak formulation of the contact problem is the following.
Problem (P3). Find a displacement field u ∈ U such that

(77) (F(ε(u)), ε(v − u))Q +

∫

Γ3

j0ν(uν ; vν − uν) dΓ ≥ 〈f ,v − u〉V ∗×V ∀v ∈ U.

16



 

To apply Theorem 3.1, we let

X = V, K = U, Xj = L2(Γ3), γjv = vν for v ∈ V,

and use the operator A defined in (51) and the functional j defined in (69). Assuming
additionally (70), Problem (P3) has a unique solution u ∈ U . For its numerical
solution, we use a related finite element subset of the space V h defined in (56):

(78) Uh =
{

vh ∈ V h | vhν ≤ g at node points on Γ3

}

.

Assume g is a concave function. Then Uh ⊂ U . We define the following numerical
method for Problem (P3).

Problem (Ph
3). Find a displacement field uh ∈ Uh such that

(F(ε(uh)), ε(vh − uh))Q +

∫

Γ3

j0ν(u
h
ν ; v

h
ν − uh

ν ) dΓ ≥ 〈f ,vh − uh〉V ∗×V ∀vh ∈ Uh.

(79)

We apply (32) to derive an error estimate. The key step is to bound the residual
term defined in (26). We assume the regularity properties (72). Then,

σ ∈ H1(Ω)d×d, σν ∈ L2(Γ)d.

Define a subset of U ,

Ũ :=
{

v ∈ C∞(Ω)d | v = 0 on Γ1, vν = 0 on Γ3

}

.

Letting v be the sum of u and an arbitrary function from the subset Ũ , we derive
from (77) that

(F(ε(u)), ε(v))Q = 〈f ,v〉V ∗×V ∀v ∈ Ũ .

With an argument similar to that in [26, section 8.1], we deduce from the above
relation the following equalities:

DivF(ε(u)) + f0 = 0 a.e. in Ω,(80)

σν = f2 a.e. on Γ2, στ = 0 a.e. on Γ3.(81)

Multiply (80) by v − u with v ∈ U , integrate over Ω, and integrate by parts,

∫

∂Ω

σν·(v − u) dΓ−
∫

Ω

F(ε(u))·ε(v − u) dx+

∫

Ω

f0·(v − u) dx = 0,

i.e.,

(82)

∫

Ω

F(ε(u))·ε(v − u) dx = 〈f ,v − u〉V ∗×V +

∫

Γ3

σν·(v − u) dΓ.

Thus,

R(vh) =

∫

Γ3

[

σν(v
h
ν − uν) + j0ν(uν ; v

h
ν − uν)

]

dΓ,

∣

∣R(vh)
∣

∣ ≤ c ‖uν − vhν ‖L2(Γ3).(83)
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Finally, from (32), we have Céa’s inequality

(84) ‖u− uh‖2V ≤ c
(

‖u− vh‖2V + ‖uν − vhν ‖L2(Γ3)

)

∀vh ∈ Uh.

Recalling the solution regularity (72), an assumption made earlier in order to derive
the pointwise equations (80) and (81), we conclude the optimal order error bound

(85) ‖u− uh‖V ≤ c h.

Remark 5.1. The same technique can be applied to the problems without con-
straints that are studied in subsections 5.1 and 5.2. However, in deriving Céa’s in-
equalities (59) and (71), there is no need to assume the solution regularity. In other
words, under solution regularity assumptions weaker than (61) or (72), we are still
able to derive corresponding error estimates for the numerical solutions of the prob-
lems in subsections 5.1 and 5.2. On the other hand, to derive Céa’s inequality for the
contact problem in this subsection, we need to first assume the solution regularity
(72). Thus, it is meritorious to consider the particular case K = X in section 4.

6. Numerical examples. In this section we report simulation results for three
numerical examples, corresponding to the contact problems (P1)–(P3). The solution
of the discrete problems is based on numerical methods presented in [4, 5]. The
main ingredient of these methods is a “convexification” iterative procedure which
approximates the solution of a nonconvex problem by solutions of a sequence of convex
problems. The nonsmooth convex problems are solved by classical numerical methods
that can be found, for instance, in [35, 45].

