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Multi-Pattern Output Consensus in Networks of Heterogeneous
Nonlinear Agents with Uncertain Leader: a Nonlinear Regression

Approach
Giacomo Casadei and Daniele Astolfi

Abstract—In this paper we consider the problem of consensus
of a network of heterogeneous nonlinear agents on a family
of different desired trajectories generated by an uncertain
leader. We design a set of local reference generators and local
controllers which guarantees that the agents achieve consensus
robustly on all possible trajectories inside this family. The design
of the local reference generators is based on the possibility to
express the trajectory of the leader as a nonlinear regression law
which is parametrized by some constant unknown parameters.

Index Terms—Synchronization and consensus, uncertain non-
linear systems, nonlinear regression.

I. INTRODUCTION

The problem of consensus and synchronization has at-
tracted a lot of attention from the control community. Often,
multi-agent systems and networks of different nature exhibit
agreements as one of their main feature. This type of agree-
ment can be modeled by means of consensus/synchronization
behavior and control techniques are designed in order to steer
the agents to achieve such a coordination. The typical field
of application of these concepts is the control of multi-agent
robotic systems, where the agents have to find a common
trajectory to coordinate their motion (see [1], [2]). However,
many other domains, such as power networks (see [3]) and
social networks (see [4]), have pushed the researchers to
deepen into the properties of networks.

From a theoretical point of view, the problem of consensus
and synchronization in networks of homogeneous linear and
nonlinear systems has been studied by several authors and
seminal results can be found in [5]-[8]. Subsequently, the
challenging problem of networks of heterogeneous systems
as been studied and many authors have considered various
aspects of such a problem (between the others, see [9] for
the linear case, [10] for nonlinear case). In [11] it has been
proved that a necessary and sufficient condition for output
synchronization in heterogeneous networks is the internal
model principle. This concept has been adapted and extended
to the nonlinear case in [12] and has become the widely
accepted technique to face the problem known in literature
as cooperative output regulation. The key aspect of this
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approach is that the consensus trajectory can be thought
as generated by an exosystem, whose model is known to
all the agents in the network. This exosystems, replicated
in each agent’s controller and synchronized with the others
agents’, provides a reference trajectory to be tracked locally.
As a matter of fact, the knowledge a priori of this reference
trajectory is in many cases a really strong assumption. One
may think to the case in which we want a network of
followers to synchronize on a leader’s trajectory, which is
unknown or just partially-known to the followers.

Several authors have focused on uncertain networks: on
one hand, these uncertainties might involve the agents them-
selves and not the exosystem (see for instance [13], [14]):
this problem however reduces to a local robustness issue.
On the other hand, the problem of uncertain exosystems
has been taken into account for instance in [15], where the
authors consider a neural network approach to estimate the
unknown parameters, yet achieving only practical synchro-
nization. In [16], the author treats the case of a multi-pattern
linear exosystem: synchronization is achieved by regulation
theory, while the particular trajectory depends on the initial
conditions of the agents. In [17]–[19], the authors exploit
adaptive architecture to estimate the unknown parameters of
the linear leader and synchronize the agents to the generated
reference.

In this paper, we consider a network of nonlinear heteroge-
neous agents which have to track a nonlinear reference gen-
erated by a nonlinear leader, whose trajectory is not known
a priori. In contrast with conventional adaptive techniques,
we show that an opportune design of a set of local reference
generators, based on a nonlinear regression law, guarantees
robust synchronization on the leader reference trajectory.

Communication Graphs

The exchange of information between the agents is de-
scribed by a directed time-invariant graph. A graph can be
described by a triplet G = {V, E , A} in which:
• V is a set of N nodes V = {v1, v2, . . . , vN}, one for

each of the N agents in the set;
• E ⊂ V × V is a set of edges that models the inter-

connection between nodes, according to the following
convention: (vk, vj) belongs to E if there is a flow of
information from node j to node k;

• the flow of information from node j to node k is
weighted by the (k, j)-th entry akj ≥ 0 of the adjacency
matrix A ∈ RN×N .
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By definition, the Laplacian matrix is defined as

`kj = −akj if k 6= j, `kj =
N∑
i=1

aki if k = j.

