
HAL Id: hal-01626770
https://hal.science/hal-01626770

Submitted on 31 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Omniscient Garbage Collector: a Resource Analysis
Framework

Aurélien Deharbe, Frédéric Peschanski

To cite this version:
Aurélien Deharbe, Frédéric Peschanski. The Omniscient Garbage Collector: a Resource Analysis
Framework. [Technical Report] LIP6 UMR 7606 UPMC Sorbonne Universités, France. 2014. �hal-
01626770�

https://hal.science/hal-01626770
https://hal.archives-ouvertes.fr


The Omniscient Garbage Collector: a Resource Analysis Framework
(technical report)

AURELIEN DEHARBE, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

FREDERIC PESCHANSKI, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

In this technical report, we develop a framework for the analysis of resource usage in concurrent systems. We
propose an oracle � the omniscient garbage collector (OGC) � that decides precisely the minimal resource
consumption of a process: its resource index. The underlying theory is developed as a nominal automata
framework, and applied to the speci�c problem of tracking resource usage. The framework is put into
practice to track resource usage and consumption in pi-calculus processes. Two complementary abstractions
are proposed: the �rst is based on the labelled transitions, while the second relies on a variant calculus
� slice-pi � that enrich reductions with observations about the resource events. The two abstractions are
tested experimentally on classical pi-calculus examples using a prototype analysis tool. In all the examples
the resource index can be computed very quickly � although in theory it is an NP-complete problem.

1. INTRODUCTION

The analysis of resource usage in computational systems is undoubtedly a fundamental
research topic, especially in the realm of resource-contrained embedded systems. In this pa-
per, we study basic qualitative and quantitative questions about resource usage for systems
involving concurrent activities sharing dynamic resources.
If we abstract from its internal structure, a resource becomes a pure name [Gordon 2000],

i.e. an object with a globally unique and testable identity. This is the specialty of nominal
calculi in general, and the π-calculus [Sangiorgi and Walker 2001] in particular. Despite their
lack of structure, the pure names display the primordial life-cycle of resources: (1) dynamic
allocation, (2) arbitrary usage orderings, and (3) non-trivial garbage collection semantics,
the latter point being central in our study.
Our starting point is the resource graph : a resource-focused view of the state-space

of a process. From a qualitative perspective, our principal means of abstraction from the
low-level details of the graphs (e.g. their branching structure) is the resource pro�le : a
trace-semantics of resource usage. Traces of resource pro�les are words of formal languages
� that we name ν-languages � de�ned over in�nite alphabets of fresh names. To recognize
resource pro�les, we introduce the ν-automata, which are variants of register automata.
Using these devices, we show that the ν-languages corresponding to resource pro�les are
quasi-reguar [Kaminski and Francez 1994]. On the positive side, this means that many
results about quasi-regular languages can naturally be lifted to resource pro�les. On the
more negative side, a basic question such as the equivalence-testing of resource pro�les can
easily be shown di�cult.
To reason about the quantitative notion of resource consumption, we re�ne the ν-language

characterization by considering �nite restrictions of their alphabets. The corresponding
bounded resource pro�les provide a natural measure of resource consumption of process
behaviors. An interesting indicator is the resource bound which con�nes the number of
resources required for the correct execution of a given system. Ultimately, the least of such
bounds � namely the resource index � represents a profound semantic characteristic of
the behavior under study. We provide the Omniscient Garbage Collector (OGC) : a static
analysis approach for resource bound and resource index closely related to the maximal
independent sets problem and thus graph coloring [Jensen and Toft 2011]. We show, in
particular, that computing the resource index is a NP-complete problem, but tight resource
bounds can be computed with simple and e�cient polynomial algorithms.
Beyond the theory, we aim at the development of practical tools for the analysis of re-

source usage in concurrent systems. Using a prototype, we propose a couple of experiments
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of resource consumption in the realm of the π-calculus. To illustrate the versatiliy of the
approach, we propose two di�erent resource abstractions for π-processes: one based on the
labelled transitions for open systems, and another one for closed systems. Pure reductions
are opaque and to circumvent this, we introduce slice-π, a rather standard π-calculus ex-
tended with an alternative restriction operator allowing the observation of names �owing
between processes. In all the experiments we observe the same phenomenon � which rein-
forces a strong belief � that the apparent intractability of some of the proposed algorithms,
especially the computation of the resource index, is largely compensated by the small size
of the objects on which they apply. Indeed, most of the examples we explored (especially
some classical π-calculus benchmarks) yield very small con�ict graphs in comparison to the
state space of the analyzed processes: in the order of at most a few dozen nodes for systems
with more than 100 000 states.
The outline of the paper is as follows. In Section 2 we introduce the basic features and

properties of resource graphs. The resource pro�les are presented in Section 3. The related
ν-automata theory is developed in Section 4. In Section 5 we discuss the quantitative aspects
most notably the resource bounds and indices as well as the OGC framework for resource
analysis. Our experimental study with the π-calculus is described in Section 6. A panorama
of related work is given in Section 7.
This paper is based on a previous publication [Deharbe and Peschanski 2014] that focuses

on the algorithmic aspects. Thus, the latter can be seen as a companion for the present paper
whose purpose is to dig much deeper into the underlying automata-based theory. Most proofs
(except for the shorter ones) are detailed in a dedicated Appendix (cf. page 21).

2. RESOURCE GRAPHS

As a starting point we propose a simple yet accurate characterization of resource usage in
concurrent processes. The resource graphs correspond to the transition systems of processes
in which we only observe the events related to resource usage.

De�nition 2.1 (Resource graph). Let R be a countably in�nite set of resource variables
ranging over X,Y, Z, . . . A resource graph G is a directed graph 〈R, V,E, α, γ, δ〉 with:

�R ⊆ R a �nite set of resource variables, also denoted by vars(G).
� V a �nite set of vertices, and E ⊆ V × V a �nite set of edges, such that there is a unique

root v⊥ ∈ V s.t. ∀v ∈ V, (v, v⊥) /∈ E and a unique tail v> ∈ V s.t. ∀v ∈ V, (v>, v) /∈ E.
� α : V → 2R to record resource allocations,
� γ : V → 2R to record resource uses,
� δ : V → 2R to record deletions.

An example of a resource graph is depicted on Fig. 1. It has 8 resource variables A . . .H
and is su�ciently non-trivial so that it exhibits most of the �corner cases� of the model.
Most of the properties of resource graphs we will consider can be characterized as prop-

erties about �nite paths, falling in two categories: complete paths and lasso expansions.

De�nition 2.2 (Complete path and lasso). A complete path of a resource graph G with
edge set E is of the form ρ = 〈v1, . . . , vn〉 of pairwise distinct vertices such that vi → vi+1 ∈
E for any i, 1 ≤ i ≤ n− 1, and v1 = v⊥, vn = v>. A lasso ρ̂ = 〈v1, . . . , ve−1 | ve, . . . , vn〉 is
a sequence of pairwise distinct vertices such that vi → vi+1 ∈ E for any i, 1 ≤ i ≤ n − 1,
v1 = v⊥ and ∃e, 1 < e ≤ n, vn → ve ∈ E. The vertex ve is called the entry of the lasso and
vn its exit. These are respectively denoted by ve = entry(ρ̂) and vn = exit(ρ̂). The �nite
expansion of depth k of the lasso is denoted by ρ̂k = 〈v1, . . . , ve−1 | ve, . . . , vn〉k, which
corresponds to the �nite path:
〈v1, . . . , ve−1, ve, . . . , vn, . . . , ve, . . . , vn︸ ︷︷ ︸

k times

, v>〉 of length e+ k ∗ (n− e+ 1).
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v⊥

α{E,H},γ{H},δ{H}
v1

γ{E}
v2

α{G},γ{E}
v3

α{A,B},γ{A}
v4

α{C},γ{G}
v5

α{F},γ{A},δ{A}
v6

α{D},γ{D},δ{G}
v7

γ{B},δ{B,C,F}
v8

γ{B},δ{B,F}
v9

γ{C,D},δ{C,D}
v10

δ{G}
v11 v>

Fig. 1. Example of a resource graph

We denote by Ψ(G) (resp. Ψ̂(G)) the �nite sets of all complete paths (resp. lassos) of G.

There are only two complete paths in the graph of Fig. 1: 〈v⊥, v1, vk, . . . , v6, v8, v11, v>〉
with vk = v2 or vk = v3. There are six lassos, an example being 〈v⊥, v1, v3 | v4, . . . , v6, v8〉
with entry v4. Lasso entries are the emphasized vertices, while dashed edges represent the
loop closing connections from the exit to the entry of the lasso. In [Deharbe and Peschanski
2014], we describe a polynomial algorithm to compute the complete paths and lassos of a
resource graph using a decomposition in nested strongly-connected components.
We impose only minimal constraints on the nature and usage of resource events that are

carried by resource graph vertices, although some usage patterns must be enforced.

De�nition 2.3 (Correct resource usage). A resource graph G has correct resource usage
i� for each resource X ∈ vars(G) it has at most one vertex v such that X ∈ α(v), and for
each �nite path ρ = 〈v1, . . . , vn〉 of G there is at most one vertex v in ρ such that X ∈ δ(v).
Moreover, ∀j, 1 ≤ j ≤ n s.t. X ∈ γ(vj), ∃i, 1 ≤ i ≤ j s.t. X ∈ α(vi) and:

� if ρ is a complete path then: ∃k, j ≤ k ≤ n s.t. X ∈ δ(vk).
� if ρ is a lasso with entry ve then:

� (dynamic) ∃k, j ≤ k ≤ n s.t. X ∈ δ(vk) if i ≥ e or ∀l, e ≤ l ≤ n, X /∈ γ(vl),
� (static) ∀k, 1 ≤ k ≤ n,X /∈ δ(vk) otherwise.

