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Generalized helical vortex structures

Helical vortex structures are found in the wake of rotors in the context of helicopters and wind turbines. In the simple Joukowski model, the wake is composed for each blade of a bound vortex on the blade and two free vortices emitted from its hub and tip [START_REF] Okulov | Theory of concentrated vortices[END_REF]. For a n-bladed rotor, when the hub vortex is exactly on the axis, this model can be matched far downstream to a homogeneous solution formed of n identical helices of same circulation Γ plus a central vortex of circulation -nΓ. This solution can then be described using analytic formulae [START_REF] Hardin | The velocity field induced by a helical vortex filament[END_REF] if the vortices are sufficiently concentrated. No such analytical solution exists when the hub vortex is not exactly on the main axis (or if the rotor has a single blade). In that case, we expect the far-downstream solution not to be homogeneous anymore. In the present work, we propose new spatially-periodic solutions formed of n pairs of vortices of opposite circulation that could be used to describe the far-field.

As in Hardin [START_REF] Hardin | The velocity field induced by a helical vortex filament[END_REF], we assume that the vortices can be described as vortex filaments of small core size a such that we can use the Biot & Savart law to compute the vortex-induced velocities [START_REF] Saffman | Vortex Dynamics[END_REF]. Each vortex filament is then discretized in small segments as in the free-vortex method [START_REF] Leishman | Principles of Helicopter Aerodynamics[END_REF]. We also assume that there exists a translating and rotating frame, characterized by an axial velocity V F and angular rotation Ω F in which the vortical structure is stationary. In this frame, at each point of the filament structure, the total velocity is then aligned along with the structure. The velocity field has three contributions: the frame velocity along e θ and e z , the self-induced velocity mainly along the binormal to the structure, and the mutual induction velocity associated with the other vortices. If we consider two uniform helical vortices of opposite circulation, same axis but different radii and pitches, it is easy to find the frame velocity that cancels the self-induction velocity of both helices. However, it is not possible to cancel the radial component of the mutual induction velocity. It is this contribution that is responsible of the deformation of the helices.

Here, we show that a stationary solution with a certain spatial periodicity still exists. The periodicity is in the sense that there exists an axial distance L > 0 and an angle 0 ≤ φ < 2π such that the radial locations of each vortex are invariant by the double operation of translation by L and rotation by φ. For a given number n of vortex pairs, the solutions are found to be characterized by only four geometrical parameters

R * = R int R ext , h = h int h ext , α = h ext h int , ε = a R ext (1) 
where the equivalent radii R int and R ext , and pitches h int and h ext of internal and external deformed helices are defined as follows. The radii R int and R ext correspond to the radial locations of the two vortices when they have the same azimut. After one period, the two vortices are again at the same azimut, but one of the two vortices has performed one more rotation than the other (see figure 1). If α > 1, it is the internal vortex. In that case, Illustrations of typical solutions as R * increases are shown in figure 2. We do observe that the deformations of the helices become more important as R * gets close to 1. The strength of the deformation can be measured by the ratio

∆r max = max z |r int (z) -R int | R ext .
This ratio has been plotted in figure 3 as a function of R * for several values of n. We do observe an increase of ∆r max with R * for all n but the increase becomes weaker and weaker as n increases. For n = 3, the deformation is almost invisible for R * < 0.5. The frame velocity depends on the vortex circulation Γ. Two dimensionless parameters measuring the relative strength of the two components of the frame velocity, and of the vortex strength can be defined by

λ = R ext Ω F V F , η = Γ/R 2 ext Ω F .
The first parameter is the so-called tip-speed ratio. These parameters are functions of the 4 geometrical parameters mentioned above. Their variations with respect to the pitch ratio h are shown in figures 4 and 5 for a few values of R * . It is interesting to note that λ is weakly sensible to variations of R * . It also exhibits a decreasing behavior which qualitatively follows the behavior in 2π/h that we would have been obtained for a passive scalar advection. This limit should actually correspond to η = 0. We do observe in figure 5 that η is indeed relatively small for the corresponding parameters.

In the future, we intend to use these solutions as the far-field condition for the semi-infinite solution created from a rotor.
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 12 FIG.1: Definition of the parameters from a typical illustration of a deformed configuration for n = 1.
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 34 FIG.3: Maximum deformation ratio ∆r max as a function of R * for α = 0.5, = 0.05 and different numbers of vortex pairs.
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 5 FIG. 5: Variation of η with respect to h for different values of R * . Here α = 0.5, = 0.05 and n = 1.