The diagonal entries of L are non-negative, the off-diagonal
entries are non-positive and, for each row, the sum of all
entries on this row is zero. A matrix with these properties is
usually referred to as a Metzler matrix. As a consequence,
the all-ones N -vector 1N = col(1, 1, . . . , 1) is an eigenvector
of L, associated with the eigenvalue λ = 0 . Let the other
(possibly nontrivial) N − 1 eigenvalues of L be denoted as
λ2(L), . . . , λN (L).

Theorem 1 A time-invariant graph is connected if and only
if L has only one trivial eigenvalue λ1 = 0 and all other
eigenvalues λ2(L), . . . , λN (L) have positive real parts.

II. PROBLEM FORMULATION

In this paper, we consider a network of N nonlinear agents
with a leader. We assume the graph is leader-connected,
namely there exists a direct path from the leader to all the
other agents.

Assumption 1 The graph G is leader-connected, namely
there exists a path from the leader to all other nodes. Thus,
there exists a positive scalar α such that α ≤ <

(
λi(L)

)
for

i = 2, . . . , N .

Without loss of generality, the leader-node is labeled as
the first agent: hence, the Laplacian matrix takes the form

L =

ï
01×N

L̃N−1×N

ò
. (1)

The information available for control purpose at the k-th
agent depends on the set of neighbors of agent k and can
be expressed according to Laplacian matrix L as

vk = −
N∑
j=1

`kjσj k = 1, . . . , N , (2)

with σj the selected output of agent j, for j = 1, . . . , N .

A. Description of the Agents
The unknown leader trajectory y?(t) determines the pat-

tern on which the followers are asked to synchronize on.
This trajectory is not known a priori and it depends on
a set of constant parameters µ ranging in some compact
set U ⊂ Rnµ . Different values of the unknown parameters
µ may cause different reference trajectories, motivating the
definition of multi-pattern consensus. In this paper we focus
on the class of consensus bounded trajectories y?(t) that can
be generated by a nonlinear autonomous system fulfilling
a regression formula of order d which is linear in the
parameters µ, namely 1

y?(d) = H(y?[0,d−1]) + F(y?[0,d−1])µ (3)

1Here and in the following, f[a,b] stands for the the vector of deriva-
tives of the function f(·) from order a to order b, namely f[a,b] =

(f (a), . . . , f (b))T .

where H : Rd → R and F : Rd → Rnµ are functions smooth
enough. Alternatively, the leader’s dynamics can be expressed
as a dynamical system of dimension d of the form

ẋ1 = Sx1 +B
(
H(x1) + F(x1)µ

)
, x1 ∈ Rd ,

y? = Cx1 ,
(4)

with initial conditions x1(0) ranging in some given compact
set X? ⊂ Rd and where (S,B,C) is a triplet of matrices in
prime form2 of dimension d. In particular, we ask system (4)
to fulfil the following assumption (we refer to [20] for the
notion of Poisson stability).

Assumption 2 Let µ belong to a compact set U ⊂ Rnµ . The
system (4) is Poisson stable “uniformly in µ”, namely for any
µ ∈ U there exists a compact invariant set X?(µ) ⊂ Rd for
(4). We denote with X? the union of all X?(µ).

The remaining N − 1 heterogeneous nonlinear agents are
described by

ẋk = fk(xk, uk) ,
yk = hk(xk) ,

xk ∈ Rnk , uk, yk ∈ R, (5)

for k = 2, . . . , N , where uk and yk are the local control
input and output. Our goal is to define uk such that the N−1
followers achieve consensus on the trajectory y? generated
by the unknown leader. Each agent controller takes the form
of

η̇k = Φk(ηk, yk, vk) , ηk ∈ Rn̄k , vk ∈ Rp,
uk = Γk(ηk, yk, vk) ,
σk = Σk(ηk, yk) , σk ∈ Rp,

(6)

in which vk and σk are respectively inputs and outputs that
characterize the exchange of information between individual
agents. Then the control problem can be defined in the
following way. Let Xk ⊂ Rnk , for k = 2, . . . , N , be the com-
pact set of admissible initial condition for each follower (5).
The goal is to design N − 1 controller (6), with set of initial
condition Hk, such that, for any

(
xk(0), ηk(0)

)
∈ Xk ×Hk

and for all k = 2, . . . , N , we have

lim
t→∞

y?(t)− yk(t) = 0 .