Most of the constraints are obvious: a given resource is allocated only once globally, and
deleted at most once in each path. For a resource used in a given path, a basic principle
is that it must be preceded by an allocation and followed by a deletion. However, some
subtlety arise because of the cyclic nature of the lassos. Suppose a resource X allocated at
some vertex vi and used at vj (j ≥ i) in a lasso with entry ve. There are two cases to consider
depending on whether X should �survive� the cycle or not. In the dynamic case X must be
deleted at some vertex vk with k ≥ j. This corresponds to two possible situations: (1) the
allocation is performed after the lasso entry (thus, within the cycle), or (2) the resource is
not used within the cycle. Considering the lasso 〈v⊥, v1, v3 | v4, . . . , v6, , v8〉 in Fig. 1, then
situation (1) applies to resources A and B and situation (2) applies to resource H which is
allocated before the entry but not used within the cycle. Complementarily, if the allocation
of X is performed before the entry of a lasso ρ and it is used within its cycle, then X must
�survive� the cycle and is thus said a static resource for ρ. We denote by static(ρ) the set
of variables that are static for the lasso ρ. For example, in the lasso 〈v⊥, v1 | v3, . . . , v11〉
the resources E (allocated at v1 and used at v3) and G (allocated at v3 and used at v5) are
static resources.



4 A. Deharbe and F. Peschanski

H 1(1) G 1(1)

A2(2)

B2(2)

C1(2)

D 3(1)

E

4(3)

Fig. 2. The con�ict relation ] for the resource graph of Fig. 1.

This leads to a fundamental classi�cation between inactive (i.e. unused), static, and oth-
erwise dynamic resources.

De�nition 2.4 (Resource classi�cation). Let G be a resource graph with vertex set V . inactive(G)
def

= {X | ∀v ∈ V, X /∈ γ(v)}
static(G)

def

= {X | ∀ρ ∈ Ψ̂(G), X ∈ static(ρ)}
dynamic(G)

def

= vars(G) \ (static(G) ∪ inactive(G))

In our example the sets are static(G) = {E,G}, inactive(G) = {F} and dynamic(G) =
{A,B,C,D,H}. A central concept is the notion of con�ict in resource uses.

De�nition 2.5 (Con�ict relation). Let X,Y ∈ vars(G) be two distinct resources and ρ a
path of G. A con�ict between X and Y occurs in ρ = 〈v1, . . . , vn〉 at position j, 1 ≤ j ≤ n,
denoted by X]jρY , if any of the following conditions holds:

� there exists two vertices vi, vk of ρ (i ≤ j ≤ k) such that X ∈ γ(vi)∩γ(vk) and Y ∈ γ(vj).
�whenever ρ is a lasso 〈v1, . . . , ve−1 | ve, . . . , vn〉 in which X is static, e ≤ j ≤ n and
Y ∈ γ(vj).

If there is a position i in a path ρ such that X]iρY or Y ]iρX then X and Y are said in
con�ict, which is denoted X]Y . �

The con�ict graph obtained for our illustrative example is depicted on Fig. 2 (for the
moment, we ignore the numeric annotations of the nodes). For example we have a con�ict
B]D generated by the sub-path 〈v7, v9, v10〉 since D ∈ γ(v7), B ∈ γ(v9) and D ∈ γ(v10).
This corresponds to the �rst case of the de�nition. For the second case, a con�ict such as
A]G comes from the fact that A ∈ γ(v4) and G ∈ γ(v5) with v5 occurring in a lasso after
its entry v4 and before its exit (in this case v8).
Two events play an important role in the life-cycle of a resource: its �rst use and its last

use. There is also one special case to consider: when a resource must be fetched for a later
use, which as we will see allow a form of non-local freshness. These can be characterized on
the �nite paths of a resource graph.

De�nition 2.6 (First use, last use and resource fetch). Let G be a resource graph, ρ ei-
ther a complete path 〈v1, . . . , vn〉 or a lasso 〈v1, . . . , ve−1 | ve, . . . , vn〉, and vj one of the
vertices of ρ (1 ≤ j ≤ n). For a resource X of G:

�X ∈ firstρ(vj) i� X ∈ γ(vj) and ∀i, 1 ≤ i < j, X /∈ γ(vi) and if ρ is a lasso and
X ∈ static(ρ) then j < e.

�X ∈ lastρ(vj) i� X ∈ γ(vj) \ static(ρ) and ∀k, j < k ≤ n, X /∈ γ(vk)
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�X ∈ fetchρ(vj) i� ρ is a lasso, X ∈ static(ρ), j = e− 1 and ∀i, 1 ≤ i < j, X /∈ γ(vi)

For the example of Fig. 1, we consider the resource E in the complete path ρ =
〈v⊥, v1, v2, . . . , v6, v8, v11, v>〉. Its �rst use is at vertex v2 (i.e. E ∈ firstρ(v2)) while its last
use is at vertex v3 (i.e. E ∈ lastρ(v2)). Note that these are path-speci�c notions since in the
other complete path (not going through v2) the resource E is both �rst-and-last used at
vertex v3. Now we consider the lasso ρ̂ = 〈v⊥, v1, v3 | v4, v5, v6, v8〉 and resource G. Since G
is static in ρ̂ it has no last use. Moreover, it has no �rst use also because what would be its
�rst use is within the cycle. Hence at vertex v4 (the entry of the lasso) the variable G must
be fetched (i.e. pre-allocated), thus G ∈ fetchρ̂(v4).

3. RESOURCE PROFILES

Resource graphs provide quite a low level view over concurrent process behaviors wrt. re-
source usage. All the properties we aim to study can be characterized at a more abstract
level considering only traces of resource uses. The most fundamental aspect of these trace
sets is that they involve dynamically bound resources, whose identity is not known in ad-
vance. This naturally leads to languages involving pure names, that is, sets of words with
symbols freshly generated that we name ν-languages.

De�nition 3.1 (ν-language). Let V be a (potentially) countably in�nite set of pure names
ranging over ν1, ν2, . . . . A ν-language L over alphabet V is a set of words in (2V)∗.

The de�nition makes ν-language quite similar to traditional formal language, although
de�ned over potentially in�nite alphabets. This way, when a new resource is needed for
a given system to perform an action, a fresh identity for the resource is always available.
Reasoning on languages with in�nite alphabets is in general very di�cult [Isper 1989] so we
must de�ne a proper language subset that �ts our reasoning requirements.
Our objective is to precisely characterize the ν-language corresponding to the expected

behavior of a resource graph. The �rst step is to explain how pure names are consumed by
the processes.

De�nition 3.2 (Allocator, Allocation). An allocator Γ is a partial one-to-one function
from a �nite set of variables to the alphabet of a ν-language. Let ρ be a �nite path of a
graph G and v one of its vertices an Γ an allocator. An allocation allocρ(Γ, α, v) of a ν-symbol
α (a set of pure names) is such that α can be decomposed as old(α) ∪ trans(α) ∪ new(α)
with:[

old(α) = {ν ∈ ran(Γ) | ∃X ∈ γ(v) \ firstρ(v), Γ(X) = ν}
trans(α) is a set T ⊆ α \ old(α) such that card(T ) = card(firstρ(v) ∩ lastρ(v))
new(α) is a set N ⊆ α \ (old(α) ∪ trans(α)) such that card(N) = card(firstρ(v) \ lastρ(v))

The de�nition above explains how a ν-symbol α is consumed, which corresponds to re-
source uses at vertex v. The subset old(α) corresponds to the pure names already bound in
Γ (old bindings). The pure names in new(α) corresponds to simultaneous allocations and
uses at vertex v (new bindings). The remaining consumed names in trans(α) are for a special
case: when the names are allocated, used and released in an atomic way. In this case there
is no need to record any binding.
The second ingredient is the binding of variables, i.e. the storage of the allocated pure

names.

De�nition 3.3 (Binding). Let Γ be an allocator, α a set of symbols and v a vertex of a
�nite path ρ. The binding of α to Γ is an allocator bindρ(Γ, α, v) = Γ′old ∪Γ′new ∪Γ′fetch with:[

Γ′old = {X 7→ Γ(X) | X /∈ lastρ(v)}
Γ′new = {X 7→ ν | ν ∈ new(α) ∧X ∈ firstρ(v) \ lastρ(v)}
Γ′fetch = {X 7→ ν | ν /∈ α ∧X ∈ fetchρ(v)}
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The de�nition separates the binding in three disjoint subsets: the old bindings that must
be preserved from the previous steps (i.e. for allocated resources that are not release at
vertex v and the new bindings that must be recorded for further uses. A special case if
for the pure names that are allocated but not used at vertex v, which we call fetching a
resource. Based on the previous two de�nitions we can properly de�ne the trace sets of
resource usage.

De�nition 3.4 (Resource pro�le). The resource pro�le RG of a resource graph G is a
ν-language such that w = α1 · · ·αn ∈ RG if and only if there exists a �nite path ρ =
〈v0, . . . , vn〉 (either a complete path or a �nite expansion of a lasso) such that, for each

position k, 0 < k ≤ n, we have allocρ(Γk−1, αk, vk) with:

[
Γ0 = ∅
∀j > 0, Γj = bindρ(Γj−1, αj , vj)

Two properties summarize in essence the ν-languages characterized by the de�nition
above: the binding condition that impersonates the identity of resources, and the con�ict
freedom that is the main requirement of resource pro�les.

Proposition 3.5 (Binding condition). For a position k, 1 ≤ k ≤ n of a �nite path
ρ = 〈v1, . . . , vn〉 (either a complete path or a �nite expansion of a lasso) then Γk(X) = ν
if and only if either there exists i, 1 ≤ i ≤ k such that X ∈ firstρ(vi) ∪ fetchρ(vi) and
Γi(X) = ν, provided @j, i ≤ j < k such that X ∈ lastρ(vj).

Proposition 3.6 (Conflict freedom). If X]kρY then Γk(X) 6= Γk(Y ).

Proof. cf. Appendix A.1 page 21.

4. AUTOMATA-THEORETIC FRAMEWORK

It is possible to work directly at the level of resource graphs to characterize many properties
of the resource pro�les. This is basically what it is done in [Deharbe and Peschanski 2014].
However, if this is interesting from an algorithmic point of view, we overlook many important
theoretical issues. Moreover, the automata-theory developed in this section provides a much
more solid ground for the statements of the properties and their proof.

4.1. ν-automata

Our �rst step is the de�nition of recognizers for an interesting subset of ν-languages.