For the three numerical examples, we use the same physical setting as depicted
in Figure 1, with different contact boundary conditions. The domain Ω represents
the cross section of a three-dimensional linear elastic body such that the plane stress

Γ
3
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f
2

f
2

Ω deformable body
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Fig. 1. Reference configuration of the two-dimensional body.

18



 

hypothesis is valid. For simulations, we take Ω to be the unit square: Ω = (0, 1) ×
(0, 1) ⊂ R

2, and let

Γ1 = [0, 1]× {1}, Γ2 = ({0} × (0, 1)) ∪ ({1} × (0, 1)), Γ3 = [0, 1]× {0}.

The body is clamped on Γ1 and is subject to the actions of a vertical body force of
constant density and of horizontally compressive forces on the part ({0} × [0.5, 1)) ∪
({1}×[0.5, 1)) of the boundary Γ2. The part ({0}×(0, 0.5))∪({1}×(0, 0.5)) is traction
free. The body is in contact with an obstacle on Γ3. For numerical simulations, linear
finite elements on uniform triangulations of the domain Ω are used. The boundary of
the spatial domain is divided into 1/h equal parts, and h is used as the discretization
parameter.

The mechanical response of the material is described by a linear elastic constitu-
tive law. The components of the elasticity tensor F are

(Fτ )ij =
Eκ

1− κ2
(τ11 + τ22) δij +

E

1 + κ
τij , 1 ≤ i, j ≤ 2, ∀ τ ∈ S

2,

E, κ, and δαβ being the Young modulus, the Poisson ratio of the material and the
Kronecker symbol, respectively. For the numerical simulations, we use

E = 2000N/m2, κ = 0.4,

f0 = (0,−0.5× 10−3)N/m2,

f2 =

{

(8× 10−3, 0)N/m on {0} × [0.5, 1),
(−8× 10−3, 0)N/m on {1} × [0.5, 1).

Example 6.1. This is an example of Problem (P1). The contact is bilateral and
is frictional. We use the friction law (63) in which

(86) µ(t) = (a− b) e−β t + b

with a = 0.4, b = 0.2, and β = 2000. The friction bound decreases with the slip
from the value a to the limit value b. The corresponding friction law is nonmonotone.
Figure 2 shows a typical deformed mesh and interface forces on Γ3. We observe that
a large proportion of contact nodes situated at the extremities of Γ3 are in the status
of slip since the friction bound is reached there. In addition, the nodes situated in
the center of Γ3 are in the status of stick.

The numerical solution shown in Figure 2 corresponds to a meshsize h = 1/64:
the spatial domain is discretized into 16449 elements with 64 contact elements; the
total number of degrees of freedom is equal to 16772. The average iterations num-
ber of the “convexification” procedure for the solution of discrete problem was 22.
The simulation was completed in 586 CPU time (expressed in seconds) on an IBM
computer equipped with Intel Dual core processors (Model 5148, 2.33 GHz).

In Table 1 and Figure 3, we report relative errors of the numerical solutions in the
energy norm, ‖uref −uh‖E/‖uref‖E , where the energy norm is defined by the formula

‖v‖E :=
1√
2
(F(ε(v)), ε(v))

1/2
Q .
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Fig. 2. Deformed meshes and interface forces on Γ3 for Example 1.

Table 1
Relative errors in energy norm for Example 1.

h 1/4 1/8 1/16 1/32 1/64

error 48.01% 20.77% 9.755% 4.745% 2.347%

0,015625 0,03125 0,0625 0,125 0,25

h

0,0156

0,0313

0,0625

0,125

0,25

0,5

1

|| 
u

re
f 
 -

  
u

h
 || E

  /
 ||

u
re

f|| E

Fig. 3. Relative errors in energy norm for Example 1.