B. Structure of Local Controllers

By following [11]-[12], the local controllers (6) can be
designed in two steps. By defining ηk in (6) as ηk =
col(wk, ζk), the local controllers can be written as

ẇk = s(wk) +Kvk
ζ̇k = ϕk

(
ζk, yk, wk

)
uk = γk

(
ζk, yk, wk

)
σk = c(wk)

(7)

where vk is defined according to (2) and the matrix K and
the functions s(·), ϕk(·), γk(·) and c(·) have to be designed.

2A triplet of matrices (S,B,C) is said to be in prime form when S is
a shift matrix (all 1’s on the upper diagonal and all 0’s elsewhere), BT =
(0 · · · 0 1) and C = (1 0 · · · 0).
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The wk-dynamics can be seen as a set of local reference
generators(LRG)

ẇk = s(wk) +Kvk , y ref
k = c(wk) , (8)

coupled to the other agents’ LRG via

vk = −
N∑
j=1

`kj c(wj) , (9)

each one providing a local reference y ref
k to be tracked. By

defining the local tracking error ek as

ek := yk − y ref
k , (10)

the ζk-dynamics represent the set of N − 1 local regulators

ζ̇k = ϕk(ζk, y
ref + ek, wk)

uk = γk(ηk, y
ref + ek, wk)

(11)

designed in such a way that limt→∞ ek(t) = 0 . The design
of (7) is divided in two steps. First, we will design (8) in
such a way that local reference y ref

k converges to the leader’s
reference y?. Then, we will define (11) to steer the local
tracking error (10) to zero, which in turn guarantees output
consensus of the heterogeneous network.

III. SYNCHRONIZATION OF THE LOCAL REFERENCE
GENERATORS

In view of the control architecture introduced in Section
II-B, the main difficulty resides in the design of the LRG (8)
to cope with the unknown leader’s parameters µ ∈ Rnµ .
In contrast with adaptive solutions, we propose a robust
technique which was originally presented in [21] and applied
to the framework of output regulation in [22]. To this end,
by differentiating i times (3), we obtain

y?[d,d+i] = Hi

(
y?[0,d+i−1]

)
+ F i

(
y?[0,d+i−1]

)
µ , (12)

where
Hi(y

?
[0,d+i−1]) = col

(
H0(y?[0,d−1]), . . .Hi(y

?
[0,d+i−1])

)
,

F i(y
?
[0,d+i−1]) = col

(
F0(y?[0,d−1]), . . . ,Fi(y

?
[0,d+i−1])

)
,

with H0(·) = H(·), F0(·) = F(·) and Hj(·) = Ḣj−1(·) and
Fj(·) = Ḟj−1(·) for j = 1, . . . , i. If there exists a number
m ≥ nµ such that the matrix Fm(·) is pseudo-invertible,
then it is possible to replace µ in (12) with

µ = F+
m(y?[0,d+m−1])

(
y?[d,d+m] −Hm(y?[0,d+m−1])

)
(13)

where F+
m(·) denotes the pseudo-inverse of Fm(·). We thus

obtain a new formulation equivalent to (12) of order d̄ = d+
m+ 1. Existence of the pseudo-inverse of the matrix Fm(·)
is guaranteed under the following persistence of excitation
condition.

Assumption 3 There exist m ≥ nµ and δ > 0 such that

det
(
FT
m(y?[0,d+m−1])Fm(y?[0,d+m−1])

)
≥ δ

for any trajectory y?(t) generated by the system (4), under
Assumption 2, with µ ∈ U and x ∈ X?.

Persistence of excitation assumptions are recurrent in pres-
ence of unknown parameters. In this paper we do not adopt
any well known adaptive techniques that already have been
considered in the case of networks, e.g. [17]–[19]. Instead,
we will exploit this assumption showing that it corresponds
to an observability condition of the unknown parameters,
thus allowing to achieve asymptotic synchronization without
measuring directly µ. In particular, as shown in Proposition
2 in [22], under Assumption 3, the reference signal (3) can
be thought as generated by an autonomous dynamical system
of dimension d̄, namely

ẇ1 = Sw1 +Bφ(w1) , w1 ∈ Rd̄,
y? = Cw1 ,

(14)

where the initial conditions w1(0) range in some compact set
W ? ⊂ Rd̄ to be specified later, the matrices (S,B,C) are a
triplet in prime form of dimension d̄, and the function φ(·)
is defined in particular as

φ(w1) :=Hm+1(w1)+Fm+1(w1)F+
m(w1)

(
T w1−Hm(w1)

)
,

with T :=
(

0(m+1)×d I(m+1)×(m+1)

)
(m+1)×(d+m+1))

.