De�nition 4.1 (ν-automaton). A ν-automaton is a pair 〈X , A〉, where X is a �nite dis-
joint set of variables, and A = 〈Q, qinit,∆, F 〉 is a �nite state automaton over the alphabet
Σ = 2{νX,X,νX|X∈X} with Q a �nite set of states, qinit ∈ Q the initial state, ∆ ⊆ Q×Σ×Q
the transition relation and F ⊆ Q the set of accepting states.

A ν-automaton is similar to a �nite-memory automaton (FMA [Kaminski and Francez
1994]) except that the transitions allow to explicitly bind or unbind a symbol. For example
it is possible to fetch a fresh symbol without actually consuming it. Also, it is possible to
release a name stored in memory. Moreover, the symbols are in fact sets of pure names, which
amounts to consider simultaneous resource uses. Hence, ν-automata are resource-oriented
variants of traditional FMA's.
As recognizers, the ν-automata correspond to a generalization of the resource pro�les

characterized by Def. 3.4.

De�nition 4.2 (ν-language of a ν-automaton).
Let a ν-automaton be A = 〈X , A〉, with A = 〈Q, qinit,∆, F 〉. For q ∈ Q an actual state
of A is a con�guration qc = (q,Γ) with Γ an allocator. We denote by Qc the set of all

con�gurations of automaton A. The initial con�guration is qcinit
def

= (qinit, ∅) and F c = {(q,Γ) |
q ∈ F ∧ Γ is an allocator } is the set of accepting con�gurations. The transition relation ∆
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init q0 q1 q2

q3

{νA}

{νB,B}

{νC,C,νC}

{B,νB} {A,νA,νB}

{}

Fig. 3. An example of aν-automaton A.

induces the relation ∆c ⊆ Qc×Σ×Qc such that ((q,Γ), α, (q′,Γ′)) ∈ ∆c if and only if there
exists a label λ ∈ 2{νX,X,νX|X∈X} and an allocator Γ′ such that (q, λ, q′) ∈ ∆ and:

� α can be decomposed as αold ∪ αtrans ∪ αnew with:[
αold = {ν ∈ ran(Γ) | X ∈ λ ∧ νX /∈ λ ∧ Γ(X) = ν}
αtrans = {ν ∈ V \ αold | X ∈ λ ∧ νX ∈ λ ∧ νX ∈ λ}
αnew = {ν ∈ V \ (αold ∪ αtrans) | X ∈ λ ∧ νX ∈ λ ∧ νX /∈ λ}

� Γ′ = {X 7→ Γ(X) | νX /∈ λ}
∪ {X 7→ ν | ν ∈ αnew ∧ νX ∈ λ ∧ νX /∈ λ}
∪ {X 7→ ν | ν /∈ α ∧ νX ∈ λ ∧X /∈ λ ∧ νX /∈ λ}

Let w = α1α2 · · ·αn be a ν-word over alphabet 2V . A run of A on w consists of a sequence
of con�gurations c0, c1, . . . , cn such that c0 = qcinit and for all i, 1 ≤ i ≤ n, (ci−1, αi, ci) ∈ ∆c.
For a word w, an accepting run of w is a run c0, c1, . . . , cn such that cn ∈ F c. An automaton
A accepts a word w if there exists an accepting run of w. The ν-language of automaton A
is the of set of ν-words L(A) = {w | A accepts w}.

Example. Consider a ν-automaton A def

= 〈{A,B,C}, 〈{q0, q1, q2, q3}, q0,∆, {q3}〉〉
with ∆ = {(q0, {νA}, q1), (q1, {νB,B}, q2), (q2, {B, νB}, q1), (q2, {νC,C, νC}, q2),
(q2, {A, νA, νB}, q3), (q3, {}, q0)}. Its graphical representation is depicted on Fig. 3,
and its behavior is as follows. From the initial state q0 to q1, an arbitrary (but �nite) set
of pure names is fetched for variable A, but only an empty-set of pure names is consumed
along the transition. The states q1 and q2 form a kind a sub-automaton comparable to a
FMA recognizing the repetition of a symbol. From q1 to q2 a symbol is is �rst read from
the input and bound to variable B. Then an arbitrary number of symbols are read but
not stored (this is a transient binding) in the self-loop of q2. Then B is release either by
reentering the loop starting from q1 or before acceptance by �nal state q3. The transition
from q2 to q3 is interesting since variable the variable A fetched initially is now used. This
means that the pure names consumed must be distinct from all the names previously used.
Thus, the ν-automaton implements a form of non-local freshness unavailable in FMA. This
is neither a fresh register automaton (FRA [Tzevelekos 2011]) which require global freshness
while here, the pure names bound to A can be reused if after the transition from q3 to q0.

4.2. Resource pro�le recognizers

The investigation of the ν-automata in isolation � although an interesting goal � would
go beyond the scope of the present paper. We are more interested in using ν-automata as
recognizers of resource pro�les.

De�nition 4.3. Let G = 〈R, V,E, α, γ, δ〉 be a resource graph. Its induced ν-automaton

AG is de�ned as follows: AG
def

= 〈vars(G), 〈Q, qv⊥ ,∆, {qv>}〉〉, with:



8 A. Deharbe and F. Peschanski

�Q = {qv,ρ | ρ ∈ Ψ(G) ∪ Ψ̂(G), v ∈ ρ \ {v⊥, v>}} ∪ {qv⊥ , qv>}
�∆ = {(qvi,ρ, lblρvi→vj , qvj ,ρ) | ρ ∈ Ψ(G) ∪ Ψ̂(G), vi → vj ∈ ρ}

∪ {(qvn,ρ̂, lblρvn→ve , qve,ρ̂), (qvn,ρ̂, {}, qv>) | ρ̂ = 〈· · · | ve, . . . , vn〉 ∈ Ψ̂(G)}

with: lblρv→v′ = {νX | X ∈ firstρ(v
′) ∨ (X ∈ fetchρ(v

′) ∧ v 6= exit(ρ)}
∪ {X | X ∈ γ(v′)} ∪ {νX | X ∈ lastρ(v

′)}

The construction of the ν-automaton from a given resource graph relies on a decomposi-
tion of the latter in terms of its complete paths and lassos (cf. Def. 2.2). Note that there is
no one-to-one correspondence between the vertices of the resource graph G and the states
of the automaton. However, each vertex v of a given pat ρ is in one-to-one correspondence
with a state named qv,ρ in AG. It is a simple fact that the ν-automaton corresponding to a
resource graph can be of an exponential size, since we enumerate the paths of the graph. In
practice, we show in [Deharbe and Peschanski 2014] that it is often possible to work directly
at the graph level.
We must now show that the construction is sound, i.e. that the automaton we build from

a resource graph G indeed recognizes its resource pro�le RG.

Lemma 4.4. Let G a resource graph. Then L(AG) = RG.

Proof. cf. Appendix A.2 page 21.

The ν-automaton of Fig. 3 can be easily shown not to correspond to any possible resource
graph. It it thus interesting to characterize more precisely the sub-class of ν-automata
recognizers of resource pro�les. One interesting argument is that this sub-class is (strictly)
contained in the quasi-regular languages.

Theorem 4.5. Let G be a resource graph. The RG is quasi-regular.

Proof. The proof is both non-trivial and tedious. The rough sketch is as follows. First,
we provide an alternative construction of ν-automata from resource graphs, in which all the
lassos are expanded exactly once. This allows to remove the �rst use vs. fetch subtlety. Then,
we show that this new construction still characterizes the resource pro�les. Moreover the
ν-words accepted by these automata can be transformed by a simple homomorphism so that
they can be recognized by �nite-memory automata (FMA), demonstrating the membership
result. The detailed sketch is explained in Appendix A.3 page 22.

It is important to emphasize the obtained FMA are in an order of magnitude larger than
the original ν-automata. For example the translation of the resource graph of Fig 1 (with
13 vertices) yield a ν-automaton with 32 states. In comparison, the translated FMA has
408 states, and the growth can be show exponential. Note that the translation to FMA does
not work for arbitrary ν-automata.

5. RESOURCE ANALYSIS

We are now interested in quantifying the amount of resources the system under study
requires to behave correctly. To address this question, we introduce an oracle � the Omni-
scient Garbage Collector (OGC) � that decides a priori the maximum amount of resources
a system can consume. We rely on a simple although far-reaching principle : if the OGC
under-estimates the consumption of the system, then a resource con�ict would occur.

5.1. Bounded resource pro�les

Although ν-language are de�ned over in�nite alphabets, the individual ν-words may only
consume a �nite amount of resources.
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De�nition 5.1 (Consumption). Let L be a ν-language. The consumption of a ν-word
w = α1 . . . αn in L is ξ(w) = card (

⋃n
i=1 αn). The consumption of the ν-language itself is

ξ(L) = card
(⋃

w=α1...αn∈L
⋃n
i=1 αn

)
If a ν-word consumption is inherently �nite (they have a �nite length), this is not the

case of ν-languages that are in most cases in�nite sets of words. However, it is natural to
introduce such a restricted class.

De�nition 5.2 (Bounded ν-language). A k-bounded ν-language Lk is a ν-language de-
�ned over a �nite alphabet Vk of cardinality k.

Proposition 5.3. A k-bounded ν-language has resource consumption at most k.

Proof. This is trivial by Def. 5.1.

The notion of bounded ν-language can be naturally lifted to resource pro�les.

De�nition 5.4 (Bounded resource pro�le). A k-bounded resource pro�leRk
G of a resource

graph G is a k-bounded ν-language satisfying Def. 3.4. The measure k is named the resource
bound of the graph G.

This restricted de�nition implies a major requirement for the resource bound k: it must
be large enough so that the constraints imposed by Def. 3.4 can be ful�lled.
An important property of bounded ν-language is that they are insensitive to bijective

renamings of pure names.

De�nition 5.5 (Renaming). Let V and V ′ be two disjoint sets of pure names. A renaming
ζ is a mapping of V → V ′. The renaming by ζ of :

� a ν-symbol α ⊆ V is ζ(α) = {ζ(ν) | ν ∈ α},
� a ν-word w = α1 · · ·αn ∈ (2V)∗ is ζ(α1) · · · ζ(αn),
� a ν-language L over alphabet V is ζ(L) = {ζ(w) | w ∈ L}.