Note that the energy norm ‖v‖E is equivalent to the norm ‖v‖V , and the error
bound (60) predicts an optimal first order convergence of the numerical solutions
measured in the energy norm, under the regularity assumptions (61). Since the true
solution u is not available, we use the numerical solution corresponding to a fine
discretization of Ω as the “reference” solution uref in computing the solution errors.
Here, the numerical solution with h = 1/256 is taken to be the “reference” solution
uref . This fine discretization corresponds to a problem with 132612 degrees of freedom
and 131329 elements. We clearly observe the theoretically predicted optimal linear
convergence of the numerical solutions.
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Fig. 4. Deformed meshes and interface forces on Γ3 for Example 2.

Example 6.2. This is an example of Problem (P2). The body is assumed to be in
frictionless contact with normal compliance. For simulation, we let

(87) − σν =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 if uν ≤ 0,

c1νuν if uν ∈ (0, u1
ν ],

c1νu
1
ν + c2ν(uν − u1

ν) if uν ∈ (u1
ν , u

2
ν),

c1νu
1
ν + c2ν(u

2
ν − u1

ν) + c3ν(uν − u2
ν) if uν ≥ u2

ν

on Γ3, with c1ν = 100, c2ν = −100, c3ν = 400, u1
ν = 0.1, and u2

ν = 0.15. In this case,
−σν has a nonmonotone behavior with respect to the normal displacement uν .

The deformed mesh and interface forces on Γ3 corresponding to h = 1/64 are
plotted in Figure 4. The zoom illustrates the nonmonotone relationship between the
normal stress and the normal displacement on the contact zone. The average iteration
number of the “convexification” procedure for the solution of discrete problems was
16 and the simulation was completed in 329 CPU time. Numerical solution error
results are similar to that reported in Figure 3 for Example 1 and are omitted here.

Example 6.3. This is an example of Problem (P3). The contact boundary condi-
tions on Γ3 are characterized by a frictionless multivalued normal compliance contact
in which the penetration is restricted by unilateral constraint. For simulations, we let

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0,(88)

ξν =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 if uν ≤ 0,

c1νuν if uν ∈ (0, u1
ν ],

c1νu
1
ν + c2ν(uν − u1

ν) if uν ∈ (u1
ν , u

2
ν),

c1νu
1
ν + c2ν(u

2
ν − u1

ν) + c3ν(uν − u2
ν) if uν ≥ u2

ν ,

(89)

στ = 0(90)

on Γ3. Note that in the conditions (88), g represents the maximum value of the allowed
penetration. When this value of penetration is reached, the contact is unilateral; in
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the numerical simulation, g = −0.15. For the conditions (89) we use the multivalued
normal compliance response (87) from Example 2.

As in the two previous examples, we plot in Figure 5 the deformed mesh as well
as the interface forces on Γ3 for h = 1/64. On the extremities of the boundary Γ3, we
can see that the contact nodes are in multivalued normal compliance status. At the
center of Γ3, the nodes are in unilateral contact status since, there, the penetration
reached the maximum value g. In this case, the average iteration number of the
“convexification” procedure for the solution of the discrete problems was 9 and the
simulation runs in 267 CPU time.

Table 2 and Figure 6 provide relative errors of numerical solutions in the energy
norm, similar to that in Example 1. Again, we clearly observe the theoretically
predicted optimal linear convergence of the numerical solutions.

zo
o
m

multivalued normal
compliance

multivalued normal
compliance

unilateral contact

Fig. 5. Deformed meshes and interface forces on Γ3 for Example 3.

Table 2
Relative errors in energy norm for Example 3.

h 1/4 1/8 1/16 1/32 1/64

error 51.78% 23.17% 11.18% 5.443% 2.682%

0,015625 0,03125 0,0625 0,125 0,25

h

0,0156

0,0313

0,0625

0,125

0,25

0,5

1

|| 
u

re
f 
 -

  
u

h
 || E

  /
  

||u
re

f|| E

Fig. 6. Relative errors for Example 3.
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