As shown in [22], Assumption 3 and smoothness of the
functions H(·) and F(·) implies that the function φ(·) is at
least locally Lipschitz. Having in mind the definition of the
system (4), we define the compact invariant set W ? ⊂ Rd̄
such that, for any trajectory x1(t) generated by the dynamical
system (4) with parameters µ ∈ U and evolving in the
compact space X?, there exists a corresponding trajectory
w1(t) of (14) evolving in W ? such that the two outputs
y?(x1) and y?(w1) coincides.

In particular, the set W ? can be constructed as follows.
Pick any µ ∈ U and let W ?

i (µ) denote a compact subset of
R. For i = 1, . . . , d we chose W ?

i (µ) such that

X?(µ) = W ?
1 (µ)× · · · × W ?

d (µ) .

Then, for i > d, we

W ?
d+j(µ) :=

ß
r ∈ R : r = Hj−1(z) + Fj−1(z)µ,

∀ z ∈
d+j−1∏
k=1

W ?
k (µ)

™
,

with j = 1, . . . ,m+ 1. Finally, we construct W ?(µ) as

W ?(µ) := W ?
1 (µ) × · · · ×W ?

d+m+1(µ) .

Lastly, we select W ? as the union of all the W ?(µ) for
any µ ∈ U . As a consequence it can be verified by
construction that for any initial condition x1(0) ∈ X? and
any parameter µ ∈ U , there exists a corresponding initial
condition w1(0) ∈ W ? such that the trajectories x1(t) and
w1(t) respectively generated by the systems (4) and (14)
satisfy w1i(t) = x1i(t) = y?(i−1)(t) for all t ≥ 0 and
for all i = 1, . . . , d, where x1i denotes the i-th component
of x1 and wi1 denotes the i-th component of w1. In other
words, instead of considering the reference trajectory y?(t)
and satisfying (3) as generated by x1 in (4), whose dimension
is d, with µ ∈ U viewed as an (unknown) input, we consider
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y?(t) as generated by an autonomous dynamical systems w1

expressed by (14). Systems (4) and (14) are thus equivalent
representations of the reference trajectory y?(t) at hand. In
order to better explain the previous procedure we provide
two examples where the formulation (14) can be used to
cope with parametric uncertainties of the leader trajectory
and multi-pattern leader trajectories. Other examples can be
found in [21].

A. Examples

1) Synchronization with Parametric Uncertainties: Con-
sider the case in which the leader trajectory y? is generated
by a linear oscillator with unknown frequency of oscillation
ω, namely

ÿ? + ω2y? = 0 . (15)

Evidently the reference trajectory (15) can be written in the
form (4) or alternatively as

ẋ1 = x2, ẋ2 = −x3x1, ẋ3 = 0, y = x1

where x3 = ω2 represents the unknown parameter. By
defining w1 = (w11, w12, w13, w14)T ∈ R4 according to

w11 = x1, w12 = x2, w13 = −x3x1, w14 = −x3x2,

we obtain a system in the form (14) with d̄ = 4, where

φ(w) =

Å
w11w13 + w12w14

w2
11 + w2

12

ã2

w11 .

It is readily seen that, by following the previous procedure, it
is possible to cope with the more general case of trajectories
generated by uncertain linear systems of the form

v̇ = S(µ)v, y? = Pv

with S(µ) being a neutrally stable matrix for any µ ∈ U .
This case has been already addressed in literature but with
adaptive techniques. See, for instance, [17]–[19].

2) Robust multi-pattern synchronization: As mentioned
before, the procedure presented above can be seen as a
robust synchronization tool in case of leader’s multi-pattern
trajectories. Consider for instance the case in which the
leader might generate three different trajectories uncertain
in the parameters, namely an uncertain Van Der Pool, an
uncertain Duffing oscillator and an uncertain linear oscillator.
We consider therefore a y? satisfying

ÿ? = αy? + βẏ? + γy?3 + δy?2ẏ? , (16)

which, for different configurations of the parameters
α, β, γ, δ, includes the three aforementioned oscillators (and
actually many others). It is trivially seen that we can express
(16) according to (12) in the compact form

ÿ? = F(y?[0,1])µ , (17)

where F(x[0,1]) = (y?, ẏ?, y?3, y?2ẏ?) and µ =
col(α, β, γ, δ). By differentiating (17) to the 4-th order,
we obtain y?[2,6] = F4(y?[0,5])µ . It is possible to check
numerically (see [22]) that the matrix F4(·) ∈ R4×5 is

pseudo-invertible when the trajectory of y? is generated as
the first component of a Van De Pool oscillator, a Duffing
oscillator or a linear oscillator. Thus the parameters µ can
be computed according to (13). This in turn allows to embed
the multi-pattern uncertain trajectory (16) in a system of the
kind of (14) of order d̄ = 7.