Proposition 5.6. Let G be a resource graph, and RkG, R
′k
G two k-bounded resource

pro�les de�ned over respective alphabets Vk and V ′k. Then there is a bijective renaming ζ of

Vk → V ′k such that RkG = ζ(R′kG ).

Proof. It is a simple fact that in Def. 3.4 only the equality of the pure names in V is
exploited, which is the basic principle of the pure names. As such, if RkG is assumed to be a
k-bounded resource pro�le, then renaming its pure names by another set of at least k pure
names would not contradict Def. 3.4.

From now on, we will thus consider the k-bounded resource pro�le Rk
G, implicitly consid-

ering the whole family of resource pro�les that can be obtained by bijective renamings of
their alphabets.
The central question remains: is there in general a bound k such that Rk

G is de�ned? In
this paper, we only study �nite resource graph, which means that we only capture processes
that consume only a �nite amount of resources at any given point of execution. Moreover,
this amount must be bound by the memory of the resource graph, i.e. its resource variables.
Thus a worst-case bound does exists, and it is determined thanks to the following Lemma.

Lemma 5.7. Let G be a resource graph such that inactive(G) = ∅. If k = card(vars(G))
then Rk

G exists and is recognized by AkG which is automaton AG (of Def. 4.3) restricted to
alphabet Vk = {vX | X ∈ vars(G)}.
Proof. The principle of the proof is to apply a renaming of the alphabet that associates

a single pure name νX to each resource variable X of vars(G). The complete proof is in
Appendix A.4 page 23.
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Corollary 5.8. card(vars(G)) is a resource bound for resource graph G.

This provides us with a starting point for our quantitative resource bound analysis. The
bound k = card(vars(G)) is the nominal resource bound of G. Before going further in our
quantitative study, we provide alternative � and arguable simpler � proofs for some results
presented in the companion paper [Deharbe and Peschanski 2014].

Theorem 5.9. Let G be a resource graph with resource bound k. Then Rk
G is regular.

Proof. This is a simple Corollary of Lemma 4.5, for the languages of FMA over �nite
alphabets are proved regular in [Kaminski and Francez 1994].

Corollary 5.10. Bounded resource pro�le equivalence is PSPACE-hard.

5.2. The Omniscient Garbage Collector

Obviously, a process cannot require more resources than the amount of available memory.
However, it may be the case that less memory is enough so that it still behaves correctly.
One thing leading to another, we may ask what is the miminal amount of needed memory.
To adress these questions, we develop in this section a static analysis that can determinate
lower bounds of resource consumption direcly from the resource graphs. The objective is to
compute a measure k that guarantees the existence of a k-bounded resource pro�le for a
given graph G. The greatest of such bounds is of course the number of resource variables of
G, according to Lemma 5.7. To decrease the bound, the only possible way is thus to unify
variables of the translated ν-automata.

De�nition 5.11 (Unifying variables in ν-automata). Let A = 〈X , A〉 be a ν-automaton
with A = 〈Q, qinit,∆, F 〉. The uni�cation of variables E ⊆ X with Z /∈ X is:

unifyE/X(A) = 〈(X \ E) ∪ {Z}, unifyE/X(A)〉 provided:


unifyE/X(A) = 〈Q, qinit, unifyE/X(∆), F 〉
unifyE/X(∆) = {(q, {unifyE/X(l) | l ∈ λ}, q′) | (q, λ, q′) ∈ ∆}

unifyE/X(X) =

{
Z if X ∈ E
X otherwise

unifyE/X(νX) = νunifyE/X(X)
unifyE/X(νX) = νunifyE/X(X)

Let Π = {Ei | i ∈ [1;n]} be a partition of vars(G), and let Z = {Z1 . . . Zn} a set of n variables
distinct from those vars(G). Then unifyΠ/Z(A) = unifyEm1

/Zm2
(. . . unifyEm1

/Zmn
(A)) for an

arbitrary permutation m1, . . . ,mn of [1;n].

The uni�cation process is relatively technical but intuitively quite simple: each reference to
any of the variables of E in the automaton is replaced by the fresh variable Z. The uni�cation
is also lifted to partitions of the set of variables. The uni�cation of each indepedent subset
can be performed in an arbitrary order (trivially the outcome is the same since the sets are
disjoint).
A fundamental requirement is that the uni�ed variables must correspond to non-

con�icting resources.

Lemma 5.12. Let G be a resource graph and Rk
G its bounded resource pro�le such that

k = card(vars(G)), and AkG its recognizer. Moreover let E ⊆ vars(G) such that, ∀Xi, Xj ∈
E, i 6= j =⇒ ¬(Xi]Xj). Then R

k−card(E)+1
G is recognized by unifyE/Z(AkG) provided

Z /∈ vars(G).
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Proof. The proof is similar to that of Lemma 5.7, except that we do not consider
a simple renaming of pure name, but a uni�cation of variables. The proof details are in
Appendix A.5 page 24.

Similarly to the uni�cation process, the reduction scheme can be lifted to the partition
of the resource variables wrt. the con�ict relation.

Lemma 5.13. Let G be a resource graph and Rk
G its bounded resource pro�le such that

k = card(vars(G)), and AkG its recognizer. Moreover let Π = {E1, . . . , En} a partition of

vars(G) such that, ∀E = {X1, . . . , Xm} ∈ Π,∀i, j, i 6= j =⇒ ¬(Xi]Xj). Then R
card(Π)
G is

recognized by unifyΠ/Z(AkG) provided Z ∩ vars(G) = ∅.

Proof. cf. Appendix A.5 page 24.

Of course, the reduction process must stop at some point, since a minimal amount of
memory is required for a process to behave correctly. Hence, a resource graph G has a
minimal resource bound which we name its resource index. The basic principle is to minimize
the parameter card(Π) of Lemma 5.13.

Lemma 5.14 (Resource index). Let G be a resource graph and Π the set of maximal
independent subsets of vars(G) wrt. the con�ict relation ]. Then card(Π) is the resource
index of G.

Proof. cf. Appendix A.6.

From an algorithmic point of view, the computation of the maximal indepedents sets is
based on grap coloring [Jensen and Toft 2011]. In Fig. 2, the numbered labels of the nodes
correspond to colorings of the con�icts corresponding to the resource graph of Fig. 1. The
numbers on the left (before the open parenthesis) correspond to �rst-�t coloring using the
node ordering H,G,A,B,C,D,E. First, H can be colored by (location) 1 and so is G since
it is not connected to H. Next, A and B must use color 2 since they are connected to G. The
color 1 can be reused for C since it is not yet connected to a colored node. The node D is
connected to C (color 1) and B (color 2) and thus must be colored 3. Finally, E is connected
to nodes colored up-to 3 and thus has color 4. The independent sets we consider form the
partition Πfirstfit = {{C,G,H}, {A,B}, {D}, {E}}. The corresponding resource bound is 4.
To obtain the maximal independent sets, we require the perfect coloring of the relation

graph. In Fig. 2 this corresponds to the numbers within parentheses. The strategy here is
to use the color 2 for both B and C. This way D can reuse color 1 and thus E has color 3
instead of 4. We obtain the partition Πperfect = {{D,G,H}, {A,B,C}, {E}}. The resource
index of the resource graph is thus 3 (which is also the chromatic number of the con�ict
graph). Unfortunately, the �nding of a perfect coloring is notoriously a di�cult problem.

Theorem 5.15. Computing the resource index of a resource graph is NP-complete.

Proof. cf. e.g. [Jensen and Toft 2011] for a detailed proof.

This can be seen as a somewhat negative result, although we remark that the perfect
coloring algorithm only applies to the con�ict graph and not the complete resource graph. In
most practical cases the former should be much smaller than the latter. Moreover, interesting
properties of separability can often be exploited (cf. [Deharbe and Peschanski 2014]). Last
but not least, less tight but still interesting resource bounds can be found in polynomial
time. One such example is through the use of �rst-�t coloring.

Proposition 5.16. Let G be a resource graph with con�ict graph ]. A resource bound

for G lower than dG + 1 where dG
def

= maxX∈vars(G){Y | X]Y } can be computed in linear
time in the size of ].
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Process P,Q
::= 0 (inert)
| new(x) P (observable)
| local(x) P (inobservable)
| α.P (pre�x)
| P | Q (parallel)
| D[ã] (call)

De�nition

::= D(x̃)
def

= P
Action α
::= τ (silent)
| ab (output)
| a(x) (input)

Fig. 4. The syntax of the π-calculus (with slices).

τ.P
τ−→ P

(step)
ab.P

ab−→ P
(output)

x /∈ fn(P )

a(x).P
ay−→ P

(input)

P
ax−→ P ′ a 6= x res ∈ {new, local}

res(x) P
aνx−−→ P

(open)
P

α−→ P ′ x /∈ α res ∈ {new, local}
res(x) P

α−→ res(x) P ′
(res)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q α−→ P ′ | Q
(par)

P
ab−→ P ′ Q

ab−→ Q′

P | Q τ−→ P ′ | Q′
(sync)

P ≡ P ′ P ′
α−→ Q′ Q ≡ Q′

P
α−→ Q

(struct)

Fig. 5. The early labelled transition semantics of the π-calculus.

Proof. Let d be the maximum out-degree of a graph. It is a classical result that a
k-coloring bounded by d+ 1 can be computed in linear time by a �rst-�t coloring based on
an arbitrary ordering of the graph vertices.

6. APPLICATION: RESOURCE ANALYSIS OF π-CALCULUS PROCESSES

In this section we describe the experimental application of our framework for the analysis
of resource consumption in π-calculus processes.