B. Design of the Local Reference Generator

Having in mind the description (14) of the leader dynam-
ics, the LRGs (8) are designed by selecting the function s(·)
and c(·) as

s(wk) = Swk +Bφ̄(wk) , c(wk) = Cwk (18)

with (S,B,C) a triplet in prime form of dimension d̄, initial
conditions wk(0) ranging in any compact set Wk ⊂ Rd̄ and
where the functions φ̄(·) is any bounded locally Lipschitz
function that agrees with φ(·) on the set W ?. We denote
with L > 0 the real number satisfying

|φ̄(wak)− φ(wbk)| ≤ L|wak − wbk| , (19)

for any (wak , w
b
k) ∈ Rd̄×W ?. From a practical point of view,

it is interesting to remark that we do not have to compute
“formally” the function F+

m(·) in order to implement the
function φ(·). Rather, it can be evaluated on-line since it
requires only the computation of the pseudo-inverse of a
matrix. Finally, note that the existence of the function φ̄(·)
is guaranteed by the Tietze Extension Theorem. It can be
selected, for instance, by saturating the function φ(·) outside
the compact set W ?.

Next, we define K as

K = DgK0 , (20)

where Dg ∈ Rd̄×d̄ is defined as Dg = diag(g, . . . , gd̄) with
g ≥ 1 the so called “high-gain parameter” (see [20]) and
K0 = PCT with P solution of the Riccati equation

SP + PST − αPCTCP = −aI , (21)

where a ∈ R>0 is a free design parameter and α is given
by Assumption 1. The forthcoming proposition states that
with the previous design of the functions s(·), c(·) and K,
asymptotic synchronization of the local reference generators
(8) with the leader (4) is achieved robustly with respect to
the parameters µ ranging in the compact set U .

Proposition 1 Suppose Assumptions 1, 2 and 3 hold. Choose
the functions s(·), c(·) according to (18) and the matrix K
according to (20). Then there exists g? ≥ 1 such that for any
g ≥ g?, for any initial condition wk(0) ∈ Wk ⊂ Rd, with
k = 2, . . . , N , x1(0) ∈ X1 and for any constant parameter
µ ∈ U , the trajectories of (8), coupled via (9), are bounded
for all t ≥ 0 and satisfy limt→∞ ek(t) = 0, for all k =
2, . . . , N , with ek defined in (10).

Proof: For dimensional consistency, we consider the
leader trajectory y? as generated by the system (14). Then,



5

by letting w = col(w1, w2, . . . , wN ), the network of (8)-(14)
can be written in compact form as

ẇ = (IN ⊗ S)w + (IN ⊗B)Φ(w) + (L⊗KC)w (22)

where Φ(w) = col
(
φ(w1), φ̄(ww), . . . , φ̄(wN )

)
. The result

can be proved by showing that the set

W = {w ∈W ? × . . .×W ? : w1 = . . . = wN}

is asymptotically stable for (22), semi-globally with respect
to wk for k = 2, . . . , N . To do so, let T ∈ RN×N be such
that

L̃ = T−1LT =

ï
0 01×N−1

0N−1×1 L22

ò
,

with eig(L22) = {λ2(L), . . . , λN (L)}. We change coordinate
according to w 7→ z := (T−1 ⊗ Id̄)w, which component
wise reads as

w1 7→ z1 := w1 ,
wk 7→ zk := wk − w1 , k = 2, . . . , N .

(23)

In the new coordinates, system (22) reads

ż1 = Sz1 +Bφ(z1) (24)
ż2 = A(z1, z2) (25)

where z2 = col(z2, . . . , zN ) and

A(z) :=
[
(IN⊗S)−(L22⊗KC)

]
z2 +(IN⊗B)∆Φ(z1, z2),

where the i-component of ∆Φ(·, ·) : R(N−1)d̄ → R(N−1) is
given by φ̄(zi− z1)−φ(z1). Note that, by definition, z2 = 0
implies φ̄(z1) = φ(z1) and thus ∆Φ(z1, 0) = 0, uniformly
in z1. Since the subsystem (24) is autonomous, in the rest
of the proof, we will focus on proving asymptotic stability
of the origin of z2-dynamics (25), which in turn, in view of
(23), implies that synchronization is achieved. To do so, we
change coordinate according to

z2 7→ ϑ := (T−1
J ⊗D−1

g )z2 , (26)

with TJ such that LJ = T−1
J L22TJ is the Jordan canonical

form of L22. For the sake of simplicity, in the following we
suppose that LJ has a purely diagonal form (the not-diagonal
case follows trivially, by means of ISS arguments). In the new
coordinates, system (25) reads as

ϑ̇ = gΛϑ +
1

gd̄
∆(z1,ϑ) .

where Λ =
[
(IN ⊗ S) + (LJ ⊗ K0C)

]
=

blkdiag(Λ2, . . . ,ΛN ) with Λi = S − λi(L)K0C for k =
2, . . . , N , and ∆(z1,ϑ) := (T−1

J ⊗B)∆Φ
(
z1, (TJ ⊗Dg)ϑ

)
,

is such that ∆(z1, 0) = 0, uniformly in z1. Consider
now the Lyapunov function V = ϑT (IN−1 ⊗ P−1)ϑ ,
and recall that by definition of P in (21), we have
P−1Λi + Λ−1

i P−1 = −aI . As a consequence, by
differentiating with respect to time we obtain

V̇ = −a g‖ϑ‖2 + g−d̄ϑT (IN−1 ⊗ P−1)∆(z1,ϑ)
≤ −a g‖ϑ‖2 + βL‖ϑ‖2 .

where, by definition of ∆(·) and (19), β > 0 is such that

‖g−d̄ϑT (IN−1 ⊗ P−1)∆(z1,ϑ)‖ ≤ βL‖ϑ‖2 ,

for all ϑ ∈ R(N−1)d̄ and z1 ∈ W ?. As a consequence, the
previous inequality leads to

V̇ ≤ −a g‖ϑ‖2 + βL‖ϑ‖2 .

By selecting any g? > max{βL/a, 1} and by combining the
definition of V and the change of coordinates (26) it comes
straightforward the existence of real numbers b1 > 0, b2 > 0
(independent of g) such that the following holds

‖z2(t)‖ ≤ b1 g
d̄ exp(−b2 g t)‖z2(0)‖ , ∀ t ≥ 0 , (27)

for any g ≥ g?. By definition of z2 = col(z2, . . . , zN ) in (23),
we conclude that the followers’ local reference generators
synchronize on the leader’s trajectory.

It is worth noticing that the gain Dg implemented in (20)
is composed by increasing powers of g up to gd̄. As a
consequence, when d̄ or g are very large, the local reference
generators (18) can be designed as in [22] by means of
the novel “low-power” technique introduced for high-gain
observers in [23] to avoid numerical implementation issues.

IV. LOCAL TRACKING PROBLEM AND
SYNCHRONIZATION OF THE OUTPUT OF THE AGENTS

In Section III, we showed that synchronization of the
followers’ LRG wk on the leader trajectory w1 can be
obtained by an opportune design of the dynamics (8) and
of the control parameter K according to (18) and (20).
By recalling the definition ek in (10), Proposition 1 states
that limt→∞ yk(t) = y?(t) for all k = 2, . . . , N . As a
consequence, we are left with a set of N − 1 local tracking
problems which in turn involves the design of N − 1 local
controller such that each agent (5) tracks its local reference
trajectory generated by (8). In the following assumption, we
ask that there exists a dynamic regulator (11), such that each
agent (5) is capable of robustly tracking the leader’s reference
trajectory generated by (14).