6.1. A π-calculus refresher

The syntax of the variant of the π-calculus we cover in the experiment1 is given in Fig. 4.
We also remind the structural congruence between two processes, which is the least relation
on processes satisfying:

� P ≡ Q by a renaming of bound variables
� P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R and P | 0 ≡ P
�D[ã] ≡ P{ã/x̃} if D(x̃)

def

= P
� for res ∈ {new, local}, res(x) (P | Q) ≡ P | res(x) Q provided x /∈ free(P )

The semantics of the language is recalled in Fig.5. Informally, the process 0 has no tran-
sition. The scope of a name x can be restricted by either new(x) of local(x) and for now,
the two constructs are assumed synonymous (this will be di�erent in reduction semantics).
A pre�xed process α.P denotes a transition with a label corresponding to the action α and
continuing as process P . There are four kinds of labels depending on the action α:

1For the sake of concision, we omit the constructs of non-deterministic choice and match/mismatch. Note
that our prototype tool has support for both
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�a label τ is generated by a silent action τ or by a synchronization.
� a label ab is generated by an input action a(b) for any name b received along channel a

and bound to the variable x (in early semantics).
� a label ab is generated by an output action ab of datum b along channel a, under the

provision that a and b are not restricted (i.e. in the scope of a new or a local.
� a label aνb is a bound output generated by an output action ab where b is restricted,

unlike a.

The construct P | Q expresses the parallel composition (in terms of interleaving) of
the sub-processes P and Q. These cover the independent evolution of the processes, of
alternatively the synchronization for a composition of the form ab.P | a(x).Q. The latter
generates a transition with label τ and a continuation of the form: P | Q{a/x}. Finally,
the language has tail calls that corresponds to possibly recursive unfoldings of process
de�nitions.

6.2. Abstracting transition labels

The �rst step of our experiment is to generate a resource graph that re�ects the behavior
of a π-calculus process in terms of resource usage. A natural interpretation consists in
interpreting almost directly the labelled transition system (LTS) as a resource graph. Under

this interpretation, each transition P
µ−→ Q is associated to three vertices vP , vµ and vQ and

the edges (vP , vµ) and (vµ, vQ). The resource usage is then speci�ed by the values associated
to α(vµ), γ(vµ) and δ(vµ). Schematically, we have:

� a transition P
aνb−−→ Q creates a resource Xb and is interpreted as:

vP α{Xb},γ{Xb},δ{} vQ

�a transition P
ab−→ Q such that there is a resource Xb for b is interpreted as:

vP α{},γ{Xb},δ{} vQ

�any other transition P
µ−→ Q is interpreted as:

vP α{},γ{},δ{} vQ

In this �rst abstraction, the rationale is: every data sent to the environment count as
resource uses. Hence, any bound output counts as the creation of a fresh resource as well
as a use, and each output of a name associated to a resource counts as a simple use. There
are possible variations, such as counting the channel itself as a use (e.g. recording a use
with ba in case b is associated to a resource Xb), or also taking input into consideration. It
is then possible to distinguish between input or output resource uses. In all these possible
interpretations, the leitmotiv is that resource pro�le equivalence should be a necessary (al-
though insu�cient) condition for bisimilarity2. We also require the destruction of resources
through δ's. A simple and e�ective heuristic is to insert a δ{Xb} when there is no further
free occurrence of the name b in the process.
Let us consider as a �rst example the following process:

P
def

= new(c) ac.bc.P

This is a special case of a common pattern for generating fresh names. Here, the restricted
name c is sent �rst along a and then b towards the environment. The whole process is then
iterated, leading to the following derivations:

2We do not provide in this report a formal proof that �bisimilarity implies resource pro�le equivalence� but
this is rather trivial since the traces of resource pro�les encode all the information stored in the transition
labels.
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P
aνc−−→ bc.P

bc−→ P → · · ·
The �rst output along a corresponds to a bound output since c is restricted but the

further output is not bound anymore. Given a resource variable Xc representing the name
c once required fresh, we obtain the following resource graph:

v⊥

α{Xc},γ{Xc}
v1

γ{Xc},δ{Xc}
v2 v>

A theoretically acceptable alternative would to have an in�nite system generating an
in�nite number of resources. Although the version with the least �xpoint shows that exactly
one resource is required for this behavior, the resource index is invariantly 1 because there
can be no con�ict for this process in any acceptable interpretation.
A minimal con�ict can be generated by e.g.:

new(a) new(b) ca.cb.ca.0

A slightly complexi�ed variant of this process is as follows:[
Q

def

= new(a) new(b) ca.cb.da.d(x).cx.0

C[X]
def

= new(d) [Q | X]

The resource graph corresponding to C[d(y).dy.0] is3:

v⊥

α{Xa},γ{Xa}
v1

α{Xb},γ{Xb}
v2

v3

v4

γ{Xa},δ{Xa}
v5v>

This maintains the con�ict Xa]Xb and thus the resource index of the system is 2, whereas
if we consider the variant C[d(y).dc.0] then the resource graph becomes:

v⊥

α{Xa},γ{Xa}
v1

α{Xb},γ{Xb},δ{Xb}
v2

δ{Xa}
v3

v4v5v>

The con�ict Xa]Xb is no more and hence the resource index is 1 in this case. This
illustrates the profoundly semantic nature of the proposed resource abstraction. Indeed, the
behavior of X within the context C[X] can be as complex as required so that in the general
case (beyond �nite control) one cannot decide whether the con�ict should take place or not.

3A single-hole process context C[X] is a function from process expression extended by a single occurrence
of a variable X to process expressions, such that C[P ] = C[X]{P/X} for a standard notion of substitution

of variables by processes. Here for example C[d(y).dy.0] = new(d)
[
Q | d(y).dy.0

]
.
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Model LTS Resource graph Resource index

heap4 700 86 3
heap5 8476 303 4
heap6 126125 1094 5

buffer4 596 339 4
buffer5 7173 3621 5
buffer6 106878 49246 6

GSM 489 56 3
GSMbuff 164 56 3
GSMfull 2183 56 3

Fig. 6. Experimental results for the resource abstraction on labelled transitions.

This abstraction has been implemented in a prototype tool and we analyzed several
examples from the HAL environment [Ferrari et al. 1998]. At present, the tool only support
�nite control processes and the construction of the resource graph is purely semantic. Since
we do not need to preserve the whole branching structure, we can apply a few heuristics to
reduce the size of the resource graphs, but in the worst case it can be as large as (although
no larger than) the full LTS e.g. as produced by HAL. The problem of producing the
smallest possible resource graph is open and we conjecture that its complexity is high.
Fig. 6 gives the �gures we obtain for the examples that are particularly interesting for the
considered abstraction. For each example, we give the size of the LTS produced by HAL
and we compare it with the size of the resource graph we obtain. This measure is not really
signi�cant but it still emphasizes the fact that there is an important potential of abstraction
when constructing the resource graphs. A metric much more signi�cant is the resource index
that we obtain using our omniscient garbage collector. A detailed comment of the results
is provided in [Deharbe and Peschanski 2014] but the main outcome of the experiment is
that the con�ict graph in all the examples is very small, hence its perfect coloring is always
an a�ordable task. Moreover, the resource index always convey an important information
regarding the process behaviors. As an illustration, we can relate the number n of competing
cells in heapn+1 (resp. buffern) to the resource index n. In the GSM cases, the resource
graph (and thus resource index) does not change, which says that despite their important
syntactical di�erence, they all exhibit exactly the same resource usage.

6.3. Re�ning reductions

Abstracting from the labelled transitions is quite natural but requires a very powerful
observer. In comparison, the reduction semantics are much less demanding. However, they
only apply on closed systems. An intermediate approach is to model part of the observer
within the system. For this we allow a process behavior to be sliced from the point of view
of the environment. A process of the form local(x) P considers x as a classical π-calculus
restriction but explicitly decorated by a tag inobservable. In comparison, in new(x) P the
name x is tagged observable. Names can also be assigned the tag observed although not in
their initial state. Now, a standard reduction P → Q of the π-calculus is re�ned so that it

produces a �labelled� reduction of the form Λ ` P µ−→ Λ′ ` Q in the slice-π variant. The
component Λ is a set of names tagged as observable. A name a with the observable tag but
lacking the observed tag is such that a ∈ Λ. Otherwise, if it is observable observed then
a ∈ Λ. Of course, it cannot be the case that {a, a} ⊆ Λ.
Each reduction P → Q is now reinterpreted as either:

� an open reduction of the form:
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Λ ` τ.P •−→ Λ ` P
(step)

Λ ∪ {x} ` P µ−→ Λ′ ` P ′ x /∈ Λ

Λ ` new(x) P
µ−→ Λ′ ` P ′

(obs)
Λ ` µ−→ Λ′ ` P ′ x /∈ Λ

Λ ` local(x) P
µ−→ Λ′ ` P ′

(inobs)

a ∈ Λ ∪ {b} ∨ a ∈ Λ

Λ ` {b} ` ab.P | a(x).Q
〈b〉−−→ Λ ∪ {b} ` P | Q{b/x}

(sync-fresh)

a ∈ Λ ∨ a ∈ Λ b /∈ Λ

Λ ` ab.P | a(x).R
〈b〉−−→ Λ ∪ {b} ` P | R{b/x}

(sync-open)

a ∈ Λ ∨ a ∈ Λ ∪ {b}

Λ ∪ {b} ` ab.P | a(x).Q
b−→ Λ ∪ {b} ` P | Q{b/x}

(sync-obs)

a /∈ Λ

Λ ` ab.P | a(x).R
•−→ Λ ` P | R{b/x}

(sync-inobs)

Λ ` P µ−→ Λ′ ` P ′

Λ ` P | Q µ−→ Λ′ ` P ′ | Q
(par)

P ≡ P ′ Λ ` P ′ µ−→ Λ′ ` Q′ Q ≡ Q′

Λ ` P µ−→ Λ′ ` Q
(struct)

Fig. 7. The semantics of the slice-π calculus.

Λ ` P
〈b〉−−→ (Λ \ {b}) ∪ {b} ` Q when the reduction is a synchronization passing an

observable or inobservable but not yet observed name b along an observable channel a. As
a side-e�ect, the name b is tagged as observable and also as observed.

� a transparent reduction of the form:

Λ ` P b−→ Λ ` Q when the reduction is a synchronization passing an observed name b (i.e.
b ∈ Λ) along an observable channel (i.e. a ∈ Λ).