Assumption 4 Consider, for any k = 2, . . . , N , the system

ẇ1 = Sw1 +Bφ(w1), y? = Cw1,
ẋk = fk(xk, uk), yk = hk(xk),

(28)

with initial conditions (w1(0), xk(0)) in W ?×Xk. Let εk > 0
be any (small) positive real number. There exist functions
ϕ̂k(·) and γ̂k(·), such that the system (28) in closed-loop
with the dynamic regulator

ζ̇k = ϕ̂k(ζk, yk, w1 + ε(t))
uk = γ̂k(ηk, yk, w1 + ε(t))

(29)

with initial condition ζk(0) ∈ Zk, satisfies the following:
i) there exists a compact set W ? × Xk, with Xk ⊃ Xk,

which is forward invariant for any ε ∈ L∞loc(R,Rd̄)
satisfying ‖ε(t)‖ ≤ εk for all t ≥ 0;

ii) the compact set B = {(w1, xk) ∈W ?×Rnk : yk−y? =
0} is asymptotically stable with a domain of attraction
A ⊃W ? ×Xk for ε(t) = 0.
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Fig. 1. Synchronization of the local reference generators yrefk on the leader’s trajectory. The leader’s trajectory is plotted as a dashed-dotted red line:
during the transient, the local reference generators saturates according to the chosen values and ultimately synchronize on the leader’s trajectory.

In our framework, the N − 1 agents (5) do not have
access to the leader’s reference trajectory and its derivatives
but only to the set of local reference generator (8). During
the transient, the state of the system (8) may leave the
compact set W ?. As a consequence, the controller ϕ̂k, γ̂k
in Assumption 4 is modified as follows

ϕk(ζk, yk, wk) := ϕ̂k(ζk, yk, Ik(wk)) ,
γk(ηk, yk, wk) := γ̂k(ηk, yk, Ik(wk)) ,

where Ik(·) is any continuous bounded function that agrees
with the identity function in the set W ? and satisfying

|Ik(wk)| ≤ supwk∈W? |wk|+ εk ∀wk ∈ Rd̄ .

The next proposition summarizes the main result of the paper,
namely the output synchronization of the N − 1 nonlinear
agents (5) with the leader trajectory (4).

Proposition 2 Let Assumptions 1-4 hold. Then, for every
initial condition (wk, xk, ζk) ∈Wk ×Xk × Zk, the solution
of the system (5) in closed-loop with the controller (7) and
with the leader trajectory y? generated by (3), is bounded
and satisfies limt→∞ yk(t)−y?(t) = 0 for all k = 2, . . . , N .

Proof: The proof is a direct result of Proposition 1 and
Assumption 4. In particular, Proposition 1 guarantees that the
ϑ-dynamics are 0-GAS and consequently the z2-dynamics.
The latter can be shown by recalling the definition of zk and
z2 in (23) and (25) and the fact that z1 = w1. With this in
mind, it is possible to write the dynamics of the close-loop
system (3)-(5)-(7) in the compact form

ẇ1 = Sw1 +Bφ(w1), żk = Ak(w1, z2),

ζ̇k = ϕ(ζk, yk, w1 + νk), ẋk = fk(xk, uk),

where Ak(·) denotes the k-th row of the function A(·) in
(25) and νk is defined as νk := Ik(zk + w1) − w1. Note
that by definition of the function Iε(·), we have |νk(t)| ≤
ε for all t ≥ 0. As a consequence, by using the result of

Proposition 1 and item i) in Assumption 4, we have that
xk(t) ∈ Xk for t ≥ 0. By recalling (27) and the definition
of z2 = col(z2, . . . , zN ), we obtain limt→∞ zk(t) = 0 and
therefore limt→∞ νk(t) = 0, for any k = 2, . . . , N , The
proof concludes by using item ii) of Assumption 4.

We conclude this section by stressing that in order
to design the dynamic regulator (29) one can use any
tracking/regulation technique satisfying Assumption 4. This
choice may depend in general on the properties of system
(5). For instance, under a minimum phase assumption, one
may use nonlinear output regulation tools [20], as shown
in [12]. Moreover, since in our framework each agent has
the information of the tracking reference yref

k and its d̄
derivatives, it is possible to exploit this knowledge to use
other (feedforward) tracking techniques, such as feedback
linearization, [24], flatness approaches, [25] sliding mode
control, [26], or neural network approaches, [15].