� an opaque reduction of the form:

Λ ` P •−→ Λ ` Q in any other case.

The complete operational semantics of the slice-π calculus is provided in Fig. 7. In terms
of resource graphs, the interpretation is now quite similar to the labelled abstraction:

� a reduction Λ ` P 〈b〉−−→ Λ′ ` Q creates a resource Xb and is interpreted as:
vΛ`P α{Xb},γ{Xb},δ{} vΛ′`Q

�a reduction Λ ` P b−→ Λ ` Q such that there is a resource Xb for b is interpreted as:
vΛ`P α{},γ{Xb},δ{} vΛ`Q

�any other reduction Λ ` P •−→ Λ ` Q is interpreted as:
vΛ`P α{},γ{},δ{} vΛ`Q
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{} ` new(a) new(b) S(a, b)
〈x1〉−−−→ {a, b, x1} ` P (a) | Q′(a, b) | Q(a, b) | R(b)
〈x2〉−−−→ {a, b, x1, x2} ` P (a) | Q′(a, b) | Q′(a, b) | R(b)
x1−→ {a, b, x1, x2} ` P (a) | Q(a, b) | Q′(a, b) | R(b)
x2−→ {a, b, x1, x2} ` S(a, b)
. . .

{} ` local(a) new(b) S(a, b)
•−→ {b, x1} ` P (a) | Q′(a, b) | Q(a, b) | R(b)
•−→ {b, x1, x2} ` P (a) | Q′(a, b) | Q′(a, b) | R(b)
〈x1〉−−−→ {b, x1, x2} ` P (a) | Q(a, b) | Q′(a, b) | R(b)
〈x2〉−−−→ {b, x1, x2} ` S(a, b)
. . .

Fig. 8. Reductions of slice-π processes with a observable (top) or inobservable (bottom).

To illustrate the abstraction, we consider the processes new(a) new(b) S(a, b) vs.
local(a) new(b) S(a, b) with:

P (a)
def

= new(x) ax.P (a)

Q(a, b)
def

= a(y).Q′(a, b, y)

Q′(a, b, y)
def

= by.Q(a, b)

R(b)
def

= b(z).R(b)

S(a, b)
def

= P (a) | Q(a, b) | Q(a, b) | R(b)

Fig. 8 shows representative reductions of the �rst process with a observable (on the left)
and a inobservable (on the right). In the observable case the names a and b are recorded
in the �rst reduction as observable (i.e. put explicitly in the Λ component of the state). In
the same reduction, the name x generated by P is opened (i.e. marked observed) by the
synchronization with the leftmost process Q. A �second� x is opened in the next reduction by
the synchronization between P and the rightmost Q. The �two� x's must be alpha-converted
hence the introduction of x1 and x2 in the reductions. The Λ component of the transition
contains {x1, x2} because these two observable names are actually observed. If we compare
this behavior with the one of the right-hand side, a is there tagged inobservable since it
is introduced by the local construct. This means it is not a member of the component Λ
of the state, unlike b. Hence the names x1 and x2 are now introduced as observable but
not yet observed because they are transmitted along a. In terms of resources graphs, the
left-hand side reductions yield a con�ict Xx1]Xx2 that is absent in the rightmost process.
The processes have indeed a di�erent resource index: respectively 2 and 1. We thus obtain
a level of �exibility that is quite comparable to the labelled abstraction, but without the
need for an idealistically powerful observer.
Based on this abstraction, we designed a simple example inspired by the classical dining

philosophers problem. The idea is that the environment is modeled as a process that ac-
knowledges through an observable channel eat the fact that a philosopher actually starts
eating. All the other channels (ending points for the philosophers, the forks, etc.) are created
inobservables (hence restricted with local instead of new). The resource con�icts occur when
distinct philosophers eat at the same time on the table, by transmitting the philosopher
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Model # Processes Reductions Resource graph Resource index

philos2 7 133 20 1
philos3 10 2992 136 1
philos4 13 98245 4148 2

Fig. 9. Experimental results for the resource abstraction on reductions.

channel along the environment observable eat. As a side e�ect, the philosophers, initially
inobservable, inherit both the observable and observed tags in a dynamic way.
The results for some instances of the philon examples are listed in Fig. 9. The size of the

reduction graph grows exponentially since we modelled various sub-processes running in
parallel (e.g. 13 processes for philo4). The resource graphs we obtain using similar heuristics
as in the labelled case are much smaller but in a similar order of magnitude in terms of
growth. The resource index (and hence the maximum con�ict) is quite reassuring in that the
number of philosophers actually competing for food remains below the number of fork pairs,
ensuring the correctness of the protocol. Although simpler analyzes are of course possible for
this speci�c example, the experiment emphasizes the fact that the resource index captures
a deep semantic information, tightly related to the chosen resource abstraction.
Last but not least, none of our experiments (except those made on purpose) expose a large

resource index. In fact, the perfect coloring of the con�ict graphs was almost immediate in
all the examples, despite the high complexity of the algorithm. In the current version of
the tool we use a simple and rather slow CSP-solver for the task. This largely covers our
current needs but state-of-the art SAT solvers could be used for more demanding scenarios.
In cases perfect coloring would become unfeasible, we can still compute less tight but still
interesting resource bounds very e�ciently, using e.g. �rst-�t coloring.

7. RELATED WORK

Resource control and analysis is a vast topic of research. Considered in their purest form,
resources are pure names naturally leading to nominal calculi [Gordon 2000] in general,
and in particular the π-calculus [Sangiorgi and Walker 2001] and its numerous variants.
This is a rather abstract and open-ended setting, thus not a very proli�c source of e�ective
analysis algorithms. One approach is to enrich the semantics, as e.g. in [Amadio and Dal-
Zilio 2006] where a resource bound analysis is proposed for a reactive synchronous variant
of the π-calculus. For more classical (and abstract) variants, related studies address decid-
ability issues often in connection with Petri nets, such as e.g. [Amadio and Meyssonnier
2002; Rosa-Velardo and de Frutos-Escrig 2010] and [Hüchting et al. 2013]. The latter in-
troduces the name-bounded processes, a signi�cant class of in�nite-state systems for which
the boundedness question is answered positively. It is particularly remarkable that reach-
ability is also decidable for this class. In comparison, we assume the �niteness of resource
graphs, and deliberately de-emphasize the means by which they are obtained practically.
Indeed, a key feature of our framework is its independence from any particular formalism.
Furthermore, for a given formalism multiple resource abstractions can be experimented as
illustrated in Section 6. The abstraction of active restrictions proposed in [Hüchting et al.
2013] only applies on reductions for closed systems. It is also di�erent from the resource
model we propose around the slice-π calculus, and to illustrate this aspect we consider the
following process:

P (a)
def

= new(x) [ax.0 | a(y).P (y)] | τ.new(z) za.0

In the abstraction we propose, the resource index of new(a) P (a) is 1 because the processes
new(z) za are deadlocked after the initial τ . However, since the name a is always free in
these deadlocked processes the whole process has an in�nite number of active restrictions.
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This particular example can be of course optimized but the deadlocked process can be
complexi�ed at will. Hence, we discuss a �ner-grained abstraction that cannot be decided
locally. Relying on an essentially semantic abstraction is not without consequences. For
instance, our current implementation only works with �nite control π-calculus processes. It
is a very intriguing and open question whether interesting sub-classes of in�nite systems with
�nite resource graphs could be determined, probably starting with variants of the name-
bounded class itself. Another related abstraction is that of barbed semantics [Sangiorgi and
Walker 2001] that also re�ne reductions but considering in this case the non-restricted
channels as observables. This is to ultimately characterize an adequate notion of process
equivalence � namely strong barbed congruence � when the reductions with observables are
closed under context. While we could observe the channels instead of (or together with)
the data, we require our re�nement to remain in one-to-one correspondence with the plain
reductions. Also particularly notable in [Hüchting et al. 2013] is the prominent role played by
the notion of garbage collection something already observed in e.g. the history-dependent-
automata [Ferrari et al. 1998] or in the π-graphs [Peschanski et al. 2013]. This is a side
note but to our knowledge, HD-Automata Laboratory (HAL) is the only tool allowing the
generation of early labelled transition system from (�nitary) π-calculus processes. Indeed,
the generation of the early LTS is not trivial especially because it requires the determination
of the active names [Montanari and Pistore 1995], a notion tightly connected to the live
variables of resource graphs.
Graph coloring relates to the very well-known problem of register allocation in compiler

back-ends [Chaitin 2004]. However, the behavior of registers is quite speci�c. For example,
one can always choose not to allocate a register, or release it prematurely and defer to
the central memory. Hence, the coloring can be both partial and imperfect, allowing many
optimization heuristics that do not apply at all in our case. This still naturally connects our
study with the well-studied notion of register automata and related formalisms, especially
�nite memory automata (FMA) [Kaminski and Francez 1994] and fresh register automata
(FRA) [Tzevelekos 2011]. Although the theory of ν-automata shall be further investigated,
we suggest in the paper that they represent quite an expressive formalism. For instance,
the automaton depicted in Fig 3 can be easily shown not simulable by either a FMA or
a FRA. However, we show that resource pro�les are quasi-regular languages recognizable
by FMA. In this speci�c case, the ν-automata are still relevant since they can trivially be
shown exponentially smaller than their FMA counterparts. To our knowledge, the problem of
reducing the memory of FMA has only been investigated in the deterministic case [Benedikt
et al. 2010]. Our study suggests an approach for non-deterministic FMA but only to reduce
the storage size. Finally, we think that ν-automata represent an interesting formalism to
address resource control issues as in e.g. [Degano et al. 2012] (automata-based approach)
or [Kobayashi et al. 2006] (typechecking-based approach). This investigation is the next
natural step of our study.
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A. APPENDIX: PROOF DETAILS

A.1. Proof of Propositions 3.5 and 3.6 (binding condition and con�ict freedom)

Proof. (Proposition 3.5) There are two cases to consider. First, if the binding X 7→ ν
is not created at position k then it is said an old binding. By Def. 3.3 if there is no j, j < k
such that X ∈ lastρ(vj) vertex v (as assumed) then this binding must have been created at
a previous position i < k. If the binding is new, then it is a simple fact that i = k.

Proof. (Proposition 3.6) We proceed by induction on k. First, for k = 0 we have no
possible con�ict and Γ0 = ∅ so that the property vacuously holds. Now suppose that the
property is true for any position j, 0 < j ≤ k − 1. We proceed by contradiction, showing
that it cannot be the case it does not hold anymore at position k. We thus assume X]kρY
and Γk(X) = Γk(Y ). There are three cases to consider. First, if Y ∈ firstρ(vk) \ lastρ(vk)
then it must consume a symbol νY in the subset new(αk) of Def. 3.2. The same de�nition
imposes that this symbol must not be already present in the range of Γk−1. As such,
if Γk−1(X) = νX for some name νX then it must be the case that νY 6= νX . Hence,
Γk(X) 6= Γk(Y ), contradicting the hypothesis. If otherwise X /∈ dom(Γk−1) then the con�ict
imposes that X ∈ firstρ(vk) ∪ fetchρ(vk). If X consumes a name νX at position k then we
must have νX ∈ new(αk) or νX ∈ trans(αk). In both case a simple cardinality argument
imposes that νX 6= νY . The second case is if Y ∈ firstρ(vk)∩ lastρ(vk), hence it is a transient
binding. In this case there is no new binding recorded, so there is nothing left to do. Finally,
if the use at position vk is not a �rst use, then the binding condition (cf. Prop. 3.5) imposes
that there is a position i < k such that Y ∈ firstρ(vi) ∪ fetchρ(vi). By the hypothesis of
induction we have that Γi(X) 6= Γi(Y ) hence the contradiction. This �nishes the proof.

A.2. Proof of Lemma 4.4 (resource pro�le recognizers)

The proof requires two auxiliary propositions. The �rst one relates the structure of the
graph G and the one of the AG.

Proposition A.1. Let G be a resource graph. There is a one-to-one correspondence

between Ψ(G)∪ Ψ̂(G) and the graph of AG. Moreover, for each automata path θρ (resp. θρ̂k)

corresponding to a complete path ρ (resp. �nite expansion ρ̂k of a lasso ρ̂) its starting state
is initial and ending state is accepting.

Proof. By Def. 4.3 each vertex vi of a complete path ρ = 〈v1, . . . , vn〉 (resp. of a
lasso ρ = 〈v1, . . . ve−1 | ve, . . . , vn〉 there is a corresponding state qvi,ρ (resp. qvi,ρ̂) in the
automaton AG. Moreover, for each edge (vi, vi+1) of ρ (resp. ρ̂) there exists a unique label l
such that (qvi,ρ, l, qvi+1,ρ) (resp. (qvi,ρ̂, l, qvi+1,ρ̂)) in the transition relation of AG. For a lasso,
there is also an exit transition (qvn,ρ̂, {}, qv>) and there is no other state or transition de�ned,
hence the one-to-one correspondence. Each �nite path 〈v1, . . . , vn〉 of G corresponding to
either a complete path or the k-th expansion of a lasso, by Def. 2.1 we have: v1 = v⊥ and
vn = v>. Hence qv1 = qv⊥ � which is initial � and qv2 = qv> � which is accepting � by
construction.

The second proposition relates the transition labels of AG to the resource events (use,
�rst and last use, etc.).

Proposition A.2. Let lblρv→v′ be a transition label of AG. Then:
X ∈ lblρv→v′ i� X ∈ γ(v′)

νX ∈ lblρv→v′ i� firstρ(v
′) ∪

{
fetchρ(v

′) if v 6= exit(ρ)
∅ otherwise

νX ∈ lblρv→v′ i� X ∈ lastρ(v
′)

Proof. This is direct by Def .4.3.
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Proof. (Lemma 4.4) We have to prove the equivalence w = α1 · · ·αn ∈ RG ⇐⇒ w ∈
LG with LG the language of AG. Consider the path ρ = 〈v1, . . . , vn〉 used to recognize word
w as in Def. 3.4. By Prop. A.1 there is a corresponding path θρ = 〈qv⊥ , qv1,ρ, . . . , qvn,ρ〉 in
the graph of AG. Consider now the run σ = (qv⊥ ,Γ0), (qv1,ρ,Γ1), . . . , (qvn,ρ,Γn) such that
for each position k, 1 ≤ k ≤ n, Γk is built from Γk−1 according to Def. 3.3. We must show
that σ is an accepting run of w by showing that each symbol αk of the word is consumed
by the con�guration (qvk,ρ,Γk) and moreover each Γk can be built as in Def. 4.2. For the
consumption part, we can use the decomposition of αk as the disjoint subsets old(αk),
trans(αk) and new(αk) of Def. 3.2. According to the construction of Def. 4.3 we know that
(qvk−1,ρ, lblρvk−1→vj , qvk,ρ) is a transition of AG. Hence, by Prop. A.2 we can deduce the

following equalities: old(αk) = αold
k , trans(αk) = αtrans

k and new(αk) = αnew
k (the latter sets

as de�ned in Def. 4.2). Thus, α is fully consumed by the con�guration (qvk,ρ,Γk). Moreover,
also thanks to Prop. A.2 the construction of Γk from Γk−1, as governed by Def. 3.3, is a
correct construction according to Def. 4.2. Hence, the con�guration (qvk,ρ,Γk) is accepting,
as is the whole run σ since we left the position k arbitrary. Exactly the same reasoning steps
can be followed in the converse way: from Def. 4.2 to Def. 3.4. This concludes the proof.

A.3. Proof of Theorem 4.5 (resource pro�les are quasi-regular)

The objective is to show that the resource pro�le of a graph G is quasi-regular, i.e. that it
can be recognized by a �nite memory automaton (FMA) accepting it. The reference paper
for FMA is [Kaminski and Francez 1994]. For convenience, we adopt a slightly di�erent
notation, consisting in indexing the windows (i.e. registers) of FMA by variable names
instead of integers, which can be trivially put in one-to-one correspondence.
Since we cannot encode the fetching (i.e. allocation without consumption) of a fresh

symbol in FMA (this would at least require the power of fresh register automata), we have
to �nd a way to remove the fetching phase. This is possible for the subclass of ν-automata
recognizing the resource pro�les. The idea is to unfold exactly once each lasso of the resource
graph when building the recognizer.

De�nition A.3. Let G = 〈R, V,E, α, γ, δ〉 be a resource graph, and Ψ̂1(G) the set of
unfolded lassos such that:

Ψ̂1(G)
def

= {〈v1, . . . , ve−1, ve1 , . . . , vn1 | ve2 , . . . , vn2〉 | 〈v1, . . . , ve−1 | ve, . . . , vn〉 ∈ Ψ̂(G)}

The ν-automaton induced by G is Afma
G

def

= 〈vars(G), 〈Q, qv⊥ ,∆, {qv>}〉〉, with:

�Q = {qv,ρ | ρ ∈ Ψ(G) ∪ Ψ̂1(G), v ∈ ρ \ {v⊥, v>}} ∪ {qv⊥ , qv>}
�∆ = {(qvi,ρ, lblvj , qvj ,ρ) | ρ ∈ Ψ(G) ∪ Ψ̂1(G), vi → vj ∈ ρ}

∪ {(qvn2
,ρ̂, lblve2 , qve2 ,ρ̂), (qvn1

,ρ̂, {}, qv>), (qvn2
,ρ̂, {}, qv>) |

ρ̂ = 〈v1, . . . , ve1 , . . . , vn1
| ve2 , . . . , vn2

〉 ∈ Ψ̂1(G)}

with: lblv = {νX | X ∈ firstρ(v)} ∪ {X | X ∈ γ(v)} ∪ {νX | X ∈ lastρ(v)}
The �rst proof step is to show that the language of the new construction is still the

expected resource pro�le.

Lemma A.4. Let G be a resource graph. Then L(AG) = L(Afma
G ).

The di�erence between AG and Afma
G is that in the latter, all the allocations are now

performed jointly with a use, hence no fetch event is required anymore.
The construction of a FMA from the ν-automaton Afma

G is as follws.

De�nition A.5. Let Afma
G = 〈X , 〈Q, qinit,∆, F 〉〉 as in Def. A.3. The induced FMA is

MAfma
G

def

= 〈X , S, sinit,u, ρ, µ, F
′, 〉, such that:
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� S = {si, sj | si
σ−→ sj ∈ µ}

�u = {X 7→ # | X ∈ X} ∪ {Start 7→ Start,End 7→ End,Flush 7→ #}
� ρ(si,k′,θ) = X if ∃(qi, {r1, . . . , rn}, qj) ∈ ∆ s.t. θ(rk′) = rk ∧ (rk = νX ∨ rk = ννX)

ρ(s′i,k′,θ) =

{
X if ∃(qi, {r1, . . . , rn}, qj) ∈ ∆ s.t. θ(rk′) = rk ∧ (rk = νX ∨ rk = ννX)
Flush otherwise

� µ = {si
Start−−−→ si,1,θ

θ(r1)
===⇒ · · · θ(rn)

===⇒ si,n+1,θ
End−−→ sj |

(qi, λ, qj) ∈ ∆, θ is a permutation function on dedup(λ) = {r1, . . . , rn}}
� F ′ = {si | qi ∈ F}
with:

dedup(λ) = (λ \ ({X | νX ∈ λ ∨ νX ∈ λ} ∪ {νX, νX | {νX, νX} ⊆ λ}))
∪ {ννX | {νX, νX} ⊆ λ}

si
νX
==⇒ sj = si

X−→ s′i
Flush−−−→ sj

si
X
=⇒ sj = si

X−→ s′i
Flush−−−→ sj

si
νX
==⇒ sj = si

X−→ s′i
X−→ sj

si
ννX
==⇒ sj = si

X−→ s′i
X−→ sj

The encoding of transitions is made in two steps. First, each label set dedup(λ), in which
we deduplicate bind and usage (resp. unbind and usage) of a same variable, is splitted
into single events, by enumeration of all possible permutations of its elements. Then, each
obtained transition is doubled. The goal is to correctly handle unbinds of variables, which
must consume a symbol and place a fresh symbol into the corresponding window register.
According to this translation, ν-words have to be also transformed in order to be accepted
by the FMA device. The ν-word encoding consists in placing tags to keep the information
about where starts and ends a set of symbols. Then each occurence of ν-symbol is followed
by the occurence of a fresh symbol taken in a separate namespace V. This new information
is mandatory to reset window registers when the corresponding variables must be unbound.
This addition must follow each symbol occurence since it is not possible to �nd the binding
and unbinding instant starting only with a ν-word. Formally, encoding of a ν-word is de�ned
as follows:

� JwKfma = Jα1Kfma · · · JαnKfma

� JαiKfma = Start.
⊙

1≤j≤m(θ(νi).νi,j).End

with αi = {r1, . . . , rm} and θ an arbitrary permutation function on αi

The last step of the correspondance proof is to show that the language of a ν-automaton
obtained from a resource graph and the language of its induced FMA are the same (upto
the encoding of the ν-words).