V. SIMULATIONS

To confirm the results presented in Section III and Section
IV, we consider the case of 5 nonlinear heterogeneous agents
which are asked to synchronize on a leader trajectory whose
dynamics is described by (16). In the simulations, the leader
node describes a linear oscillator (α = 9, β = γ = δ = 0)
in the time interval [0, 10] sec, then smoothly changes into
a Van Der Pool oscillator (α = −1, β = 3, γ = 0,
δ = 3) in the time interval [10, 20] sec, and finally into a
Duffing oscillator (α = −1, β = 0, γ = −2, δ = 0) in the
time interval [20, 30] sec. Following the example presented
in Section III-A2, the leader dynamics can be thought as
generated by a system of the form of (14) with d̄ = 7. Then,
the local reference generator is designed according to (18)
with K defined as in (20)-(21) with a = 1 and g = 400.
The final reference trajectory is generated by designing the
function Ik(wk) as a component-wise saturation with values
(10, 20, 70, 200, 500, 3500, 40000), for all k. The 5 agents are
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Fig. 2. Tracking error of the 5 followers with respect to the reference
trajectory.

heterogeneous both in the dynamics and in the dimension,
namely xi ∈ R2 for i = 2, 3, 4 and xi ∈ R3 for i = 5, 6,
ẋ21 = x22

ẋ22
=
−x3

21

1+x2
21

+ u2

y2 = x21

ẋ31 = x32

ẋ32
= −x31

+ u3

y3 = x31

ẋ41 = x42 − x41

ẋ42
= x2

41
+ u4

y4 = x41
ẋ51

= x52
+ x53

ẋ52 = x51x52

ẋ53 = −x51 + u5

y5 = x51


ẋ61

= 28(x63
− x61

)
ẋ62 = x61x63 − 8

3x62

ẋ63 = 10x61 − x63 − x63x
2
62

+ u6

y6 = x61

Each regulator (11) is designed with an observer to recon-
struct the state xk from the output yk and a nonlinear stabi-
lizer to steer the tracking error to zero. The particular design
of the regulators are omitted for the sake of compactness.
Figure 1 shows the synchronization of the local reference
generators yref

k on the leader’s trajectory: even if the leader
changes its trajectory from linear to nonlinear dynamics, the
network of followers is capable of tracking all the different
trajectories. Figure 2 shows the tracking error for the 5
heterogeneous agents with respect to the reference trajectory.

VI. CONCLUSION

In this paper we considered the problem of synchroniza-
tion of a network of heterogeneous nonlinear agents with
unknown leader. By exploiting nonlinear regression tools,
we designed a set of local reference generators capable of
robustly synchronizing over the unknown leader’s trajectory.
Then, by solving a set of local tracking problems, we guaran-
teed that the heterogeneous agents outputs synchronize with
the leader. From a theoretical point of view, this technique
can be extended by considering the case of switching com-
munication networks, for instance by following the approach
introduced in [27]. On the application side, it would be
interesting to consider its application to electrical power
networks where the power load variation could be monitored
according to the proposed approach, e.g. [28].

REFERENCES

[1] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory”, IEEE Trans. Aut. Contr., 51(3), pp. 401–420, 2006.

[2] R. Sepulchre, D. A. Paley, and N. E. Leonard, “Stabilization of planar
collective motion with limited communication”, IEEE Trans. Aut.
Control, 53(3), pp. 706–719, 2008.

[3] S. V. Dhople, B. B. Johnson, F. Dörfler, A. O. Hamadeh, “Synchroniza-
tion of nonlinear circuits in dynamic electrical networks with general
topologies”, IEEE Transactions on Circuits and Systems-I: Regular
Papers, 61(9), pp. 2677–2690, 2014.

[4] A. Mirtabatabaei, and F. Bullo, “Opinion dynamics in heterogeneous
networks: Convergence conjectures and theorems”, SIAM Journal on
Contr. and Optim., 50(5), pp. 2763–2785, 2012.

[5] L. Moreau, “Stability of continuous-time distributed consensus algo-
rithms”, Proc. CDC, pp. 3998–4003, 2004.

[6] J. Qin, H. Gao and W. X. Zheng, “Exponential Synchronization of
Complex Networks of Linear Systems and Nonlinear Oscillators: A
Unified Analysis”, IEEE TNNLS, 26(3), pp. 510–521, 2015.

[7] M. Arcak, “Passivity as a design tool for group coordination”, IEEE
IEEE Trans. Aut. Control, vol. 52(8), pp. 1380–1390, 2007.

[8] G.B. Stan and R. Sepulchre, “Analysis of interconnected oscillators by
dissipativity theory”, IEEE Trans. Aut. Control, vol. 52(2), pp. 256–
270, 2007.

[9] G. Seyboth, D. Dimarogonas, K. H. Johansson, P. Frasca, F. Allgöwer,
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