Lemma A.6. Let Afma
G be the ν-automaton induced by a resource graph G, and MAfma

G

the �nite memory automaton induced by Afma
G . Then L(Afma

G ) = {w | JwKfma ∈ L(MAfma
G

)}.

Since there exists an encoding of resource graph ν-automata in FMA, we can conclude
that resource graph ν-automata language are quasi-regular.

A.4. Proof of Lemma 5.7 (nominal resource bound)

Proof. (of Lemma 5.7) First, the hypothesis inactive(G) = ∅ is simply because an
unused resource can be trivially removed from the resource graph G without any impact on
the resource pro�le. Failing to remove them gratuitously complexi�es the bound calculations.
Our proof scheme is to rely on Lemma 4.4, which says that :
w ∈ RG i� there exists a path ρ = 〈v1, . . . , vn〉 in G and an associated run σ =

(qv⊥ ,Γ0), (qv1 ,Γ1), . . . , (qvn ,Γn) such that σ accepts w.
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Based on the latter assumption, we de�ne a renaming ζ from V (in�nite alphabet of AG)
to Vk. First, the renaming of the run σ is as follows :[

ζ(σ) = (qv⊥ ,Γ0), (qv1
, ζ(Γ1)), . . . , (qvn , ζ(Γn))

∀i, 0 ≤ i ≤ n, ζ(Γi) = {νX | X ∈ dom(Γi)}
Hence, in all the bindings Γi we just bind variables to their corresponding pure name in

Vk. To preserve the acceptance relation, we thus have to rename the word w so that the
symbols recorded in the Γi's now get recorded in the ζ(Γi)'s.
For this, we use the decomposition of αi of w as the disjoint sets αold

i (consumption from
old bindings), αold

i (transient bindings) and αnew
i (new bindings) as in Def. 4.2.

Let ζ(αold
i ) = {νX | Γi(X) = ν ∧ ν ∈ αold

i }. Thus for an old binding of variable X, we
have ζ(Γi)(X) = νX and thus the renamed binding is still accepted at position i of the
renamed run. Next, ζ(αtrans

i ) = {νX | X ∈ firstρ(vi) ∩ lastρ(vi)}, hence there are enough
fresh names so that the transient bindings are also consumed in the renamed run. Finally,
ζ(αnew

i ) = {νX | Γi+1(X) = ν ∧ ν ∈ αnew
i } if i < n and ζ(αnew

n ) = αnew
n = ∅ (since there is no

new binding in the �nal step of the run). Since ζ(Γi+1)(X) = νX the latter subset gets also
consumed as required. Thus, ζ(αi) is naturally consumed by con�guration (qvi,ρ, ζ(Γi)).
Hence, ζ(σ) accepts ζ(w) = ζ(α1) · · · ζ(αn) thus ζ(w) ∈ ζ(RG) i� ζ(σ) accepts w, which

concludes the proof.

A.5. Proof of Lemma 5.12 and Lemma 5.13 (unifying variables)

The following proposition will play an important role in a later result. It says that non-
con�icting resources may not be used at the same time (otherwise a con�ict would occur).

Proposition A.7. Let G be a resource graph, ρ = 〈v1, . . . , vn〉 a �nite path of G and
E ⊆ vars(G) a set of resource variables. If ∀X,Y ∈ E, ¬(X]iρY ) for a given position
i, 1 ≤ i ≤ n then card(γ(vi)) ∩ E ≤ 1.

Proof. We proceed by contradiction. If we suppose card(γ(vi)) ∩ E ≥ 2, then there
must be X,Y ∈ E such that X 6= Y and {X,Y } ⊆ γ(vi). By Def. 2.5 we would have X]iρY

(and also Y ]iρX) which contradicts the hypothesis ¬(X]iρY ).

Proof. (of Lemma 5.12) Our main hypothesis is: w ∈ Rk
G i� there is a path ρ =

〈v1, . . . , vn and a run σ = (qv⊥ ,Γ0), (qv1,ρ ,Γ1), . . . , (qvn,ρ ,Γn) of AkG such that σ accepts w.
We also consider that the alphabet of pure names is Vk = {νX | X ∈ vars(G)}. Now, for
each position i, 1 ≤ i ≤ n, we let :

unifyE/Z(Γi) = {X 7→ νX | X ∈ dom(Γi) \ E} ∪ {Z 7→ νZ | X ∈ dom(Γi) ∩ E}
and unifyE/Z(σ) = (qv⊥ ,Γ0), (qv1,ρ

, unifyE/Z(Γ1)), . . . , (qvn,ρ , unifyE/Z(Γn)).
Hence, in each binding context Γi the variables of E are all replaced by the unique

mapping Z 7→ νZ and the other variables are left unchanged.
We now apply the renaming corresponding to the uni�cation on the symbols of w. We

consider the decomposition of each αi as the disjoint union α
old
i ∪αtrans

i ∪αnew
i . And we let :

unifyE/Z(αold
i ) = {νX ∈ αold

i | X ∈ dom(Γi) \ E} ∪
[
{νZ} if ∃Y ∈ E ∩ (γ(vi) \ firstρ(vi))
∅ otherwise

The symbols of αold
i that are left unchanged are trivially consumed by con�guration

(qvi,ρ , unifyE/Z(Γi)) since in this case the binding context is left unchanged. If a variable Y
of E is used at position i, then it must be bound to a dedicated pure name, which we name
νZ . By Proposition A.7 only one pure name is enough. And since unifyE/Z(Γi)(Z) = νZ (cf.
above) the con�guration at step i also accepts νz. If otherwise no variable of E is used at
step i then there is nothing left to test.
For the transient and new bindings, the proof scheme is exactly the same, based on the

following de�nitions:
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unifyE/Z(αtrans

i ) = {νX ∈ αtrans
i | X ∈ (firstρ(vi) ∩ lastρ(vi)) \ E}

∪
[
{νZ} if ∃Y ∈ E, Y ∈ firstρ(vi) ∩ lastρ(vi)
∅ otherwise

unifyE/Z(αnew
i ) = {νX ∈ αnew

i | X ∈ (firstρ(vi) \ lastρ(vi)) \ E}

∪
[
{νZ} if ∃Y ∈ E, Y ∈ firstρ(vi) \ lastρ(vi)
∅ otherwise

We deduce that unifyE/Z(αi) = unifyE/Z(αold
i ) ∪ unifyE/Z(αtrans

i ) ∪ unifyE/Z(αnew
i ) is ac-

cepted by con�guration (qvi,ρ , unifyE/Z(Γi)). Thus w is accepted by run unifyE/Z(σ) as ex-

pected. This run is trivially a possible run of unifyE/Z(AkG), which concludes the proof.

Proof. (of Lemma 5.13) The proof is almost the same as the one for Lemma 5.12 except
that we consider a complete partition of vars(G). It is a simple fact that the uni�cation of
Π can be done in an arbitrary order since the renamings operate on a distinct domain (a
subset E of variables and their uni�er Z) and distinct range (the name νZ corresponding

to the uni�er Z). Moreover, by iterating Lemma 5.12 we have that Rk−
∑
E∈Π card(E)+card(Π)

is recognized by unifyΠ/Z(AkG). And since
∑
E∈Π card(E) = card(vars(G)) we obtained the

expected bound card(Π).

A.6. Proof of Lemma 5.14 (resource index)

We �rst show that unifying con�icting variables would contradict the process of recognizing
resource pro�les.

Lemma A.8. Let w = α1 · · ·αn be a ν-word accepted by a run σ =
(qv⊥ ,Γ0), (qv1,ρ

,Γ1), . . . , (qvn,ρ ,Γn) of a ν-automaton AkG (with k variables) of a resource

graph G. Then unify{X,Y }/Z(w) is accepted by unify{X,Y }/Z(σ) i� ∀i, 1 ≤ i ≤ n, ¬(X]iρY )∧
¬(Y ]iρX).

Proof. We proceed by contradiction. Suppose there is a position j of ρ such that X]jρY
(the symmetric case is similar). This means that ∃i, k, 1 ≤ i ≤ j ≤ k ≤ n such that
X ∈ γ(vi) ∩ γ(vk) and Y ∈ γ(vj). There must be a pure name νX such that ∀l, i ≤ l ≤
k, Γl(X) = νX (by the binding condition, cf. Prop. 3.5). And at position j the variable
Y must be either bound to a name νY (old or new binding), or the latter name must be
consumed immediately (transient binding). In both cases, νY must be distinct from νX
otherwise the con�ict freedom property (cf. Prop.3.6) would fail. However, unify{X,Y }/Z(σ)
rename both νX and νY by a single name νZ , thus trivially the run cannot accept w
anymore.

Proof. We start with the resource pro�le R
card(Π)
G recognized by the automaton A with

variables X = {X1, . . . , Xcard(Π)}. Suppose the resource pro�le Rk
G such that k = card(Π)−1

is recognizable.
Then two independent subsets of vars(G) must be uni�ed, which means there are two

variables X,Y ∈ X such that X]Y (since they are dependent wrt. the partition of ])
provided Rk

G is recognized by unify{X,Y }/Z(A) for some Z /∈ X . But this would contradict

Lemma A.8, hence there is no resource bound lower than card(Π).


